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Abstract—1In this paper, we apply an emerging method, on-
line learning with dynamics, to deduce properties of distributed
energy resources (DERs) from coarse measurements, e.g.,
measurements taken at distribution substations, rather than
household-level measurements. Reduced sensing requirements
can lower infrastructure costs associated with reliably incor-
porating DERs into the distribution network. We specifically
investigate whether dynamic mirror descent (DMD), an online
learning algorithm, can determine the real-time controllable
demand served by a distribution feeder using feeder-level active
power demand measurements.

In our scenario, DMD incorporates various controllable
demand and uncontrollable demand models to generate real-
time controllable demand estimates. In a realistic scenario, these
estimates have an RMS error of 8.34% of the average con-
trollable demand, which improves to 5.53% by incorporating
more accurate models. We propose topics for additional work in
modeling, system identification, and the DMD algorithm itself
that could improve the RMS errors.

[. INTRODUCTION

Distributed energy resources (DERs), e.g., demand respon-
sive loads and residential solar generation, are becoming
more prevalent within distribution networks [1], [2]. Sensing
capabilities enabled by technologies such as residential smart
meters [3] are also becoming more prevalent in power
systems, but electric utilities still lack an accurate real-time
picture of the behavior of DERs. Such information could help
improve power system reliability, economic efficiency, and
environmental impact. Realistically, we do not need perfect
information about every device connected to the system in
order to achieve these benefits. This work explores using
online methods to infer the behavior of DERs from coarse
measurements taken from distribution substations rather than
more detailed household-level measurements. Effective infer-
ence methods would reduce the need for sensing and commu-
nications infrastructure, reducing the costs of incorporating
DERs.

Extensive literature exists for non-intrusive load monitor-
ing (NILM), for example [4], or energy disaggregation, for
example [3], which we will collectively refer to as NILM.
NILM seeks to infer individual appliance or load behavior,
usually for less than 20 loads, from a single aggregate power
measurement signal sampled at high frequency (e.g., 10-
100 kHz) at a household main. These algorithms usually
are not solved online because the goal is long-term energy
efficiency decisions such as identification and replacement of
faulty appliances and/or load research. Many of the existing

The authors are with the Department of Electrical Engineering at the
University of Michigan. This research was funded by NSF Grant #ECCS-
1508943.

techniques for NILM rely on assumptions, for example, that
only one device can change state at a time [5] or that step
changes can been seen in the aggregate data [6], which
enables the use of change detection algorithms.

In contrast, we want to infer information in real-time,
i.e., as measurements arrive. The measurements could be a
feeder’s demand served, voltage, etc., which are impacted by
large numbers of devices (thousands to tens of thousands).
As a result, typical NILM assumptions are invalid and the
corresponding NILM approaches are inapplicable. Another
difference from NILM is that rather than determining device-
level behavior, we seek to determine the behavior of classes
of devices. For example, in real-time, a demand response
aggregator cares about the total controllable demand served
by a feeder. However, after service delivery, the aggregator
does care about device-level information for auditing or
compensation.

In this paper, we investigate the application of an online
learning algorithm, dynamic mirror descent (DMD) [7], to
determine DERs behavior in real-time. Specifically, we use
DMD to deduce the controllable demand component of
feeder-level active power measurements as they arrive. We
detail several models used to capture the behavior of the
controllable and uncontrollable demand, and we propose
several areas where these models could be improved for our
application. Finally, we present several case studies showing
the capabilities and limitations of DMD within the proposed
scenario.

This paper is organized as follows: Section II presents the
problem setting. Section III constructs the physical represen-
tation of the system. Section IV describes the online learning
algorithm, and Section V describes the models used within
this algorithm. Section VI presents several case studies and
their results, and Section VII provides concluding remarks.

II. PROBLEM SETTING

In this paper, we consider a situation where an entity,
e.g., a demand response aggregator, has access to real-time
active power measurements corresponding to the load, or
demand, served by a distribution feeder. The power mea-
surements consist of time-averaged active power draw over
one minute intervals. A portion of each active power demand
measurement corresponds to the power usage of controllable
appliances, i.e., demand that the aggregator can manipulate.
The remaining portion of each measurement corresponds to
the uncontrollable demand, i.e., the demand that cannot be
manipulated. The aggregator wants to deduce the controllable
demand portion of the total demand measurements as the



measurements arrive. Knowledge of the real-time control-
lable demand has several uses: i) to bid demand response
capacity into ancillary services markets [8], [9], or ii) as
the feedback control signal within a load control algorithm
[10]-[14]. While this knowledge enables feedback control,
in this work we do not incorporate any control action that
manipulates the controllable loads.

We apply an online learning algorithm, dynamic mirror
descent (DMD) [7], to achieve the goal of estimating the
controllable demand in real-time. DMD uses a bank of
models, some for the controllable demand and some for the
uncontrollable demand, to predict the former. The algorithm
forms overall demand predictions from various combina-
tions of the controllable and uncontrollable demand models.
These model combinations are weighted based on their
recent predictions’ accuracy — better prediction-measurement
matching leads to larger weighting and more influence in
the overall estimate. DMD’s controllable demand estimate
is then the controllable demand component of this weighted
combination of the various model predictions.

Within this work, we assume that the controllable demand
corresponds to the active power usage of a population of
thousands of air conditioners. We assume the air conditioners
are all connected to a single distribution feeder. Each air
conditioner cycles between drawing power (the on mode) and
not drawing power (the off mode) to maintain a household’s
indoor temperature within a dead-band around a user-defined
temperature setting. We also assume that smart meters mea-
sure the indoor temperature and on/off mode of each air
conditioner on the time-scale of seconds. We assume this
information is not available in real-time, but historical data,
e.g., from a previous day, are available.

In the following section, we describe the general simula-
tion setting and the construction of the plant, which is the
representation of the physical system within our simulations.

III. PLANT CONSTRUCTION

In this section, we detail the construction of a 24-hour sig-
nal representing one day of the distribution feeder’s measured
power values, which are the summation of a controllable
demand signal and an uncontrollable demand signal. We
generate the uncontrollable demand signal using a feeder
from GridLAB-D’s feeder taxonomy [15] and household
power usage data from the Pecan Street Inc. Dataport [16].
We generate the controllable demand signal from a set
of models that simulate the power draw of individual air
conditioners.

Figure 1 shows the time series corresponding to the
controllable demand, denoted ¥, and uncontrollable demand,
denoted yi°. The measured demand time series y; is the
sum of these two signals, y; = y; + y;°, and the 1 minute
sampling intervals for the Dataport’s household data dictates
the time-step of our simulation. The following sections detail
the construction of the uncontrollable demand signal and the
controllable demand signal.
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Fig. 1. Time series of the controllable and uncontrollable demand

components of the measured signal.

A. Uncontrollable Demand Signal

The active power draw of the loads on GridLAB-D feeder
R3-12.47-1 determines the uncontrollable demand signal’s
average value over the day. The chosen feeder contains
only residential and commercial loads, and we assume the
commercial load served by the feeder is constant over the
day. To add some variability to the commercial load, we
add zero-mean, normally distributed demand with a standard
deviation of 5% of the mean commercial load.

The residential loads served by the feeder provide the
average value of the uncontrollable household load. We
construct the uncontrollable household load signal from the
Dataport’s historical household active power demand data.
The data used to construct the uncontrollable residential load
was that of single family homes in Austin, Texas on Monday,
August 3, 2015, and we removed any air conditioning loads
from the data. The individual houses’ usage signals for the
day were randomly drawn with replacement and added to
the uncontrollable residential signal until the uncontrollable
residential signal’s mean matched that dictated by the feeder
model. Finally, the commercial and residential components
were added to generate the overall uncontrollable demand
signal. Note that we do not model power lines or power
flows within this work.

B. Controllable Demand Signal

A population, or set, of hybrid models, i.e., models con-
taining continuous and discrete states, generates the con-
trollable demand signal. Each hybrid model captures the
heat transfer driving the on/off cycling of an individual air
conditioner. The total controllable demand at time ¢, yg, is
the sum of the individual hybrid models’ power usage.

The number of models within the population, N, equals
the number of houses with air conditioners used to generate
the uncontrollable demand signal, and we model an individ-
ual air conditioner’s power usage with the equivalent thermal
parameter (ETP) model [17]. The set of ETP models are
N*© ={1,2,...,N*}, and we index them with i € N*°.

The ETP model contains a vector of continuous states ! =
[0 g 9;’”] " that capture the house’s internal temperatures
and a discrete state m! that captures whether the appliance is
drawing power. The ;" value is the house’s internal mass
temperature, and 6, is the house’s internal air temperature.
Table I summarizes the parameters used within the model and
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Fig. 2. Time series plots comparing 69, the outdoor temperature trajectory
used to generate the controllable demand signal, with Gg’LTVI and 0;"'LTV2,
two alternative trajectories used to generate the models in Section V-B.3.

their values, where [, 3] indicates a uniform distribution.
We generate the N ETP models by randomly sampling
the parameter distributions. The nominal parameters for the
parameter distributions are based on [18].

The vector dj = [0 Q' Qm’i]T collects the en-
vironmental heat sources that influence the on/off cycling
of the air conditioners. The values Q' and Q™ capture
heating from appliances and occupants within the house as
well as solar irradiance. In this work, they are assumed
constant. The outdoor temperature is 6§, and its trajectory
for August 3 is shown in Fig. 2. The Dataport weather data
is sampled hourly, and we interpolated to the necessary time-
step. Future work should investigate time-varying values for
Q** and Q™' that depend on weather conditions, time of day,
and uncontrollable load. These values are a function of the
uncontrollable load because the uncontrollable load includes
uncontrollable appliances, e.g., computers, that induce heat
gains.

To create the dynamical models, we first form continuous
time matrices from the parameters sampled from Table I

Ac,i _ |:_ (Ua,z + Um,z) /Aa,z Um,l/Aa,z :| (1)

Um,i/Am,i _Um,i/Am,i
Bc,i — [Qh,i/Aa,i O}T (2)
ci Ua,i/Aa,i 1/Aa,i 0

We form the discrete-time matrices using [19, p. 315] and
use them to update 6, and m;
0l = A0 + B'm} + E'd;
0 if O < vt — g% /2
if 05 > 001 4 g®i/2 ie N (5)
mi  otherwise

ie N* 4

i
My =41

The first equation updates the internal temperatures. The
second equation updates the on/off mode based on whether or
not the air temperature has exited the allowable temperature
range. The resulting power draw is P} = (|Q™| mi)/n’
where heat is removed, i.e., Qh’i < 0, for cooling appliances.

Tkalce controllable demand value at each time-step is y; =
ZZN:1 P}. Note that the ETP models operate on time-steps
of two seconds while the demand signals have one minute

TABLE I
AIR CONDITIONER MODEL PARAMETERS [18]

Parameter ~ Description Value
At Time-Step Duration [s] 2
0%t Temperature Set-Point [°C] [24, 26]
6% Temperature Dead-band [°C] [2.0,2.5]
U™  Envelope Conductance [%] [0.84, 1.14]
U?*  Internal Conductance [%] [0.2, 0.27]
A™  Mass Heat Capacitance [ ] [4.48, 6.07)
A*  Air Heat Capacitance [5] [0.16, 0.21]
Q™  Internal Mass Heat Gain [kW] 0.5
@Q* Internal Air Heat Gain [kW] 0.5
Q"  Appliance Heat Transfer [kW] [-17.7, -13.1]

n  Coefficient of Performance [-] 3

measurement intervals. The y; within each one minute inter-
val are averaged to form the controllable demand component
of the measurement.

IV. DYNAMIC MIRROR DESCENT

In this section, we detail DMD [7] and adapt it to the
scenario under consideration. In our scenario, DMD seeks
to estimate the controllable demand component, y;, of the
total demand measurements, y; = y; + v;°, as they arrive.
To do this, we define the set of N™! models used within
DMD as N™ = {1, ... Nmdl},

DMD estimates y; using two general processes. The first
process forms predictions g;* and y;“" for each model
i € N™_and then uses the corresponding model to advance
the predictions in time. The second process determines a
weight associated with each model and forms an overall
estimate, Jj; = ¥§ + 7/}, using a weighted combination of the
yy" and 7;~" values. The value of interest to the aggregator
is ¢, the controllable demand component of this weighted
combination. We first detail the prediction process, then the
weighting process that forms the estimate. R

We associate with each model a prediction 0 =
[@gl yjfc’i]T, a modified prediction 52 = [@f’ @;’”] ,and
a specified model of arbitrary structure ®(-). Note that in our
scenario, ®;(-) contains a separate model for the controllable
and uncontrollable demand, i.e., ®{(-) = {®7"(-), ®,7"(-)}.
The modified prediction 6; is an adjusted version of #; that
incorporates information from the newly arrived measure-
ment y; using a gradient descent-based update. The specified
model ®%(-) advances the estimate ¢! in time. The gradient
descent-based then model-based update process is analogous
to a Kalman filter’s separate steps of incorporating a new
observation then advancing the prediction using a model.
In contrast with a Kalman filter, the models can have an
arbitrary structure and there are no assumptions on the
underlying noise distribution.

DMD forms predictions for models i € N'™ as

52 = argmin Ui <V£t(§§7yt)7 9> + D (9”@) ) (6)
IC)

;-&-1 = (I);(ezlf) ) (7)

where (6) incorporates the measurement into the estimate

and (7) advances the estimate in time using the model. We



minimize over the variable 6. The term 77,5(V€t(9t,yt) )
captures the alignment of the variable ¢ with the positive
gradient of a convex loss function £(0i,v;). To minimize
this term alone, we would choose ¢ to be exactly aligned
with the negative gradient direction. The term D(GHQl) is
a Bregman divergence that penalizes the deviation between
the new variable 6 and the old variable ;. It can be thought
of as a term that trades-off matching the noisy data points
with trusting the predictions. The value 7, is a step-size
parameter and (-, -) is a dot product Within this work, we
set £4(01, ye) = 1074 - |y — (55 + 523 and D(6]|9}) =
|6 — 67[|2 where we include 10~* in the loss function for
numerical reasons.

The second DMD process forms the overall estimate from
a weighted combination of the N™ predictions

del
Or41 = Z Wy 16y ®)
i=1
The weights are based on each model’s historical accuracy
with respect to the measurements y;, and models that incur
larger loss values have less influence in the overall estimate.
The algorithm generating the weights is

i A ~;

Wiy :de1 + (1= Nwy 9
. wi exp (—n’" b (At yt))
Wy = - — (10)

SV wl exp (—nr t (9{? : yt))

where w! is the weight associated with model 7 at time-step
t, A € (0,1) dictates the portion of weighting that is shared
among models, and w! is the preliminary weight for model
1 based on the loss of each model and the total loss of all
models.

Ref. [7] describes A\ as a parameter that allows fast
switching between models. Another aspect of this is that A
sets the default combination of models used for predictions.
For example, when X is nearly one, all N™¥ models have
almost equal share in the overall estimate regardless of
their previous loss. We investigated DMD’s accuracy as we
increase A, and the RMS error in the controllable demand
estimate increases with larger values for A\. Understanding
this behavior in more detail and investigating an alternative
weighting function that avoids this issue are proposed for
future work.

V. MODELS USED WITHIN DMD

Each of the N™ models used within the DMD algorithm
consists of a controllable demand model paired with an
uncontrollable demand model. We assume the air conditioner
measurements transmitted to the aggregator, e.g., at the end
of the day, by a house’s smart meter are a history of the
house’s internal air temperature and the air conditioner’s
on/off mode y;" = [#27 mi]T. We do not include the
house’s internal mass temperature as it is not available for
measurement. We use this historical data to build the various
controllable and uncontrollable load models used within the
algorithm, and we detail these models in this section.
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Fig. 3. The plant’s true uncontrollable demand and three predictions of

the uncontrollable demand.

A. Uncontrollable Demand Model

There exist many methods of forecasting demand, for
example [20], which takes the time of week and weather
into account. While advanced models may be accurate more
frequently, they will invariably be incorrect at some point.
DMD has the ability to find an alternative model in these
scenarios, provided an alternative model or combination
of models is accurate. For this reason we include simpler
forecasting methods and rely on DMD to select and switch
between the most accurate model (or combination of models)
in real-time.

The uncontrollable demand model is simply a lookup table

(1)

The o« values are predetermined power values for each
time-step ¢ over the desired prediction horizon. Within this
work, an «; value exists for each one minute interval over
the course of the day, and we generate the «; values
from some previous day’s true uncontrollable demand. The
true uncontrollable demand is found by removing the total
controllable demand, which is known from the transmitted
air conditioner data, from the total demand measurements.
After constructing the uncontrollable demand signal for a
previous day, the time series is broken into fifteen minute
intervals. A linear least squares fit is generated for each
fifteen minute interval, and we combine the linear predictors
into a piecewise linear, continuous function. The o values
are this function’s predicted uncontrollable demand for each
time of day.

We generate the uncontrollable demand models using
uncontrollable demand data from the Dataport for July 27-
29 — the Monday, Tuesday, and Wednesday of the week
preceding the simulated day. We denote their uncontrollable
demand predictions as g, Mon_ T Toes “and 3 Tre Wed respec-
tively, and the models are denoted ®;“ M°“, @EC’T“"’S, and
@;‘C’W"d respectively. Figure 3 depicts the plant uncontrollable
demand y;¢ and the three uncontrollable demand predictions.

“~uc
Y =

B. Controllable Demand Models

We use three controllable demand models within the
DMD algorithm. Similar to the construction of the plant’s
controllable demand signal, the first uncontrollable demand
model is a collection of hybrid models where the individual
hybrid models capture individual air conditioners’ power
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Fig. 4. Time series plots comparing of the plant’s controllable demand to
the predicted demand of the two-state hybrid model population.

draw. In contrast to the hybrid models within the plant, these
hybrid models have less detail. The predicted controllable
demand at a given time is the sum of each hybrid model’s
demand.

The second two models are versions of an aggregate model
developed in [11]. Whereas each hybrid model attempts to
capture the heat transfer driving the air conditioner’s cycling,
the aggregate model seeks to describe the dynamics of the
entire air conditioner population probabilistically. The first
aggregate model is a set of linear time-invariant (LTT) models
that characterize air conditioner population dynamics based
on different outdoor temperatures. The second aggregate
model is a linear time-varying (LTV) model generated from
a previous day’s air conditioner data.

Note that all of the controllable demand models operate
with two second time-steps, and each model’s predictions
within a one minute interval are averaged to form the
corresponding controllable demand predictions. In addition,
we initialize each model with the “true”, i.e., plant, values.
The following subsections detail the controllable demand
models.

1) Hybrid Model Population: Since we do not have access
to internal mass temperature measurements, the hybrid model
states include only the house’s internal temperature, i.c., 92 =
6" and the on/off mode of the appliance m¢. The vector of
environmental heat sources is the outdoor temperature di =

7 ;Fhe resulting continuous-time matrices are
A% = — U /A (12)
B — Qh,i/Ka,i (13)
e — ﬁu/K“ (14)

where A and U are identified using a nonlinear least squares
algorithm. The nonlinear least squares algorithm inputs are
1) historical data for the house’s internal air temperature, 2)
historical data for the air conditioner’s on/off mode, and 3)
the corresponding outdoor air temperature data for a given
appliance or household. The predicted power draw for an
individual model is P} = (|Q™¢| m¢)/n* where Q™" and n’
are assumed to be known.

The predicted controllable demand at each time-step is
g — ™V Pi. Because the hybrid model population
results in a single controllable demand prediction, we note
it collectively as &5,

Figure 4 shows the modeled controllable demand versus
the plant’s controllable demand using A and U values that
are identified once at the beginning of the day. Note that
the model performs poorly over the course of the day; its
resulting weight in the DMD algorithm is small. Future
work should investigate estimating the environmental heat
injections, which would allow a more detailed di vector
in the two-state model. Additional future work should in-
vestigate hybrid system identification techniques that allow
identification of the model parameters and model order based
on input-output data.

2) LTI Aggregate Model Set: The aggregate model for
a controllable appliance population predicts the portion of
appliances that draw power versus the portion of appliances
that are not drawing power. It does so by forming a state
vector z € RY" that consists of the portion of controllable
appliances within discrete state bins. In this work, one bin
captures the portion of controllable appliances that are on
and another captures those that are off, i.e., N* = 2. The
state transition matrix, 4 € RV XN x, is a transposed Markov
transition matrix. Its entries capture 1) the probability that
appliances stay within a given state bin during the time-step,
and 2) the probability of switching state bins. The output
matrix is C' = N*P [0 1] where P is the average power
draw of appliances that are on.

We denote a set corresponding to outdoor temperatures of
interest as J"™™P*, The set consists of integer temperatures
between an upper temperature of interest 7° and a lower
temperature of interest §°. The 6° value is selected lower
than the minimum temperature of the simulated day, and the
8 is selected greater than the maximum temperature.

The LTI model set is generated by constructing A’ and C7
matrices for j € J*™P® using air conditioner on/off data at
each temperature to identify the corresponding matrices. The
output @f’LTI’j is the predicted power draw of the controllable
appliance population. The resulting model is

j c jtemps
j c jtemps

wl,, = A 2 (15)

(16)

yﬁ,LTI,j Y xi
Note that the state of each model evolves independently of
the states of the other models. We note the set of LTI models
as ®"Mand their predictions as 75",

3) LTV Aggregate Model: This approach uses a previous
day’s controllable appliance data to develop a trajectory of
Ay matrices. We associate an A; matrix with each time-step,
and we generate the matrix using the controllable appliances’
historical on/off transitions within that time-step. Note that
the state transition matrix implicitly has a dependence on the
outdoor air temperature; hotter temperatures will force more
appliances to draw power at a given time.

The output matrix is C; = N*P,[0 1] where P,
corresponds to the average demand of appliances that are
on during a given time-step. The corresponding model is

Tt41 = A xy

~c LTV __
Yt = C; xy.

a7)
(18)
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Fig. 5. Time series plots comparing of the actual controllable demand
sampled to two LTV aggregate models generated from data corresponding
to different outdoor temperature trajectories.

The historical state transition matrix trajectories will in
general not be accurate unless the current day’s outdoor
temperature follows the same trajectory as the one used
to identify the A; matrices. We develop two aggregate
LTV models, denoted ®V! and ®¢V2, from the outdoor
temperature trajectories in Fig. 2. Figure 5 depicts their
predictions, 7¢V! and 7¢V2, respectively. Future work
should formulate a state transition matrix that is an explicit
function of the outdoor air temperature.

VI. CASE STUDIES

The following subsections provide several case studies that
explore the effectiveness of DMD within our scenario. First,
we present a benchmark case that uses a simple interpolation-
based algorithm, not DMD, to generate controllable demand
predictions based on the outdoor temperature. Following this,
we present a series of simulations that illustrate DMD’s
capabilities and limitations in the given scenario. We then
explore how performance changes when varying n".

In all cases, the controllable demand model states are
initialized at the true, i.e., plant, value, and the models run
open-loop, i.e., without real-time measurements. We use the
RMS error associated with the controllable demand estimate
to quantify the performance, and Table II summarizes the
cases and results.

A. Benchmark Case

In this section, we provide the results for a simple algo-
rithm that estimates the controllable demand based on the
outdoor air temperature and a collection of aggregate LTI
models. These results serve as a baseline for comparison
with the DMD algorithm in the following subsections.

The simple algorithm uses the steady-state controllable
demand yi, predicted by the LTI aggregate models j €
JmPS Given an outdoor temperature measurement 69, the
controllable demand is estimated via interpolation as

. 07 — 6%~
Ui =Y + 05 —Us) Gor—go= (19)
where 0T = [69] and 6>~ = |6?]. The [-] and |-]
operators round up and down respectively. The y and yg
values are the steady-state demand of the aggregate LTI
model corresponding to 0T and 0%~ respectively. This
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method estimates the controllable demand with an RMS error
of 738 kW, and the time series plots are not included.

B. DMD Cases

In this section we present several simulation cases in
which we vary the models used to illustrate properties of
DMD. First, we present an example of DMD’s effectiveness
in estimating the controllable demand using a realistic set of
models. Following this, we introduce additional, unrealistic
models that show how model accuracy can influence the
estimation results. Finally, we present a cautionary case that
illustrates a potential problem with DMD in this scenario.

1) DMD Case 1: The set of N™! models used in this case
consists of every possible controllable and uncontrollable
demand model pair where the models are listed in Table II.
Additional parameter settings include A = 0.001, n" = 0.03,
Nt = 034,

Figures 6 and 7 provide time series showing the control-
lable demand estimate and total demand estimate, respec-
tively. Each figure includes the corresponding plant signals.
The RMS error of the controllable demand estimate is
264 kW. The accuracy is noteworthy in that none of the
controllable load models included in the case are accurate
between 12 and 8 AM, but the algorithm still does fairly well
in estimating the controllable demand over this time period.
The step-like shapes in Fig. 6, e.g., at 3-6 AM, are due to
DMD relying on and transitioning between LTI models. Gen-
erating models for smaller temperature intervals improves
this accuracy, which leads us to believe an aggregate A
matrix that is a function of outdoor temperature should
improve the estimation performance. Finally, the estimation
errors from from 3 PM to 12 AM are mainly attributable to
uncontrollable demand modeling inaccuracies.

2) DMD Case 2: Including models that are more accurate,
or produce more accurate models combinations, can help
reduce the RMS error. However, the additional models are
only useful if they provide additional accuracy during times



TABLE II
SUMMARY OF RESULTS

Simulation Name  Section Algorithm Models RMS Error [kW]
Benchmark Case ~ VI-A Interpolation @%LTI 738

DMD Case 1 VI-B.1 DMD (I)ct:,LTI7 (I’(t:,LTVI, (bi,LTVZ’ (I)?Hyb, (b;lc,Mnn’ (I)Ec,Tues, @:C’WEd 264

DMD Case 2 VI-B2  DMD DMD Case 1 Models, @} 211

DMD Case 3 VI-B.3 DMD DMD Case 2 Models, ®¢PA 175

DMD Case 4 VI-B4  DMD PUVE @olTl GolTVI gelTV2 | geHyb 1392

n" Sweep VI-C DMD DMD Case 1 Models 264-343

when the existing models were inaccurate.

For example, we generate a new uncontrollable demand
model by applying the method in Section V-A to the sim-
ulated day’s actual uncontrollable demand. We denote the
model as ®!°™*, and this model will be accurate over
the entire day due to its construction. The models available
within DMD in this case include those within DMD Case 1
plus <I>;]°’T°day, and the model combinations used consists of
every possible pair of these controllable and uncontrollable
models. The RMS error is reduced to 211 kW, and including
an accurate uncontrollable demand model fixes the majority

of the biases between 3 PM and 12 AM in Fig. 6.

3) DMD Case 3: This simulation illustrates the point that
including additional models whose accuracy complements
that of the existing models improves the overall estimation
performance. Recall that the controllable demand models
are inaccurate over the first eight hours of the day. To
complement this, we generate a new controllable demand
model whose predicted demand values for the first 8 hours
of the day correspond exactly to the plant’s controllable
demand. The model’s controllable demand predictions for the
final 16 hours are 0 kW. Clearly, this model is accurate over
the first 8 hours where previous controllable demand models
were inaccurate, and it is inaccurate over the remaining 16
hours where previous models were accurate.

We denote this model as ®“PA and include it in the set
of models for DMD Case 2. DMD’s model set consists of
all possible pairs of controllable and uncontrollable models
within this set. Including a controllable demand model that
is accurate where the others are inaccurate reduces the
estimation error further to 175 kW by fixing many of the
biases between 12 and 8§ AM.

Figure 8 shows the evolution of some of the model weights
in this case. There are too many models within the case to
include explicitly, and so we plot the few heavily utilized
models along with the “Other Models” time series that
consists of the sum of all other weights. We label the weights
using the controllable demand model component, and the
corresponding uncontrollable demand model component of
each weight is @™, Predictions 75" correspond to
the LTI model for 36°C. Note that the dominant, i.e., most
heavily weighted model, switches as the scenario progresses.
Also note that there are times when the “Other Models” time
series is dominant; this consists of times when a combination
of a number of models are used to form the overall estimate.
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Fig. 8. Example evolution of select model weights in DMD Case 3. The

uncontrollable model component of each weight is <I>‘;C’T°day, and @?LTI“%

indicates predictions of the LTI model for 36°C
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Fig. 9. Example from DMD Case 4 of DMD compensating if all
uncontrollable model predictions are too low.
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4) DMD Case 4: In the final case, we show a limitation of
DMD in our scenario. Specifically, because the observations
and model outputs all lie within R, the algorithm simply tries
to find the model combination whose total demand prediction
closely matches the observations. If one component model
underestimates the demand while the other overestimates
the demand, the total demand predictions can still closely
match the measurements and the model can be weighted
heavily. To illustrate this, we introduce an uncontrollable
model ®'“VE whose estimates are "% = 0.9 7™ and
we do not include the other uncontrollable demand models
in the algorithm.

Figure 9 shows how DMD overestimates the controllable
demand to compensate, and the resulting RMS error in the
controllable demand estimate is 1392 kW. Note that between
12 and 8 PM the algorithm switches between relying on the
hybrid model population’s controllable demand prediction
and an LTI model’s demand prediction. Considering apparent
power, which can be represented in R?, should add additional
robustness against this issue, and investigating this extension
is the topic of future work.
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C. Investigating the Effect of n"

The n" parameter appears in (10), which updates the
model weights. In this section, we describe the impact of
varying 1" on the estimate accuracy. The models correspond
to that in DMD Case 1. Figure 10 shows how the estimated
controllable demand’s RMS error varies with the parameter’s
value.

Larger values of 7" tend to allow faster switching between
models for a given A value. This makes intuitive sense as
it appears as a negative power of e within (10). However,
as this value increases, the weights can vary rapidly, and
DMD attempts to match the noisy data too closely. The
corresponding estimated demand appears more noisy.

Decreasing the value of 1" slows down the transitions
between models. This is advantageous as it allows a smoother
evolution of the weights and the corresponding estimates.
However, it can be restrictive in that the switching between
the dominant model combination may be too slow. This
trade-off dictates the shape of the plot in Fig. 10.

VII. CONCLUSIONS

In this paper, we introduced the application of online
learning algorithms to deduce DERs behavior from real-time,
feeder-level measurements. Specifically, we explored using
DMD to deduce the active power demand of a population of
controllable appliances from feeder-level demand measure-
ments that include uncontrollable demand.

We developed a simulation environment using data from
GridLAB-D, data from the Pecan Street Inc. Dataport, and
models for controllable appliances. We then presented DMD
— the online learning algorithm — and we presented several
models that were used within DMD. The results show that
DMD can effectively determine the portion of total demand
measurements that correspond to controllable demand. The
DMD algorithm outperformed an interpolation-based algo-
rithm that relies on a set of LTI aggregate models, and
incorporating more accurate models into DMD improves the
estimate of the controllable demand, even if those models
are not accurate over the entire day. Finally, we showed a
shortcoming of DMD within the proposed scenario.

Addressing this shortcoming, improving controllable load
models, and modifying the DMD algorithm are several
avenues of future research. Specifically, extending the ap-
proach to handle apparent power measurements, rather than
active power measurements, should help make the DMD
algorithm more robust in our scenario. Future work in

modeling includes 1) developing an outdoor-temperature-
dependent state transition matrix in the aggregate model,
2) introducing more realistic environmental heat injections
into the individual appliance models, and 3) applying more
general system identification methods to determine better
models for individual household air conditioners based on the
readily available data. Finally, future work should investigate
alternative weighting functions for the DMD algorithm.
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