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Benefits	and	Challenges	of	
the	Modern	Electric	Grid	

•  Grid	sensing	and	communica7on	systems	are	
becoming	more	prevalent	
–  Cost	&	privacy	concerns	
– Need	methods	to	infer	grid/load	informa7on	from	
exis7ng	measurements		

	
•  Renewable	energy	resources	are	also	becoming	
more	prevalent	
– Most	(e.g.,	wind	and	solar)	are	intermiFent	and	
uncertain	

– Need	new	sources	of	power	system	reserves	
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Overview	

•  Inference:	Inferring	the	behavior	of	distributed	
energy	resources	with	sparse	measurements	
[Ledva,	Balzano,	&	Mathieu	Allerton	2015]	

	
•  Control:	Controlling	distributed	electric	loads	
to	provide	power	system	services	with	sparse	
measurements	and	input/measurement	delays		
[Ledva,	VreFos,	Mastellone,	Andersson	&	Mathieu	HICSS	2015]	
[Ledva	&	Mathieu	PSCC	(in	review)	2016]	
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Disaggrega7ng	
substa7on	load	data	

Why	do	we	want	to	disaggregate	resources	at	the	feeder?	
–  Energy	efficiency	via	conserva7on	voltage	reduc7on	
–  Con7ngency	planning	
–  Op7mal	reserve	contrac7ng	
–  Demand	response	event	signaling	
–  Demand	response	bidding	
–  Load	coordina7on	feedback	

J.	Mathieu,	UMich	

Power	consump7on	of	all	the	
loads/generators	we	care	about	

Power	consump7on	of	all	the	
loads/generators	we	DON’T	care	about	

	
Distribu7on	
substa7on	

	

Meter	

12/4/15	 4	



Disaggrega7on	methods	
e.g.,	[Berges	et	al.	2009;	Kolter	et	al.	2010;		

Dong	et	al.	2013]		

•  State	es7ma7on		
–  Linear	techniques	require	LTI	system	models	
–  Nonlinear	techniques	can	be	computa7onally	demanding	
	

•  Online	learning	
–  Op7miza7on	formula7ons	
– Model-free	
	

•  Hybrid	approach:	Dynamic	Mirror	Descent	[Hall	&	Willet	2015]	
–  Admits	dynamic	models	of	arbitrary	forms	
–  Op7miza7on-based	method	to	choose	a	weighted	
combina7on	of	the	es7mates	of	a	collec7on	of	models		
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Outline:	Part	1	

•  Dynamic	Mirror	Descent	
•  Problem	sejng:	Plant	data/models	
•  Algorithm	Models	
•  Results	
•  Next	steps	
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Dynamic	Mirror	Descent	

•  Mirror	Descent:	online	algorithm	to	es7mate	a	
fixed	state	

	

•  Dynamic	Mirror	Descent:	online	algorithm	to	
es7mate	a	dynamic	state	using	a	collec4on	of	
models	[Hall	&	Willet	2015]	

1.  Compute	the	error	between	the	model	predic7ons	
and	the	measured	data	(i.e.,	loss	func7on)	

2.  Update	the	state	in	the	direc7on	of	the	nega7ve	
gradient	of	the	loss	func7on	
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Fig. 2. Time series plots comparing ✓o
t , the outdoor temperature trajectory

used to generate the controllable demand signal, with ✓o,LTV1
t and ✓o,LTV2

t ,
two alternative trajectories used to generate the models in Section V-B.3.

The vector dit =
⇥
✓

o
t Q

a,i
Q

m,i
⇤T collects the environ-

mental heat sources that influence the on/off cycling of the
air conditioners. The values Q

a,i and Q

m,i capture heating
from appliances and occupants within the house as well as
solar irradiance. In this work they are assumed constant. The
outdoor temperature is ✓

o
t , and its trajectory for August 3 is

shown in Fig. 2. The Dataport weather data has is sampled
hourly, and we interpolated to the necessary time-step. Future
work should investigate time-varying values for Q

a,i and
Q

m,i that depend on weather conditions, time of day, and
uncontrollable load. We mention uncontrollable load because
in our scenario it contains household appliances that are on,
and larger uncontrollable load values should correspond to
more internal heat gain.

To create the model’s dynamics, we first form continuous
time matrices from the parameters sampled from Table I
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The first equation updates the internal temperatures. The
second equation updates the on/off mode based on whether
the air temperature has exited the allowable temperature
range. The resulting power draw is P

i
t = (|Qh,i| m

i
t)/⌘

i

where heat is removed, i.e., Qh,i
< 0, for cooling appliances.

Finally, the values transmitted to the aggregator, e.g., at
the end of the day, are a history of the house’s internal air
temperature and the air conditioner’s on/off mode y

ac,i
t =⇥

✓

a,i
m

i
t

⇤T . We do not include the house’s internal mass
temperature as it is not directly available for measurement.

The controllable demand value at each time-step is y

c
t =PN ac

i=1 P
i
t . Note that the ETP models operate on time-steps

of two seconds while the demand signals have one minute

TABLE I
AIR CONDITIONER MODEL PARAMETERS [18]

Parameter Description Value
�t Time-Step Duration [s] 2
✓set Temperature Set-Point [�C] [24, 26]
✓db Temperature Dead-band [�C] [2.0, 2.5]
Um Envelope Conductance [ kW

�C ] [0.84, 1.14]
U a Internal Conductance [ kW

�C ] [0.2, 0.27]
⇤m Mass Heat Capacitance [ kWh

�C ] [4.48, 6.07]
⇤a Air Heat Capacitance [ kWh

�C ] [0.16, 0.21]
Qm TCL Mass Heat Gain [kW] 0.5
Qa TCL Air Heat Gain [kW] 0.5
Qh TCL Heat Transfer [kW] [-17.7, -13.1]
⌘ Coef. of Performance [-] 3

measurement intervals. The y

c
t values are averaged over

the time-steps within a one minute interval to form the
controllable demand component of the measurement.

IV. DYNAMIC MIRROR DESCENT

In this section, we detail DMD [14] and adapt it to the
scenario under consideration. In our scenario, DMD seeks to
estimate the controllable demand component, yc

t , of the total
demand measurements, yt = y

c
t + y

uc
t , as they arrive. To do

this, we define the set of Nmdl models used within DMD as
Nmdl

= {1, . . . , Nmdl}.
DMD estimates y

c
t using two general processes. The first

process forms predictions byc,i
t and byuc,i

t for each i 2 Nmdl,
then uses the corresponding model to advance the predictions
in time. The second process determines a weight associated
with each i 2 Nmdl and forms an overall estimate, byt = byc

t+

byuc
t , using a weighted combination of the byc,i

t and byuc,i
t values.

The value of interest to the aggregator is byc
t , the controllable

demand component of this weighted combination. We first
detail the prediction process, then the weighting process that
forms the estimate.
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i
t(·) =

{�c,i
t (·),�uc,i

t (·)}. The modified prediction e
✓

i
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version of b
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i
t that incorporates information from the newly

arrived measurement yt using a gradient descent-based up-
date. The gradient pertains to that of a convex loss function
`(

b
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i
t, yt), which penalizes deviations of the estimates from

the observed values. The specified model �i
t(·) advances the

estimate e
✓

i
t in time, i.e., b✓it+1 = �

i
t(
e
✓

i
t). The gradient descent

and model-based update process is analogous to a Kalman
filter’s separate steps of incorporating a new observation then
advancing the prediction using a model. In contrast with a
Kalman filter, the models can have an arbitrary structure and
there are no assumptions on the underlying noise distribution.

DMD forms predictions for models i 2 Nmdl as

e
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Dynamic	Mirror	Descent	

3.  Use	the	es7mated	states	to	evaluate	the	models	
for	the	next	7me	step	

4.  Compute	a	weighted	version	of	the	es7mates	

5.  Update	the	model	weights	
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Fig. 2. Time series plots comparing ✓o
t , the outdoor temperature trajectory

used to generate the controllable demand signal, with ✓o,LTV1
t and ✓o,LTV2

t ,
two alternative trajectories used to generate the models in Section V-B.3.
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from appliances and occupants within the house as well as
solar irradiance. In this work they are assumed constant. The
outdoor temperature is ✓

o
t , and its trajectory for August 3 is

shown in Fig. 2. The Dataport weather data has is sampled
hourly, and we interpolated to the necessary time-step. Future
work should investigate time-varying values for Q

a,i and
Q

m,i that depend on weather conditions, time of day, and
uncontrollable load. We mention uncontrollable load because
in our scenario it contains household appliances that are on,
and larger uncontrollable load values should correspond to
more internal heat gain.

To create the model’s dynamics, we first form continuous
time matrices from the parameters sampled from Table I

A

c,i
=


�
�
U

a,i
+ U

m,i
�
/⇤

a,i
U

m,i
/⇤

a,i

U

m,i
/⇤

m,i �U

m,i
/⇤

m,i

�
(1)

B

c,i
=

⇥
Q

h,i
/⇤

a,i
0

⇤T (2)

E

c,i
=


U

a,i
/⇤

a,i
1/⇤

a,i
0

0 0 1/⇤

m,i

�
. (3)

We discretize these using [19] and use the discrete-time
matrices to update ✓

i
t and m

i
t

✓

i
t+1 = A

i
✓

i
t +B

i
m

i
t + E

i
d

i
t i 2 N ac (4)

m

i
t+1 =

8
><

>:

0 if ✓a,it+1 < ✓

set,i � ✓

db,i
/2

1 if ✓a,it+1 > ✓

set,i
+ ✓

db,i
/2

m

i
t otherwise

i 2 N ac
. (5)

The first equation updates the internal temperatures. The
second equation updates the on/off mode based on whether
the air temperature has exited the allowable temperature
range. The resulting power draw is P

i
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where heat is removed, i.e., Qh,i
< 0, for cooling appliances.

Finally, the values transmitted to the aggregator, e.g., at
the end of the day, are a history of the house’s internal air
temperature and the air conditioner’s on/off mode y
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⇤T . We do not include the house’s internal mass
temperature as it is not directly available for measurement.
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t . Note that the ETP models operate on time-steps

of two seconds while the demand signals have one minute
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measurement intervals. The y

c
t values are averaged over

the time-steps within a one minute interval to form the
controllable demand component of the measurement.

IV. DYNAMIC MIRROR DESCENT

In this section, we detail DMD [14] and adapt it to the
scenario under consideration. In our scenario, DMD seeks to
estimate the controllable demand component, yc

t , of the total
demand measurements, yt = y

c
t + y
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t , as they arrive. To do

this, we define the set of Nmdl models used within DMD as
Nmdl

= {1, . . . , Nmdl}.
DMD estimates y
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t using two general processes. The first

process forms predictions byc,i
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t for each i 2 Nmdl,
then uses the corresponding model to advance the predictions
in time. The second process determines a weight associated
with each i 2 Nmdl and forms an overall estimate, byt = byc
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t , using a weighted combination of the byc,i
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The value of interest to the aggregator is byc
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demand component of this weighted combination. We first
detail the prediction process, then the weighting process that
forms the estimate.
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t). The gradient descent

and model-based update process is analogous to a Kalman
filter’s separate steps of incorporating a new observation then
advancing the prediction using a model. In contrast with a
Kalman filter, the models can have an arbitrary structure and
there are no assumptions on the underlying noise distribution.

DMD forms predictions for models i 2 Nmdl as
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where (6) incorporates the measurement into the estimate
and (7) advances the estimate in time using the model. We
minimize over the variable ✓. The term ⌘thr`t(

b
✓

i
t, yt), ✓i

captures the alignment of the variable ✓ with the positive
gradient of the loss function. To minimize this term alone,
we would choose ✓ to be exactly aligned with the negative
gradient direction. The term D(✓kb✓it) is a Bregman diver-
gence that penalizes the deviation between the new variable
✓ and the old variable b

✓

i
t. It can be thought of as a term that

trades-off matching the noisy data points with trusting the
predictions. The value ⌘t is a step-size parameter, r`t(·, ·) is
the gradient of the loss function, h·, ·i is a dot product. Within
this work, we set `t(b✓it, yt) = 10

�4 · kyt � (byc,i
t + byuc,i

t )k22
and D(✓kb✓it) = k✓� b

✓

i
tk22 where we include 10

�4 in the loss
function for numerical reasons.

The second DMD process forms the overall estimate from
a weighted combination of the i 2 Nmdl predictions
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The weights are based on each model’s historical accuracy
with respect to the measurements yt, and models that incur
larger loss values have less influence in the overall estimate.
The algorithm generating the weights is
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where w

i
t+1 is the weight associated with model i at time-

step t+1, � 2 (0, 1) dictates the portion of weighting that is
shared among models, ewi

t+1 is preliminary weight for model
i based on the loss of each model and the total loss of all
models, and ⌘

r is a parameter.
Ref. [14] describes � as a parameter that allows fast

switching between models. Another aspect of this is that �
sets the default combination of models used for predictions.
For example, when � is nearly one, all N

mdl models have
almost equal share in the overall estimate regardless of their
previous loss. Additional results, which we do not include,
investigated DMD’s accuracy as we increase �. The RMS
error in the controllable demand estimate increases with
larger values for �. Understanding this behavior in more
detail and investigating an alternative weighting function that
avoids this are proposed for future work.

V. DMD MODELS

Each of the N

mdl models used within DMD consists of
a controllable demand model paired with an uncontrollable
demand model. We detail the various models used within
DMD in this section.

A. Uncontrollable Demand Model

There exist many methods of forecasting demand, for
example [20], which takes the time of week and weather
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Fig. 3. The plant’s true uncontrollable demand and three predictions of
the uncontrollable demand.

into account. Within this work we use simple forecasting
methods, and we instead rely on DMD’s ability to select
and switch between the most accurate model (or combination
of models) in real-time. While advanced models may be
accurate more frequently, they will invariably be incorrect
at some point. DMD has the ability to find an alternative
model in these scenarios, provided an alternative model
or combination of models is accurate. For this reason we
include simpler forecasting methods and rely on DMD to
find the appropriate demand forecast combination.

The uncontrollable demand model is simply a lookup table

byuct = ↵t. (11)

The ↵t values are predetermined power values for each
time-step t over the desired prediction horizon. Within this
work, an ↵t value exists for each one minute interval over
the course of the day, and we generate the ↵t values from
some previous day’s true uncontrollable demand. The true
uncontrollable demand over a time period, e.g., a day, is
found by removing the total controllable demand, which is
known from the smart meters’ measurement transmissions,
from the total demand measurements. After constructing the
uncontrollable demand signal for a previous day, the time
series is broken into fifteen minute intervals. A linear least
squares fit is generated for each fifteen minute interval, and
we combine the linear predictors into a piecewise linear, con-
tinuous function. The ↵t values are this function’s predicted
uncontrollable demand for each time of day.

We generate the uncontrollable demand models for this
work using uncontrollable demand data from the Dataport
for July 27-29 – the Monday, Tuesday, and Wednesday
of the week preceding the simulated day. We note their
uncontrollable demand predictions as byuc,Mon

t , byuc,Tues
t , and

byuc,Wed
t respectively, and the models are noted as �

uc,Mon
t ,

�

uc,Tues
t , and �

uc,Wed
t respectively. Figure 3 depicts the plant

uncontrollable demand y

uc
t and the three uncontrollable de-

mand predictions.

B. Controllable Demand Models

We use three controllable demand models within the
DMD algorithm. Similar to the construction of the plant’s
controllable demand signal, the first uncontrollable demand
model is a collection of hybrid models where the individual
hybrid models capture individual air conditioner’s power
draw. In contrast to the hybrid models within the plant, these
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where w
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t+1 is the weight associated with model i at time-

step t+1, � 2 (0, 1) dictates the portion of weighting that is
shared among models, ewi

t+1 is preliminary weight for model
i based on the loss of each model and the total loss of all
models, and ⌘

r is a parameter.
Ref. [14] describes � as a parameter that allows fast

switching between models. Another aspect of this is that �
sets the default combination of models used for predictions.
For example, when � is nearly one, all N

mdl models have
almost equal share in the overall estimate regardless of their
previous loss. Additional results, which we do not include,
investigated DMD’s accuracy as we increase �. The RMS
error in the controllable demand estimate increases with
larger values for �. Understanding this behavior in more
detail and investigating an alternative weighting function that
avoids this are proposed for future work.

V. DMD MODELS

Each of the N

mdl models used within DMD consists of
a controllable demand model paired with an uncontrollable
demand model. We detail the various models used within
DMD in this section.

A. Uncontrollable Demand Model

There exist many methods of forecasting demand, for
example [20], which takes the time of week and weather
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Fig. 3. The plant’s true uncontrollable demand and three predictions of
the uncontrollable demand.

into account. Within this work we use simple forecasting
methods, and we instead rely on DMD’s ability to select
and switch between the most accurate model (or combination
of models) in real-time. While advanced models may be
accurate more frequently, they will invariably be incorrect
at some point. DMD has the ability to find an alternative
model in these scenarios, provided an alternative model
or combination of models is accurate. For this reason we
include simpler forecasting methods and rely on DMD to
find the appropriate demand forecast combination.

The uncontrollable demand model is simply a lookup table

byuct = ↵t. (11)

The ↵t values are predetermined power values for each
time-step t over the desired prediction horizon. Within this
work, an ↵t value exists for each one minute interval over
the course of the day, and we generate the ↵t values from
some previous day’s true uncontrollable demand. The true
uncontrollable demand over a time period, e.g., a day, is
found by removing the total controllable demand, which is
known from the smart meters’ measurement transmissions,
from the total demand measurements. After constructing the
uncontrollable demand signal for a previous day, the time
series is broken into fifteen minute intervals. A linear least
squares fit is generated for each fifteen minute interval, and
we combine the linear predictors into a piecewise linear, con-
tinuous function. The ↵t values are this function’s predicted
uncontrollable demand for each time of day.

We generate the uncontrollable demand models for this
work using uncontrollable demand data from the Dataport
for July 27-29 – the Monday, Tuesday, and Wednesday
of the week preceding the simulated day. We note their
uncontrollable demand predictions as byuc,Mon

t , byuc,Tues
t , and

byuc,Wed
t respectively, and the models are noted as �

uc,Mon
t ,

�

uc,Tues
t , and �

uc,Wed
t respectively. Figure 3 depicts the plant

uncontrollable demand y

uc
t and the three uncontrollable de-

mand predictions.

B. Controllable Demand Models

We use three controllable demand models within the
DMD algorithm. Similar to the construction of the plant’s
controllable demand signal, the first uncontrollable demand
model is a collection of hybrid models where the individual
hybrid models capture individual air conditioner’s power
draw. In contrast to the hybrid models within the plant, these

where (6) incorporates the measurement into the estimate
and (7) advances the estimate in time using the model. We
minimize over the variable ✓. The term ⌘thr`t(

b
✓

i
t, yt), ✓i

captures the alignment of the variable ✓ with the positive
gradient of the loss function. To minimize this term alone,
we would choose ✓ to be exactly aligned with the negative
gradient direction. The term D(✓kb✓it) is a Bregman diver-
gence that penalizes the deviation between the new variable
✓ and the old variable b

✓

i
t. It can be thought of as a term that

trades-off matching the noisy data points with trusting the
predictions. The value ⌘t is a step-size parameter, r`t(·, ·) is
the gradient of the loss function, h·, ·i is a dot product. Within
this work, we set `t(b✓it, yt) = 10

�4 · kyt � (byc,i
t + byuc,i

t )k22
and D(✓kb✓it) = k✓� b

✓

i
tk22 where we include 10

�4 in the loss
function for numerical reasons.

The second DMD process forms the overall estimate from
a weighted combination of the i 2 Nmdl predictions

b
✓t+1 =

NmdlX

i=1

w

i
t+1

b
✓

i
t+1. (8)

The weights are based on each model’s historical accuracy
with respect to the measurements yt, and models that incur
larger loss values have less influence in the overall estimate.
The algorithm generating the weights is
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i
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mdl + (1� �) ewi
t (9)
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where w

i
t+1 is the weight associated with model i at time-

step t+1, � 2 (0, 1) dictates the portion of weighting that is
shared among models, ewi

t+1 is preliminary weight for model
i based on the loss of each model and the total loss of all
models, and ⌘

r is a parameter.
Ref. [14] describes � as a parameter that allows fast

switching between models. Another aspect of this is that �
sets the default combination of models used for predictions.
For example, when � is nearly one, all N

mdl models have
almost equal share in the overall estimate regardless of their
previous loss. Additional results, which we do not include,
investigated DMD’s accuracy as we increase �. The RMS
error in the controllable demand estimate increases with
larger values for �. Understanding this behavior in more
detail and investigating an alternative weighting function that
avoids this are proposed for future work.

V. DMD MODELS

Each of the N

mdl models used within DMD consists of
a controllable demand model paired with an uncontrollable
demand model. We detail the various models used within
DMD in this section.

A. Uncontrollable Demand Model

There exist many methods of forecasting demand, for
example [20], which takes the time of week and weather
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Fig. 3. The plant’s true uncontrollable demand and three predictions of
the uncontrollable demand.

into account. Within this work we use simple forecasting
methods, and we instead rely on DMD’s ability to select
and switch between the most accurate model (or combination
of models) in real-time. While advanced models may be
accurate more frequently, they will invariably be incorrect
at some point. DMD has the ability to find an alternative
model in these scenarios, provided an alternative model
or combination of models is accurate. For this reason we
include simpler forecasting methods and rely on DMD to
find the appropriate demand forecast combination.

The uncontrollable demand model is simply a lookup table

byuct = ↵t. (11)

The ↵t values are predetermined power values for each
time-step t over the desired prediction horizon. Within this
work, an ↵t value exists for each one minute interval over
the course of the day, and we generate the ↵t values from
some previous day’s true uncontrollable demand. The true
uncontrollable demand over a time period, e.g., a day, is
found by removing the total controllable demand, which is
known from the smart meters’ measurement transmissions,
from the total demand measurements. After constructing the
uncontrollable demand signal for a previous day, the time
series is broken into fifteen minute intervals. A linear least
squares fit is generated for each fifteen minute interval, and
we combine the linear predictors into a piecewise linear, con-
tinuous function. The ↵t values are this function’s predicted
uncontrollable demand for each time of day.

We generate the uncontrollable demand models for this
work using uncontrollable demand data from the Dataport
for July 27-29 – the Monday, Tuesday, and Wednesday
of the week preceding the simulated day. We note their
uncontrollable demand predictions as byuc,Mon

t , byuc,Tues
t , and

byuc,Wed
t respectively, and the models are noted as �

uc,Mon
t ,

�

uc,Tues
t , and �

uc,Wed
t respectively. Figure 3 depicts the plant

uncontrollable demand y

uc
t and the three uncontrollable de-

mand predictions.

B. Controllable Demand Models

We use three controllable demand models within the
DMD algorithm. Similar to the construction of the plant’s
controllable demand signal, the first uncontrollable demand
model is a collection of hybrid models where the individual
hybrid models capture individual air conditioner’s power
draw. In contrast to the hybrid models within the plant, these
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Problem	Sejng:	
Plant	Data/Models	

•  Uncontrollable	loads:	data	from	Pecan	Street	Inc.	Dataport	
•  Controllable	loads:	equivalent	thermal	parameter	(ETP)	

models	of	air	condi7oners	[Sonderegger	1978]	
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Algorithm	Models:	
Uncontrollable	loads	
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Algorithm	Models:	
Controllable	loads	

•  Two-state	hybrid	models	of	air	condi7oners	
[Mortensen	&	Haggerty	1988]	

–  Temperature	and	ON/OFF	mode	
	

•  Sets	of	Linear	Time	Invariant	(LTI)	aggregate	
system	models	[Mathieu	et	al.	2013]	

•  Sets	of	Linear	Time	Varying	(LTV)	aggregate	
system	models	
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Fig. 4. Time series plots comparing of the plant’s controllable demand to
the predicted demand of the two-state hybrid model population.

hybrid models have less detail. The predicted controllable
demand at a given time is the sum of the each hybrid model’s
demand.

The second two models are versions of an aggregate model
developed in [21]. Whereas each hybrid model attempts to
capture the heat transfer driving the air conditioner’s cycling,
the aggregate model seeks to describe the probabilistic
behavior of the entire air conditioner population. The first
aggregate model is a set of linear time-invariant (LTI) models
that characterize air conditioner switching based on different
outdoor temperatures. The second aggregate model is a linear
time-varying (LTV) model generated from a previous day’s
air conditioner data.

The following sections detail these models. Note that all
of these models operate with two second time-steps, and the
one minute demand predictions are formed from averaging
the previous minute of predictions.

1) Hybrid Model Population: Since we do not have access
to a history of a house’s internal mass temperature, this
hybrid model incorporates only the house’s internal temper-
ature, i.e., ✓it = ✓

a,i
t and the on/off mode of the appliance

m

i
t. The vector of environmental heat sources is the outdoor

temperature d

i
t = ✓

o
t .

The resulting continuous-time matrices are

A

c,i
=� b

U

a,i
/

b
⇤

a,i (12)

B

c,i
= Q

h,i
/

b
⇤

a,i (13)

E

c,i
=

b
U

a,i
/

b
⇤

a,i (14)

where b
⇤ and b

U are identified using a nonlinear least squares
algorithm. The nonlinear least squares algorithm inputs are
1) historical data for the house’s internal air temperature, 2)
historical data for the air conditioner’s on/off mode, and 3)
the corresponding outdoor air temperature data for a given
appliance or household. The predicted power draw for an
individual model is b

P

i
t = (|Qh,i| mi

t)/⌘
i where Q

h,i and ⌘

i

are assumed to be known.
The predicted controllable demand at each time-step is

byc,Hyb
t =

PN ac

i=1
b
P

i
t where the byc,Hyb

t values are averaged
over the time-steps within a one minute interval to form the
controllable demand prediction. Because the hybrid model
population results in a single controllable demand prediction,
we note it collectively as �

c,Hyb
t .

Figure 4 depicts the modeled controllable demand versus
the plant’s controllable demand using b

⇤ and b
U values that

are identified once at the beginning of the day. Note that
the model performs poorly over the course of the day; it’s
resulting weight in the DMD algorithm will be small. Future
work should investigate estimating the environmental heat
injections, which would allow a more detailed d

i
t vector

in the two-state model. Additional future work should in-
vestigate hybrid system identification techniques that allow
identification of the model parameters and model order based
on input-output data.

2) LTI Aggregate Model Set: The aggregate model for
a controllable appliance population predicts the portion of
appliances that draw power versus the portion of appliances
that are not drawing power. It does so by forming a state
vector x 2 RN x

that consists of the portion of controllable
appliances within discrete state bins. In this work, one bin
captures the portion of controllable appliances that are on
and another captures those that are off, i.e., N x

= 2. The
state transition matrix, A 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture 1) the probability that
appliances stay within a given state bin during the time-step,
and 2) the probability of switching state bins. The output
matrix is C = N

ac
P

⇥
0 1

⇤
where P is the average power

draw of appliances that are on.
We denote a set integers corresponding to outdoor temper-

atures of interest as Ntemps. The LTI model set is generated
by constructing A

i and C

i matrices for i 2 Ntemps. The
matrices are generated by separating controllable appliances’
historical on/off values based on the outdoor temperature of
the model. The on/off values are then used to generate a state
transition and output matrix for each outdoor temperature of
interest. The output byc,LTI,i

t is the predicted power draw of
the controllable appliance population. The resulting model is

x

i
t+1 = A

i
x

i
t i 2 Ntemps (15)

byc,LTI,i
t = C

i
x

i
t i 2 Ntemps

. (16)

Note a separate state value exists for each model. We note
the set of LTI models as �

c,LTI
t and their predictions as byc,LTI

t .
3) LTV Aggregate Model: The previous approach used

controllable appliances’ historical on/off data and outdoor
temperature data to develop LTI models that each correspond
to a different outdoor temperature. In contrast, this approach
uses a previous day’s controllable appliance data to develop
a trajectory of At matrices. We associate an At matrix
with each time-step, and we generate the matrix using
the controllable appliances’ on/off transitions within that
time-step in the data. Note that the state transition matrix
implicitly has a dependence on the outdoor air temperature;
hotter temperatures will force more appliances to draw power
at a given time.

The output matrix is Ct = N

ac
P t

⇥
0 1

⇤
where P t

corresponds to the average demand of appliances that are
on during a given time-step. The corresponding model is

xt+1 = At xt (17)
byc,LTV
t = Ct xt. (18)
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Fig. 4. Time series plots comparing of the plant’s controllable demand to
the predicted demand of the two-state hybrid model population.

hybrid models have less detail. The predicted controllable
demand at a given time is the sum of the each hybrid model’s
demand.

The second two models are versions of an aggregate model
developed in [21]. Whereas each hybrid model attempts to
capture the heat transfer driving the air conditioner’s cycling,
the aggregate model seeks to describe the probabilistic
behavior of the entire air conditioner population. The first
aggregate model is a set of linear time-invariant (LTI) models
that characterize air conditioner switching based on different
outdoor temperatures. The second aggregate model is a linear
time-varying (LTV) model generated from a previous day’s
air conditioner data.

The following sections detail these models. Note that all
of these models operate with two second time-steps, and the
one minute demand predictions are formed from averaging
the previous minute of predictions.

1) Hybrid Model Population: Since we do not have access
to a history of a house’s internal mass temperature, this
hybrid model incorporates only the house’s internal temper-
ature, i.e., ✓it = ✓

a,i
t and the on/off mode of the appliance

m

i
t. The vector of environmental heat sources is the outdoor

temperature d

i
t = ✓

o
t .

The resulting continuous-time matrices are

A

c,i
=� b

U

a,i
/

b
⇤

a,i (12)
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a,i (13)
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=
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⇤

a,i (14)

where b
⇤ and b

U are identified using a nonlinear least squares
algorithm. The nonlinear least squares algorithm inputs are
1) historical data for the house’s internal air temperature, 2)
historical data for the air conditioner’s on/off mode, and 3)
the corresponding outdoor air temperature data for a given
appliance or household. The predicted power draw for an
individual model is b

P

i
t = (|Qh,i| mi

t)/⌘
i where Q

h,i and ⌘

i

are assumed to be known.
The predicted controllable demand at each time-step is

byc,Hyb
t =

PN ac

i=1
b
P

i
t where the byc,Hyb

t values are averaged
over the time-steps within a one minute interval to form the
controllable demand prediction. Because the hybrid model
population results in a single controllable demand prediction,
we note it collectively as �

c,Hyb
t .

Figure 4 depicts the modeled controllable demand versus
the plant’s controllable demand using b

⇤ and b
U values that

are identified once at the beginning of the day. Note that
the model performs poorly over the course of the day; it’s
resulting weight in the DMD algorithm will be small. Future
work should investigate estimating the environmental heat
injections, which would allow a more detailed d

i
t vector

in the two-state model. Additional future work should in-
vestigate hybrid system identification techniques that allow
identification of the model parameters and model order based
on input-output data.

2) LTI Aggregate Model Set: The aggregate model for
a controllable appliance population predicts the portion of
appliances that draw power versus the portion of appliances
that are not drawing power. It does so by forming a state
vector x 2 RN x

that consists of the portion of controllable
appliances within discrete state bins. In this work, one bin
captures the portion of controllable appliances that are on
and another captures those that are off, i.e., N x

= 2. The
state transition matrix, A 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture 1) the probability that
appliances stay within a given state bin during the time-step,
and 2) the probability of switching state bins. The output
matrix is C = N

ac
P

⇥
0 1

⇤
where P is the average power

draw of appliances that are on.
We denote a set integers corresponding to outdoor temper-

atures of interest as Ntemps. The LTI model set is generated
by constructing A

i and C

i matrices for i 2 Ntemps. The
matrices are generated by separating controllable appliances’
historical on/off values based on the outdoor temperature of
the model. The on/off values are then used to generate a state
transition and output matrix for each outdoor temperature of
interest. The output byc,LTI,i

t is the predicted power draw of
the controllable appliance population. The resulting model is

x

i
t+1 = A

i
x

i
t i 2 Ntemps (15)

byc,LTI,i
t = C

i
x

i
t i 2 Ntemps

. (16)

Note a separate state value exists for each model. We note
the set of LTI models as �

c,LTI
t and their predictions as byc,LTI

t .
3) LTV Aggregate Model: The previous approach used

controllable appliances’ historical on/off data and outdoor
temperature data to develop LTI models that each correspond
to a different outdoor temperature. In contrast, this approach
uses a previous day’s controllable appliance data to develop
a trajectory of At matrices. We associate an At matrix
with each time-step, and we generate the matrix using
the controllable appliances’ on/off transitions within that
time-step in the data. Note that the state transition matrix
implicitly has a dependence on the outdoor air temperature;
hotter temperatures will force more appliances to draw power
at a given time.

The output matrix is Ct = N

ac
P t

⇥
0 1

⇤
where P t

corresponds to the average demand of appliances that are
on during a given time-step. The corresponding model is

xt+1 = At xt (17)
byc,LTV
t = Ct xt. (18)
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Algorithm	Models:	
Controllable	loads	

•  Two-state	hybrid	AC	models	do	not	work	well.		
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Algorithm	Models:	
Controllable	loads	

•  LTV	models	work	beFer.	
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Results:		
All	combina7ons	of	models	
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Results:	Weigh7ngs	
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Results:	Bad	Models	
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•  All	uncontrollable	load	models	are	too	low.	

12/4/15	 16	



Results:	Summary	
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Case	 RMS	Error	
(kW)	

Benchmark:	Use	current	outdoor	temperature	to	
evaluate	simple	controllable	load	model	

738	

DMD	Case	1:	Includes	every	combina7on	of	
uncontrollable	and	controllable	models	

264	

DMD	Case	2:	Case	1	models	plus	a	smoothed	version	
of	the	actual	uncontrollable	load	

211	

DMD	Case	3:	Case	2	models	plus	more	accurate	model	
of	the	controllable	load	over	7me	periods	where	the	
other	models	are	less	accurate	

175	

DMD	Case	4:	Includes	uncontrollable	load	models	that	
underes7mate	the	uncontrollable	load	

1392	
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Results:	Varying	
Algorithm	Parameters	
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Recall:		

where (6) incorporates the measurement into the estimate
and (7) advances the estimate in time using the model. We
minimize over the variable ✓. The term ⌘thr`t(

b
✓

i
t, yt), ✓i

captures the alignment of the variable ✓ with the positive
gradient of the loss function. To minimize this term alone,
we would choose ✓ to be exactly aligned with the negative
gradient direction. The term D(✓kb✓it) is a Bregman diver-
gence that penalizes the deviation between the new variable
✓ and the old variable b

✓

i
t. It can be thought of as a term that

trades-off matching the noisy data points with trusting the
predictions. The value ⌘t is a step-size parameter, r`t(·, ·) is
the gradient of the loss function, h·, ·i is a dot product. Within
this work, we set `t(b✓it, yt) = 10

�4 · kyt � (byc,i
t + byuc,i

t )k22
and D(✓kb✓it) = k✓� b

✓

i
tk22 where we include 10

�4 in the loss
function for numerical reasons.

The second DMD process forms the overall estimate from
a weighted combination of the i 2 Nmdl predictions

b
✓t+1 =

NmdlX

i=1

w

i
t+1

b
✓

i
t+1. (8)

The weights are based on each model’s historical accuracy
with respect to the measurements yt, and models that incur
larger loss values have less influence in the overall estimate.
The algorithm generating the weights is

w

i
t+1 =
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N

mdl + (1� �) ewi
t (9)
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t exp

⇣
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⌘⌘ (10)

where w

i
t+1 is the weight associated with model i at time-

step t+1, � 2 (0, 1) dictates the portion of weighting that is
shared among models, ewi

t+1 is preliminary weight for model
i based on the loss of each model and the total loss of all
models, and ⌘

r is a parameter.
Ref. [14] describes � as a parameter that allows fast

switching between models. Another aspect of this is that �
sets the default combination of models used for predictions.
For example, when � is nearly one, all N

mdl models have
almost equal share in the overall estimate regardless of their
previous loss. Additional results, which we do not include,
investigated DMD’s accuracy as we increase �. The RMS
error in the controllable demand estimate increases with
larger values for �. Understanding this behavior in more
detail and investigating an alternative weighting function that
avoids this are proposed for future work.

V. DMD MODELS

Each of the N

mdl models used within DMD consists of
a controllable demand model paired with an uncontrollable
demand model. We detail the various models used within
DMD in this section.

A. Uncontrollable Demand Model

There exist many methods of forecasting demand, for
example [20], which takes the time of week and weather
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Fig. 3. The plant’s true uncontrollable demand and three predictions of
the uncontrollable demand.

into account. Within this work we use simple forecasting
methods, and we instead rely on DMD’s ability to select
and switch between the most accurate model (or combination
of models) in real-time. While advanced models may be
accurate more frequently, they will invariably be incorrect
at some point. DMD has the ability to find an alternative
model in these scenarios, provided an alternative model
or combination of models is accurate. For this reason we
include simpler forecasting methods and rely on DMD to
find the appropriate demand forecast combination.

The uncontrollable demand model is simply a lookup table

byuct = ↵t. (11)

The ↵t values are predetermined power values for each
time-step t over the desired prediction horizon. Within this
work, an ↵t value exists for each one minute interval over
the course of the day, and we generate the ↵t values from
some previous day’s true uncontrollable demand. The true
uncontrollable demand over a time period, e.g., a day, is
found by removing the total controllable demand, which is
known from the smart meters’ measurement transmissions,
from the total demand measurements. After constructing the
uncontrollable demand signal for a previous day, the time
series is broken into fifteen minute intervals. A linear least
squares fit is generated for each fifteen minute interval, and
we combine the linear predictors into a piecewise linear, con-
tinuous function. The ↵t values are this function’s predicted
uncontrollable demand for each time of day.

We generate the uncontrollable demand models for this
work using uncontrollable demand data from the Dataport
for July 27-29 – the Monday, Tuesday, and Wednesday
of the week preceding the simulated day. We note their
uncontrollable demand predictions as byuc,Mon

t , byuc,Tues
t , and

byuc,Wed
t respectively, and the models are noted as �

uc,Mon
t ,

�

uc,Tues
t , and �

uc,Wed
t respectively. Figure 3 depicts the plant

uncontrollable demand y

uc
t and the three uncontrollable de-

mand predictions.

B. Controllable Demand Models

We use three controllable demand models within the
DMD algorithm. Similar to the construction of the plant’s
controllable demand signal, the first uncontrollable demand
model is a collection of hybrid models where the individual
hybrid models capture individual air conditioner’s power
draw. In contrast to the hybrid models within the plant, these
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minimize over the variable ✓. The term ⌘thr`t(

b
✓

i
t, yt), ✓i

captures the alignment of the variable ✓ with the positive
gradient of the loss function. To minimize this term alone,
we would choose ✓ to be exactly aligned with the negative
gradient direction. The term D(✓kb✓it) is a Bregman diver-
gence that penalizes the deviation between the new variable
✓ and the old variable b

✓

i
t. It can be thought of as a term that

trades-off matching the noisy data points with trusting the
predictions. The value ⌘t is a step-size parameter, r`t(·, ·) is
the gradient of the loss function, h·, ·i is a dot product. Within
this work, we set `t(b✓it, yt) = 10

�4 · kyt � (byc,i
t + byuc,i

t )k22
and D(✓kb✓it) = k✓� b

✓

i
tk22 where we include 10

�4 in the loss
function for numerical reasons.

The second DMD process forms the overall estimate from
a weighted combination of the i 2 Nmdl predictions

b
✓t+1 =

NmdlX

i=1

w

i
t+1

b
✓

i
t+1. (8)

The weights are based on each model’s historical accuracy
with respect to the measurements yt, and models that incur
larger loss values have less influence in the overall estimate.
The algorithm generating the weights is

w

i
t+1 =

�

N

mdl + (1� �) ewi
t (9)

ewi
t+1 =

w

i
t exp

⇣
�⌘

r
`t

⇣
b
✓

i
t, yt

⌘⌘

PNmdl

j=1 w

j
t exp

⇣
�⌘

r
`t

⇣
b
✓

j
t , yt

⌘⌘ (10)

where w

i
t+1 is the weight associated with model i at time-

step t+1, � 2 (0, 1) dictates the portion of weighting that is
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Ref. [14] describes � as a parameter that allows fast

switching between models. Another aspect of this is that �
sets the default combination of models used for predictions.
For example, when � is nearly one, all N

mdl models have
almost equal share in the overall estimate regardless of their
previous loss. Additional results, which we do not include,
investigated DMD’s accuracy as we increase �. The RMS
error in the controllable demand estimate increases with
larger values for �. Understanding this behavior in more
detail and investigating an alternative weighting function that
avoids this are proposed for future work.
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into account. Within this work we use simple forecasting
methods, and we instead rely on DMD’s ability to select
and switch between the most accurate model (or combination
of models) in real-time. While advanced models may be
accurate more frequently, they will invariably be incorrect
at some point. DMD has the ability to find an alternative
model in these scenarios, provided an alternative model
or combination of models is accurate. For this reason we
include simpler forecasting methods and rely on DMD to
find the appropriate demand forecast combination.

The uncontrollable demand model is simply a lookup table

byuct = ↵t. (11)

The ↵t values are predetermined power values for each
time-step t over the desired prediction horizon. Within this
work, an ↵t value exists for each one minute interval over
the course of the day, and we generate the ↵t values from
some previous day’s true uncontrollable demand. The true
uncontrollable demand over a time period, e.g., a day, is
found by removing the total controllable demand, which is
known from the smart meters’ measurement transmissions,
from the total demand measurements. After constructing the
uncontrollable demand signal for a previous day, the time
series is broken into fifteen minute intervals. A linear least
squares fit is generated for each fifteen minute interval, and
we combine the linear predictors into a piecewise linear, con-
tinuous function. The ↵t values are this function’s predicted
uncontrollable demand for each time of day.

We generate the uncontrollable demand models for this
work using uncontrollable demand data from the Dataport
for July 27-29 – the Monday, Tuesday, and Wednesday
of the week preceding the simulated day. We note their
uncontrollable demand predictions as byuc,Mon

t , byuc,Tues
t , and

byuc,Wed
t respectively, and the models are noted as �

uc,Mon
t ,
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uc,Tues
t , and �

uc,Wed
t respectively. Figure 3 depicts the plant

uncontrollable demand y

uc
t and the three uncontrollable de-

mand predictions.

B. Controllable Demand Models

We use three controllable demand models within the
DMD algorithm. Similar to the construction of the plant’s
controllable demand signal, the first uncontrollable demand
model is a collection of hybrid models where the individual
hybrid models capture individual air conditioner’s power
draw. In contrast to the hybrid models within the plant, these
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Next	steps	

•  Inves7gate	more	realis7c	sejngs	(using	more	
real	data)	

•  Develop	beFer	load	models		
•  Improve	the	algorithm,	e.g.,	alterna7ve	
weigh7ng	func7ons		

•  Inves7gate	iden7fiability	
•  Incorporate	addi7onal	measurements	
(reac7ve	power,	voltage)	into	the	approach	

J.	Mathieu,	UMich	12/4/15	 19	



Key	findings	

•  Dynamic	Mirror	Descent	(DMD)	enables	us	to	
solve	the	substa7on	disaggrega7on	problem	
leveraging	dynamical	models	of	arbitrary	form	

•  DMD	can	work	well	(on	simple	examples);	
however,	it	is	easy	to	find	instances	where	it	
does	not	work	well	

	
J.	Mathieu,	UMich	12/4/15	 20	



Overview	

•  Inference:	Inferring	the	behavior	of	distributed	
energy	resources	with	sparse	measurements	
[Ledva,	Balzano,	&	Mathieu	Allerton	2015]	

	
•  Control:	Controlling	distributed	electric	loads	
to	provide	power	system	reserves	with	sparse	
measurements	and	input/measurement	delays		
[Ledva,	VreFos,	Mastellone,	Andersson	&	Mathieu	HICSS	2015]	
[Ledva	&	Mathieu	PSCC	(in	review)	2016]	

J.	Mathieu,	UMich	12/4/15	 21	
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	à	your	refrigerator	is	already	flexible	
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Thousands	of	thermosta7cally	
controlled	loads	(TCLs)	can	track	
signals	and	provide	reserves	

J.	Mathieu,	UMich	

TCLs:	air	condi7oners,	heat	pumps,	space	heaters,	electric	water	heaters,	refrigerators	

[Mathieu,	Koch,	and	Callaway	IEEE	Transac4ons	on	Power	Systems	2013]	

po
w
er
	

normal	opera7on	

non-disrup7ve	load	control	

7me	

reserve	signal	
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Controller	gets	temperature/state	of	
each	load	every	2	seconds		

Controller	infers	TCL	behavior	from	
power	measurements	at	the	substa7on	

[Mathieu,	Koch,	and	Callaway	IEEE	Transac4ons	on	Power	Systems	2013]	

Simula7on	results:	
1000	ACs	tracking	5-minute	market	signal	

à The	more	the	controller	knows	about	the	loads,	the	beFer	it	can	
track	a	signal	
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Data	from	loads	
•  Parameters	

–  the	make/model	of	the	load?	
–  its	temperature	setpoint/dead-band	width?	
–  some	informa7on	about	the	household?	

•  Real-7me	data	
– Measurements	of	the	on/off	state	and/or	
internal	temperature?	

–  Household	smart	meter	data?	
–  Power	measurements	from	the	

	distribu7on	network?	
•  Recorded	data	

–  high	resolu7on	power	measurements	of	
each	load?	

J.	Mathieu,	UMich	

à	Modeling	

à	Feedback	
	control	

à	Audi7ng	

High	quality,	infrequent		

Low	quality,	frequent	
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Communica7on	and	
control	scenario	

Load	
aggregator	

substa7on	

Infrequent	state	
measurements	

Frequent	
aggregate	

power	(output)	
measurements	

De
la
y	

Delay	

((		))	
broadcast	

Delay	

[Ledva,	VreFos,	Mastellone,	Andersson,	&	Mathieu	HICSS	2015]	12/4/15	 J.	Mathieu,	UMich	 26	



System	block	diagram	

J.	Mathieu,	UMich	

Delays cause unsynchronized arrivals of inputs at the loads and 
measurements at the controller	
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The	challenge	

•  Design	an	es7mator	and	controller	to	enable	
loads	to	track	a	signal	despite	delays	

•  Assuming…	
–  Control	inputs	&	measurements	are	7me-stamped	
– Delay	sta7s7cs	are	known	
–  State	measurements	are	taken	frequently;	
measurement	histories	are	transmiFed	infrequently	

– Aggregate	power	measurements	are	very	noisy	
(though	the	noise	is	normally	distributed,	zero-mean,	
and	the	standard	devia7on	is	known)		

J.	Mathieu,	UMich	12/4/15	 28	



Individual	TCL	model	(plant)	

Each	TCL i	is	modeled	with	a		
stochas7c	hybrid	difference		
equa7on:	
	
	

ON 

OFF 

temperature 

st
at

e 
[Ihara	&	Schweppe	1981,	Mortensen	&	Haggerty	1990,	Uçak	&	Çağlar	1998]	

J.	Mathieu,	UMich	
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Temperature	of	the	space	

On/off	state	 a,	thermal	parameter	
θg,	temperature	gain	
θa,	ambient	temperature	
  ,	noise	
θset,	set	point	
δ,	dead-band	width	
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Parameter Meaning Value
θset temperature setpoint 15-25◦C
δ dead-band width 0.25-1◦C
θa ambient temperature 32◦C
R thermal resistance 1.5-2.5◦C/kW
C thermal capacitance 8-12 kWh/◦C
Prate rated power 10-18 kW

θi,t+1 = aiθi,t + (1 − ai)(θa,i − mi,tθg,i) + ϵi,t (1)

x(k + 1) = Ax(k) + Bu(k) + Bωω(k) (2)

y(k) = Cx(k) + ν(k) (3)

Bω =
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⎢

⎢

⎢
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1 0
. . .

0 1
−1 ... −1

⎤

⎥
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(4)

ugoal(k) = K
Pset(k + 1) − Ptotal,est(k + 1)

NTCLP̄rate, ON

, (5)
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Physikstrasse 3, 8092 Zürich (email: koch@eeh.ee.ethz.ch).
D.S. Callaway is with the Energy and Resources Group at the University

of California at Berkeley, 310 Barrows Hall, Berkeley, CA 94720-3050 USA
(email: dcal@berkeley.edu).
J.L. Mathieu and D.S. Callaway acknowledge financial support from

PSERC’s Future Grid Initiative, and S. Koch acknowledges financial support
from swisselectric research for the project Local Load Management.

IEEE TRANSACTIONS ON POWER SYSTEMS 1

State Estimation and Control of Electric Loads to
Manage Real-Time Energy Imbalance
Johanna L. Mathieu, Student Member, IEEE, Stephan Koch, Student Member, IEEE,

Duncan S. Callaway, Member, IEEE

θi(k + 1) = aiθi(k) + (1− ai)(θa,i −mi(k)θg,i) + ϵi(k)

mi(k + 1) =

⎧

⎪

⎨

⎪

⎩

0, θi(k + 1) < θset,i − δi/2

1, θi(k + 1) > θset,i + δi/2

mi(k), otherwise

θset + δ/2

θset − δ/2

ugoal(k) =
∑

j uj(k) = K(Pdesired(k+1)−Ppredicted(k+1))

S(k + 1) = S(k) + (P (k)− Pbaseline(k))∆T

Pmin(k) ! P (k) ! Pmax(k)

Smin(k) ! S(k) ! Smax(k)

J.L. Mathieu is with the Department of Mechanical Engineering at the
University of California at Berkeley, 4th Floor Collaboratory, Sutardja Dai
Hall, Berkeley, CA 94720-1740 USA (email: jmathieu@berkeley.edu).
S. Koch is with the Power Systems Laboratory at ETH Zürich, ETL G 29,
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Aggregate	system	model	

J.	Mathieu,	UMich	
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one. For Scenario 4, we identified the -matrix using an EKF,

which will be described in Section IV-C. In all scenarios, we

compute by dividing the aggregate power use of the popu-

lation by the number of TCLs in the ON state at each time step,

and then finding the mean.

B. State Estimation

For Scenarios 1–3, we designed a standard Kalman filter [35]
using the MATLAB function kalman on the identified system:

(12)

(13)

where , is an process noise vector,

and is a measurement noise vector the same size as :

in Scenario 1 and a scalar in Scenarios 2 and 3.

The process noise covariance matrix, , was

computed with the residuals between the state values associ-

ated with the plant and those predicted by the model. Therefore,

“process noise” includes both noise associated with individual

TCLs and plant-model mismatch. The noise was modeled as

white since the Kalman filter assumes white noise. In reality,
plant-model mismatch results in colored process noise, making

the Kalman filter sub-optimal. Since we would never expect to
know perfectly, for each case, we constructed two system

parameterizations (different draws of TCL parameters, noise,

etc. from the same distributions), and use one to compute

and the other, along with , to assess tracking performance.

For Scenario 1 and Scenario 2 (100% metering), the aggre-

gate power measurement noise variance, , was set to zero.

However, in some cases, the function kalman was unable to
build a convergent Kalman filter with , so the value

was increased to up to 10 . For Scenario 2 (30% metering),

was computed with the residuals between the system

output associated with the plant and the measured system

output. The measurement noise was also modeled as white,

though in reality it too is colored, making the Kalman filter
sub-optimal. Again, we use one system parameterization to

compute and another to assess tracking performance. For

Scenario 3, was computed from the assumed distribution

substation power forecast error standard deviation: 5% and

10% of the distribution substation load. is held constant in

each simulation run. In reality, the distribution power forecast

error variance could change over time. Therefore, we model the

hypothetical changes in variance by having it follow a sinusoid

with a period equal to the length of the simulation run, between

0.5 and 1.5 of .

In practice, we may not have adequate information to com-

pute and as described. In that case, we could compute

and through simulation, iterative tuning, or by mea-

suring full state information and aggregate power consumption

perfectly from a small population of TCLs (e.g., in a pilot pro-

gram) and then extrapolating the results to the larger population.

C. Joint Parameter and State Estimation Method

Scenario 4 requires joint parameter and state estimation.

Treating the entries of the -matrix as unknown states that

do not vary over time, we can derive nonlinear state/output

equations and use an EKF for state (and therefore parameter)

estimation. We attempted to estimate both the -matrix and

online; however, the estimator was unable to converge to the

true value of . Therefore, this approach requires measuring,

deriving, or estimating .

Consider the system:

(14)

(15)

where , , , and are unknown parame-

ters. Since the number of TCLs is fixed, we know that

, , and . Treating

and as states, we can derive the following nonlinear

state/output equations:

(16)

(17)

(18)

(19)

Provided the system is locally observable, we can use an

EKF to estimate the three parameters/states and compute the

remaining parameter/states from the results. To check for local

observability, we employ the method detailed in [36], which re-

quires forming the discrete time, nonlinear, local observability

matrix, . must be full rank for the system to be locally ob-

servable. For our system, is a 3 3 matrix defined as follows:

(20)

where is the gradient of the output equation with respect to

each of the states/parameters at time step . For forced systems,

to compute , where , in terms of , ,

and , we assume a series of inputs . We find
that the system is locally observable everywhere,

except when

(21)

We used an EKF to identify parameters and states in the

system. We were unable to get the system to con-

verge for more complicated systems. More research is needed

to determine if other nonlinear state estimation methods might

be appropriate. Also, it may be possible to derive high order sys-

tems using parameters identified for the system along

with knowledge and/or assumptions about the TCL parameters.

To implement the EKF, we have adapted the algorithm im-

plemented in [37], which computes the Jacobian of and

through complex step differentiation and then implements the

discrete time Kalman Filter equations on the linearized system.

We chose iteratively and think of it as tuning parameter.

is computed as in Scenario 3.
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Es7mator	designs	

•  Based	on	Kalman	Filtering	
–  Sampling	window	es7mator		

•  Wait,	collect,	es7mate	
–  Parallel	filter	es7mator	

•  One	Kalman	Filter	per	load	
•  Each	7me	a	measurement	arrives,	filter	it	
•  Synthesize	aggregate	es7mate	from	individual	es7mates	

–  Iden7fied	parameter	es7mator	
•  Use	state	measurement	histories	to	es7mate	*individual*	
load	parameters	

•  Use	individual	load	models	to	predict	current	state	 	
	 	à	pseudo-measurements	

•  Use	pseudo-measurements	in	Kalman	Filter	
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Es7mator	results	
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à	Es7mators	relies	on	infrequent	state	es7mates	much	more	
than	noisy,	frequent	aggregate	power	measurements		
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Controller	designs	

•  Based	on	Model	Predic7ve	Control	
– Use	the	mean	delay	–	“Mean	Delay	Controller”	
– Use	knowledge	of	delay	distribu7ons	and	past	
control	inputs	–	“Full	Distribu7on	Controller”		

J.	Mathieu,	UMich	

First	control	sequence:	

Second	control	sequence:	

Third	control	sequence:		 	
		

u1,	u2,	u3,…	,	un		
	

u2,	u3,	…	,	un+1		
	

u3,	u4,	…	,	un+1		
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MPC	Formula7on:	
“Full	Distribu7on	Controller”	
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ex
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where stars and tildes denote modal and reduced-order quan-
tities respectively. Eliminating the constant modal state and
defining ey

k

= y

k

� yss forms the reduced-order system

ex
k+1 =

e
A ex

k

+

e
Bu

k

(7)

ey
k

=

e
C ex

k

. (8)

Point (i) follows from the proof in [16] that the three-state
aggregate model’s state transition matrix contains an eigen-
value, �1 = 1, with an algebraic and geometric multiplicity of
1. This also holds for the two-state aggregate model, and the
resulting Jordan block for �1 is decoupled from the remainder
of the system. The right eigenvector for �1 is a unique steady-
state value xss for the unforced, full-order aggregate model
with corresponding output yss = C xss. Since the columns of
A sum to 1, a vector of ones, denoted 1, is the left eigenvector
of �1. Point (ii) follows from applying the PBH eigenvector
test to �1 [22]. The test fails for �1 because the columns of
B sum to 0, and so �1 is the uncontrollable mode of the full-
order aggregate model. The uniqueness of �1 requires that the
corresponding row of B⇤ is zeros.

Points (iii) and (iv) rely on the mapping from the original
aggregate state to the modal aggregate state x

⇤
k

= T

�1
x

k

. The
rows of T�1 are the left eigenvectors, and the columns of T are
the right eigenvectors. Placing the left and right eigenvectors of
�1 as the first row and first column of T�1 and T respectively
provides the structure of A⇤ and B

⇤ in (5).
It also ensures the first modal state, noted as x⇤,1

k

, is always
1. Recall from Section III-B that 1

T

x

k

= 1. Given the
structure of T

�1, then x

⇤,1
k

= 1

T

x

k

, and (iii) follows for
all valid x

k

. To show (iv) note that the first column of T

is xss, and the first element of C⇤
= CT is Cxss = yss. Since

x

⇤,1
k

= 1, eliminating x

⇤,1
k

from the model only requires that
the output of the reduced-order system is redefined as ey

k

.
The approach above has similarities to that in [16] to achieve

an asymptotically stable system. Both methods eliminate an
eigenvalue �1 = 1 that is guaranteed to exist, and b) both
methods redefine the output of the reduced-order model as
ey
k

. However, there are also differences between the methods.
Whereas the method detailed here relies on points (i)-(iv), [16]
uses projections into subspaces, does not establish decoupling
of the subspaces, and does not note that the eliminated modal
state is a constant. Also, the method detailed here shows the
reduced-order model is controllable whereas [16] does not
include inputs within their reduced-order model. The following
section incorporates the full-order and reduced-order aggregate
models into MPC and linear feedback algorithms respectively.

IV. CONTROL ALGORITHMS

The controllers receive two values – the desired demand
level y

des
t

and the aggregate state measurement x

t

– that
are used within algorithms to generate an input sequence.
Each TCL uses selection logic to first find the most recently

generated input sequence that has arrived then select the input
vector from this sequence that applies to a given time-step.
The TCL then chooses the applicable input element from this
vector based on its current state bin, or it disregards external
signals when necessary to maintain the temperature within the
normal operating range.

The linear controller generates the input sequence directly
from y

des
t

, x
t

, and two gain matrices, calculated offline, using
matrix multiplication. Alternatively, the MPC controller uses
the values within a quadratic program, solved online, to
generate an input sequence. Both controllers incorporate the
probability that previously generated inputs are implemented
using delay statistics, which reduces the effects of input delays.

Within this section, we occasionally use the time indexing
notation  

k|t where  is an arbitrary quantity, k indicates the
time-step that the quantity applies to, and t indicates the time-
step during which the quantity was calculated. For example,
an input u

t+4|t is generated at time-step t, and it applies
four time-steps after t. Using this notation, the input sequence
generated at each time-step t is a set of N u input vectors

u

seq
t

=

h
u

T

t|t u

T

t+1|t · · · u

T

t+N

u�1|t

i
T

. (9)

The number of time-steps within the input sequence is set so
that the probability of an input delay exceeding the sequence
length is less than 1� p

max where we choose p

max.
Section IV-A first describes the MPC algorithm originally

developed in [14]. Section IV-B develops the linear controller.

A. MPC Algorithm
The MPC algorithm is a finite-horizon, quadratic program

with equality and inequality constraints. The objective function
penalizes desired demand errors and input effort. Equality
constraints embed the full-order aggregate model within the
optimization problem, and inequality constraints impose the
physical limitations on the feasible inputs and states. We define
the N

u time-step horizon considered within the calculation at
time t as KMPC

t

= {t, . . . , t + N

u � 1}. The aggregate state
measurement x

t

initializes the dynamics. Assume we have no
knowledge of y

des
k

over the horizon, so the desired aggregate
power trajectory is set to the currently requested value.

The MPC controller’s formulation at time t is

min
u

X

k2KMPC
t

c

y

(y

k+1 � y
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k+1)

2
+

k�N

u+1X

j=k

c

u

(u

T

k|j u

k|j) (10)

s.t. x
k+1 = A x

k

+B bu
k

(11)
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k

= C x

k
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= U
k
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i

k

i 2 {1, . . . , N x
/2} (14)
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i

k|j  x

N

x+1�i

k

i 2 {1, . . . , N x
/2} (15)

0  x

k+1  1 (16)

with k 2 KMPC
t

and j = k, . . . , k � N

u
+ 1. The objective

function in (10) minimizes the total cost of input effort and
output deviations over the horizon. The coefficients c

y and
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Reduced-Order Model 
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TABLE I. TCL MODEL PARAMETERS

Parameter Description Value
�t Time-Step Duration [s] 2
✓

set Temperature Set-Point [�C] [24, 26]
✓

db Temperature Dead-band [�C] [2.0, 2.5]
✓

o Outdoor Temperature [�C] 32
U

m Envelope Conductance [ kW
�C ] [0.84, 1.14]

U

a Internal Conductance [ kW
�C ] [0.2, 0.27]

⇤m Mass Heat Capacitance [ kWh
�C ] [4.48, 6.07]

⇤a Air Heat Capacitance [ kWh
�C ] [0.16, 0.21]

Q

m TCL Mass Heat Gain [kW] 0.5
Q

a TCL Air Heat Gain [kW] N (0.5, 2.5E-9)
Q

h TCL Heat Transfer [kW] [-17.7, -13.1]
⌘ Coefficient of Performance [-] 3

transmitted to the controller are the TCL’s air temperature and
on/off mode y

TCL,i
t

=

⇥
✓

a,i

m

i

t

⇤
T .

The model’s discrete-time state-update equations are

✓

i

t+1 = A

i

✓

i

t

+B

i

m

i

t

+ E

i

d

i

t

i 2 ITCL (1a)

m

i

t+1 =

8
><

>:

0 if ✓a,i
t+1 < ✓

set,i � ✓

db,i
/2

1 if ✓a,i
t+1 > ✓

set,i
+ ✓

db,i
/2

m

i

t

otherwise
i 2 ITCL (1b)

where (1a) updates the internal temperatures and (1b) updates
the on/off mode. The power draw is P

i

t

= (|Qh,i| m

i

t

)/⌘

i

with Q

h,i
< 0 for cooling appliances. The matrices in

these equations are discretized using [20, p. 315] where the
underlying continuous-time matrices are

A

c,i
=


�
�
U

a,i
+ U

m,i

�
/⇤

a,i
U

m,i

/⇤

a,i

U

m,i

/⇤

m,i �U

m,i

/⇤

m,i

�

B

c,i
=

⇥
Q

h,i
/⇤

a,i
0

⇤
T

E

c,i
=


U

a,i
/⇤

a,i
1/⇤

a,i
0

0 0 1/⇤

m,i

�
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B. Aggregate TCL Population Model

The aggregate model [6] seeks to capture the power draw
behavior of the TCL population with reduced modeling
complexity. This model considers the TCL population as a
probability mass and the state transition matrix describes the
probability of mass moving from one discrete state bin to
another within a time-step. The aggregate demand is computed
from the portion of the probability mass in discrete state bins
corresponding to TCLs drawing power.

The aggregate state, x
k

2 RN

x
, is a set of discrete state bins

constructed from a normalized temperature dead-band. The
dead-band is divided into N

x

2 temperature intervals, and each
interval contains two states – one for TCLs that are drawing
power and and one for TCLs that are not drawing power. Each
individual TCL maps to a state bin based on its current air
temperature and on/off mode, and the entries in x

k

correspond
to the portion of TCLs in each bin; the sum of state vector
elements is 1. The state transition matrix, A 2 RN

x⇥N

x
, is a

transposed Markov transition matrix describing the probability
of transitioning between state bins during a time-step.

Elements in the input u
k

2 RN

x
/2 correspond to the prob-

ability mass that should be switched, where positive values
force TCLs on. The input matrix, B 2 RN

x⇥N

x
/2 forces prob-

ability mass into the opposite on/off bin associated with the
same temperature interval. The input elements are converted
to switching probabilities by dividing by the appropriate state
value before transmitting the input vector to the TCLs. This
introduces nonlinearities within the system, but this does not
affect the control algorithms. Finally, the aggregate model’s
output y

k

2 R is the total, or aggregate, active power demand
of the TCL population.

The input matrix for the formulation is B =

⇥
�I flip(I)

⇤
T

where flip(·) switches the first and last columns, the the second
and the second to last columns, and so on. The output matrix
is C = N

TCL
P

on ⇥
0 · · · 0 1 · · · 1

⇤
where P

on
is the

historical average power draw of TCLs that are on. Finally,
the state update and output equations are

x

k+1 =A x

k

+B u

k

(3)
y

k

= C x

k

. (4)

This system is observable [6], but it is over-defined, meaning
the value of N

x � 1 states dictates the value of the final
state. Given this and the definition of the input, there is one
uncontrollable state. The reduced-order model presented in the
following section eliminates this uncontrollable state.

As a final note, [21] develops an alternative aggregate
model, referred to here as the three-state aggregate model, that
incorporates the effect of the TCLs’ internal mass temperature
on the aggregate dynamics. We use the aggregate model sum-
marized above, referred to as the two-state aggregate model,
which does not include this information, for computational and
practical reasons. First, our use of stationary exogenous input
distributions and on/off control do not introduce transients in
the thermal mass temperature, and so the additional modeling
complexity is not needed. Second, the mass temperature in the
three-state aggregate model is not easily measurable.

C. Reduced-Order Aggregate Model
This section develops the reduced-order aggregate model.

Removing the single uncontrollable state results in a control-
lable reduced-order model that retains the observability of the
original system. Eliminating a constant-valued state preserves
all dynamics of the original system.

Our approach relies on several facts about the aggregate
model’s modal representation: i) it contains an eigenvalue
�1 = 1 and the subsystem corresponding to �1 is decoupled
from the remaining system, ii) �1 is always the uncontrollable
mode within the aggregate model in Section III-B, iii) the
component of the modal state corresponding to �1 has no
dynamics and is actually a constant scalar equal to 1, and iv)
the output associated with �1 is yss. These four points result
in the following structure for the modal system
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where stars and tildes denote modal and reduced-order quan-
tities respectively. Eliminating the constant modal state and
defining ey

k

= y

k

� yss forms the reduced-order system

ex
k+1 =

e
A ex

k

+

e
Bu

k

(7)

ey
k

=

e
C ex

k

. (8)

Point (i) follows from the proof in [16] that the three-state
aggregate model’s state transition matrix contains an eigen-
value, �1 = 1, with an algebraic and geometric multiplicity of
1. This also holds for the two-state aggregate model, and the
resulting Jordan block for �1 is decoupled from the remainder
of the system. The right eigenvector for �1 is a unique steady-
state value xss for the unforced, full-order aggregate model
with corresponding output yss = C xss. Since the columns of
A sum to 1, a vector of ones, denoted 1, is the left eigenvector
of �1. Point (ii) follows from applying the PBH eigenvector
test to �1 [22]. The test fails for �1 because the columns of
B sum to 0, and so �1 is the uncontrollable mode of the full-
order aggregate model. The uniqueness of �1 requires that the
corresponding row of B⇤ is zeros.

Points (iii) and (iv) rely on the mapping from the original
aggregate state to the modal aggregate state x

⇤
k

= T

�1
x

k

. The
rows of T�1 are the left eigenvectors, and the columns of T are
the right eigenvectors. Placing the left and right eigenvectors of
�1 as the first row and first column of T�1 and T respectively
provides the structure of A⇤ and B

⇤ in (5).
It also ensures the first modal state, noted as x⇤,1

k

, is always
1. Recall from Section III-B that 1

T

x

k

= 1. Given the
structure of T

�1, then x

⇤,1
k

= 1

T

x

k

, and (iii) follows for
all valid x

k

. To show (iv) note that the first column of T

is xss, and the first element of C⇤
= CT is Cxss = yss. Since

x

⇤,1
k

= 1, eliminating x

⇤,1
k

from the model only requires that
the output of the reduced-order system is redefined as ey

k

.
The approach above has similarities to that in [16] to achieve

an asymptotically stable system. Both methods eliminate an
eigenvalue �1 = 1 that is guaranteed to exist, and b) both
methods redefine the output of the reduced-order model as
ey
k

. However, there are also differences between the methods.
Whereas the method detailed here relies on points (i)-(iv), [16]
uses projections into subspaces, does not establish decoupling
of the subspaces, and does not note that the eliminated modal
state is a constant. Also, the method detailed here shows the
reduced-order model is controllable whereas [16] does not
include inputs within their reduced-order model. The following
section incorporates the full-order and reduced-order aggregate
models into MPC and linear feedback algorithms respectively.

IV. CONTROL ALGORITHMS

The controllers receive two values – the desired demand
level y

des
t

and the aggregate state measurement x

t

– that
are used within algorithms to generate an input sequence.
Each TCL uses selection logic to first find the most recently

generated input sequence that has arrived then select the input
vector from this sequence that applies to a given time-step.
The TCL then chooses the applicable input element from this
vector based on its current state bin, or it disregards external
signals when necessary to maintain the temperature within the
normal operating range.

The linear controller generates the input sequence directly
from y

des
t

, x
t

, and two gain matrices, calculated offline, using
matrix multiplication. Alternatively, the MPC controller uses
the values within a quadratic program, solved online, to
generate an input sequence. Both controllers incorporate the
probability that previously generated inputs are implemented
using delay statistics, which reduces the effects of input delays.

Within this section, we occasionally use the time indexing
notation  

k|t where  is an arbitrary quantity, k indicates the
time-step that the quantity applies to, and t indicates the time-
step during which the quantity was calculated. For example,
an input u

t+4|t is generated at time-step t, and it applies
four time-steps after t. Using this notation, the input sequence
generated at each time-step t is a set of N u input vectors

u

seq
t

=

h
u

T

t|t u

T

t+1|t · · · u

T

t+N

u�1|t

i
T

. (9)

The number of time-steps within the input sequence is set so
that the probability of an input delay exceeding the sequence
length is less than 1� p

max where we choose p

max.
Section IV-A first describes the MPC algorithm originally

developed in [14]. Section IV-B develops the linear controller.

A. MPC Algorithm
The MPC algorithm is a finite-horizon, quadratic program

with equality and inequality constraints. The objective function
penalizes desired demand errors and input effort. Equality
constraints embed the full-order aggregate model within the
optimization problem, and inequality constraints impose the
physical limitations on the feasible inputs and states. We define
the N

u time-step horizon considered within the calculation at
time t as KMPC

t

= {t, . . . , t + N

u � 1}. The aggregate state
measurement x

t

initializes the dynamics. Assume we have no
knowledge of y

des
k

over the horizon, so the desired aggregate
power trajectory is set to the currently requested value.

The MPC controller’s formulation at time t is

min
u

X

k2KMPC
t

c

y

(y

k+1 � y

des
k+1)

2
+
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u+1X

j=k
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s.t. x
k+1 = A x
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= U
k

P (13)
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0  x

k+1  1 (16)

with k 2 KMPC
t

and j = k, . . . , k � N

u
+ 1. The objective

function in (10) minimizes the total cost of input effort and
output deviations over the horizon. The coefficients c

y and

TABLE I. TCL MODEL PARAMETERS

Parameter Description Value
�t Time-Step Duration [s] 2
✓

set Temperature Set-Point [�C] [24, 26]
✓

db Temperature Dead-band [�C] [2.0, 2.5]
✓

o Outdoor Temperature [�C] 32
U

m Envelope Conductance [ kW
�C ] [0.84, 1.14]

U

a Internal Conductance [ kW
�C ] [0.2, 0.27]

⇤m Mass Heat Capacitance [ kWh
�C ] [4.48, 6.07]

⇤a Air Heat Capacitance [ kWh
�C ] [0.16, 0.21]

Q

m TCL Mass Heat Gain [kW] 0.5
Q

a TCL Air Heat Gain [kW] N (0.5, 2.5E-9)
Q

h TCL Heat Transfer [kW] [-17.7, -13.1]
⌘ Coefficient of Performance [-] 3

transmitted to the controller are the TCL’s air temperature and
on/off mode y

TCL,i
t

=

⇥
✓

a,i

m

i

t

⇤
T .

The model’s discrete-time state-update equations are

✓

i

t+1 = A

i

✓

i

t

+B

i

m

i

t

+ E

i

d

i

t

i 2 ITCL (1a)

m

i

t+1 =

8
><

>:

0 if ✓a,i
t+1 < ✓

set,i � ✓

db,i
/2

1 if ✓a,i
t+1 > ✓

set,i
+ ✓

db,i
/2

m

i

t

otherwise
i 2 ITCL (1b)

where (1a) updates the internal temperatures and (1b) updates
the on/off mode. The power draw is P

i

t

= (|Qh,i| m

i

t

)/⌘

i

with Q

h,i
< 0 for cooling appliances. The matrices in

these equations are discretized using [20, p. 315] where the
underlying continuous-time matrices are

A

c,i
=


�
�
U

a,i
+ U

m,i

�
/⇤

a,i
U

m,i

/⇤

a,i

U

m,i

/⇤

m,i �U

m,i

/⇤

m,i

�

B

c,i
=

⇥
Q

h,i
/⇤

a,i
0

⇤
T

E

c,i
=


U

a,i
/⇤

a,i
1/⇤

a,i
0

0 0 1/⇤

m,i

�
.

B. Aggregate TCL Population Model

The aggregate model [6] seeks to capture the power draw
behavior of the TCL population with reduced modeling
complexity. This model considers the TCL population as a
probability mass and the state transition matrix describes the
probability of mass moving from one discrete state bin to
another within a time-step. The aggregate demand is computed
from the portion of the probability mass in discrete state bins
corresponding to TCLs drawing power.

The aggregate state, x
k

2 RN

x
, is a set of discrete state bins

constructed from a normalized temperature dead-band. The
dead-band is divided into N

x

2 temperature intervals, and each
interval contains two states – one for TCLs that are drawing
power and and one for TCLs that are not drawing power. Each
individual TCL maps to a state bin based on its current air
temperature and on/off mode, and the entries in x

k

correspond
to the portion of TCLs in each bin; the sum of state vector
elements is 1. The state transition matrix, A 2 RN

x⇥N

x
, is a

transposed Markov transition matrix describing the probability
of transitioning between state bins during a time-step.

Elements in the input u
k

2 RN

x
/2 correspond to the prob-

ability mass that should be switched, where positive values
force TCLs on. The input matrix, B 2 RN

x⇥N

x
/2 forces prob-

ability mass into the opposite on/off bin associated with the
same temperature interval. The input elements are converted
to switching probabilities by dividing by the appropriate state
value before transmitting the input vector to the TCLs. This
introduces nonlinearities within the system, but this does not
affect the control algorithms. Finally, the aggregate model’s
output y

k

2 R is the total, or aggregate, active power demand
of the TCL population.

The input matrix for the formulation is B =

⇥
�I flip(I)

⇤
T

where flip(·) switches the first and last columns, the the second
and the second to last columns, and so on. The output matrix
is C = N

TCL
P

on ⇥
0 · · · 0 1 · · · 1

⇤
where P

on
is the

historical average power draw of TCLs that are on. Finally,
the state update and output equations are

x

k+1 =A x

k

+B u

k

(3)
y

k

= C x

k

. (4)

This system is observable [6], but it is over-defined, meaning
the value of N

x � 1 states dictates the value of the final
state. Given this and the definition of the input, there is one
uncontrollable state. The reduced-order model presented in the
following section eliminates this uncontrollable state.

As a final note, [21] develops an alternative aggregate
model, referred to here as the three-state aggregate model, that
incorporates the effect of the TCLs’ internal mass temperature
on the aggregate dynamics. We use the aggregate model sum-
marized above, referred to as the two-state aggregate model,
which does not include this information, for computational and
practical reasons. First, our use of stationary exogenous input
distributions and on/off control do not introduce transients in
the thermal mass temperature, and so the additional modeling
complexity is not needed. Second, the mass temperature in the
three-state aggregate model is not easily measurable.

C. Reduced-Order Aggregate Model
This section develops the reduced-order aggregate model.

Removing the single uncontrollable state results in a control-
lable reduced-order model that retains the observability of the
original system. Eliminating a constant-valued state preserves
all dynamics of the original system.

Our approach relies on several facts about the aggregate
model’s modal representation: i) it contains an eigenvalue
�1 = 1 and the subsystem corresponding to �1 is decoupled
from the remaining system, ii) �1 is always the uncontrollable
mode within the aggregate model in Section III-B, iii) the
component of the modal state corresponding to �1 has no
dynamics and is actually a constant scalar equal to 1, and iv)
the output associated with �1 is yss. These four points result
in the following structure for the modal system


1

ex
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�
=
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⇤

z }| {
1 0

0

e
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�
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kz }| {
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�
+
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z}|{
0

e
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(5)

y

k

=

h
yss e

C

i

| {z }
C

⇤


1

ex
k

�
(6)

where stars and tildes denote modal and reduced-order quan-
tities respectively. Eliminating the constant modal state and
defining ey

k

= y

k

� yss forms the reduced-order system

ex
k+1 =

e
A ex

k

+

e
Bu

k

(7)

ey
k

=

e
C ex

k

. (8)

Point (i) follows from the proof in [16] that the three-state
aggregate model’s state transition matrix contains an eigen-
value, �1 = 1, with an algebraic and geometric multiplicity of
1. This also holds for the two-state aggregate model, and the
resulting Jordan block for �1 is decoupled from the remainder
of the system. The right eigenvector for �1 is a unique steady-
state value xss for the unforced, full-order aggregate model
with corresponding output yss = C xss. Since the columns of
A sum to 1, a vector of ones, denoted 1, is the left eigenvector
of �1. Point (ii) follows from applying the PBH eigenvector
test to �1 [22]. The test fails for �1 because the columns of
B sum to 0, and so �1 is the uncontrollable mode of the full-
order aggregate model. The uniqueness of �1 requires that the
corresponding row of B⇤ is zeros.

Points (iii) and (iv) rely on the mapping from the original
aggregate state to the modal aggregate state x

⇤
k

= T

�1
x

k

. The
rows of T�1 are the left eigenvectors, and the columns of T are
the right eigenvectors. Placing the left and right eigenvectors of
�1 as the first row and first column of T�1 and T respectively
provides the structure of A⇤ and B

⇤ in (5).
It also ensures the first modal state, noted as x⇤,1

k

, is always
1. Recall from Section III-B that 1

T

x

k

= 1. Given the
structure of T

�1, then x

⇤,1
k

= 1

T

x

k

, and (iii) follows for
all valid x

k

. To show (iv) note that the first column of T

is xss, and the first element of C⇤
= CT is Cxss = yss. Since

x

⇤,1
k

= 1, eliminating x

⇤,1
k

from the model only requires that
the output of the reduced-order system is redefined as ey

k

.
The approach above has similarities to that in [16] to achieve

an asymptotically stable system. Both methods eliminate an
eigenvalue �1 = 1 that is guaranteed to exist, and b) both
methods redefine the output of the reduced-order model as
ey
k

. However, there are also differences between the methods.
Whereas the method detailed here relies on points (i)-(iv), [16]
uses projections into subspaces, does not establish decoupling
of the subspaces, and does not note that the eliminated modal
state is a constant. Also, the method detailed here shows the
reduced-order model is controllable whereas [16] does not
include inputs within their reduced-order model. The following
section incorporates the full-order and reduced-order aggregate
models into MPC and linear feedback algorithms respectively.

IV. CONTROL ALGORITHMS

The controllers receive two values – the desired demand
level y

des
t

and the aggregate state measurement x

t

– that
are used within algorithms to generate an input sequence.
Each TCL uses selection logic to first find the most recently

generated input sequence that has arrived then select the input
vector from this sequence that applies to a given time-step.
The TCL then chooses the applicable input element from this
vector based on its current state bin, or it disregards external
signals when necessary to maintain the temperature within the
normal operating range.

The linear controller generates the input sequence directly
from y

des
t

, x
t

, and two gain matrices, calculated offline, using
matrix multiplication. Alternatively, the MPC controller uses
the values within a quadratic program, solved online, to
generate an input sequence. Both controllers incorporate the
probability that previously generated inputs are implemented
using delay statistics, which reduces the effects of input delays.

Within this section, we occasionally use the time indexing
notation  

k|t where  is an arbitrary quantity, k indicates the
time-step that the quantity applies to, and t indicates the time-
step during which the quantity was calculated. For example,
an input u

t+4|t is generated at time-step t, and it applies
four time-steps after t. Using this notation, the input sequence
generated at each time-step t is a set of N u input vectors

u

seq
t

=

h
u

T

t|t u

T

t+1|t · · · u

T

t+N

u�1|t

i
T

. (9)

The number of time-steps within the input sequence is set so
that the probability of an input delay exceeding the sequence
length is less than 1� p

max where we choose p

max.
Section IV-A first describes the MPC algorithm originally

developed in [14]. Section IV-B develops the linear controller.

A. MPC Algorithm
The MPC algorithm is a finite-horizon, quadratic program

with equality and inequality constraints. The objective function
penalizes desired demand errors and input effort. Equality
constraints embed the full-order aggregate model within the
optimization problem, and inequality constraints impose the
physical limitations on the feasible inputs and states. We define
the N

u time-step horizon considered within the calculation at
time t as KMPC

t

= {t, . . . , t + N

u � 1}. The aggregate state
measurement x

t

initializes the dynamics. Assume we have no
knowledge of y

des
k

over the horizon, so the desired aggregate
power trajectory is set to the currently requested value.

The MPC controller’s formulation at time t is

min
u

X

k2KMPC
t

c

y

(y

k+1 � y

des
k+1)

2
+

k�N

u+1X

j=k

c

u

(u

T

k|j u

k|j) (10)

s.t. x
k+1 = A x

k

+B bu
k

(11)
y

k

= C x

k

(12)
bu
k

= U
k

P (13)
u

i

k|j  x

i

k

i 2 {1, . . . , N x
/2} (14)

�u

i

k|j  x

N

x+1�i

k

i 2 {1, . . . , N x
/2} (15)

0  x

k+1  1 (16)

with k 2 KMPC
t

and j = k, . . . , k � N

u
+ 1. The objective

function in (10) minimizes the total cost of input effort and
output deviations over the horizon. The coefficients c

y and
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2) Feedback Law Development: We define the linear feed-
back law with constant gain matrices K

x
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1, and K
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1 x
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where w

k

is an the integrator state that captures the historical
tracking error. An output-regulating LQR formulation with
eydes
k

= 0 generates the feedback terms K

x
1 and K
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where the scalars q

y and q

w penalize ey
k

and w

k

respectively.
The input penalty is R = q

u
I where q

u is a scalar. This
formulation results in a feedback gain for the reduced-order
augmented state, e

K

x
1, that we convert using K

x
1 = [0

e
K

x
1]T ,

where T denotes the mapping from modal states.
Output tracking and regulating formulations produce iden-

tical feedback gains [25]. However, using the tracking formu-
lation above would result in a feedforward gain incorporating
the integrator. We use an alternative feedforward gain that
excludes the integrator while attempting to achieve steady-
state tracking

K

y
1 =

⇣e
C{zI � e

A+

e
B

e
K

x
1}�1 e

B

⌘�†
(28)

where �† is a pseudo-inverse that is needed because there are
more inputs than outputs, and we set z = 1.

V. CASE STUDIES

This section evaluates the ability of the MPC controller and
linear feedback controller, denoted as LIN, to track a desired
aggregate demand signal under a variety of scenarios. Section
V-A defines the scenarios used to simulate the system and
presents the performance metrics. Section V-B summarizes the
results of the scenarios.

A. Scenario Definitions
We simulate 12 scenarios using combinations of the two

controllers, two reference signals, and three delay scenarios.
Fifty instances of each scenario use different realizations of
the random quantities, and each scenario’s presented results are
averages across the instances. The simulations are one hour,
with 1800 time-steps, and we use the following parameter
settings: N

TCL
= 10, 000, N

x
= 20, p

max
= 0.85, c

y
= 3,

c

u
= 1, qy

= 0.1, qu
= 1, qu

= 0.1.
The two reference signals correspond to historical dynamic

and traditional frequency regulation signals, noted as “Reg-
D” and “Reg-A” signals respectively. Data published by PJM
[26] from May 4, 2014 are interpolated to two second time-
steps, and each signal is scaled so that the maximum possible
demand change request corresponds to ±20% of the mean
steady-state TCL demand.

The scenarios include three delay distributions – a delay-
free scenario referred to as delay case 0 and two scenarios with
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Figure 3. RMS errors of the LIN and MPC controllers in delay scenarios 0,
1, and 2 when attempting to track the Reg-A and Reg-D reference signals.

delays. In the scenarios with delays, IID delays ⌧ are sampled
from a discrete, log-normal distribution ⌧ = exp(b⌧?c) where
b·c rounds down and ⌧

? comes from a normal distribution with
mean µ and variance �

2
= 0.5. The delay cases 1 and 2 set

µ to 10 and 20 seconds respectively.
We quantify each simulation’s performance as the normal-

ized RMS tracking error (RMSE) where the error for each
time-step is y

t

� y

des
t

. The standard RMSE is then expressed
as a percentage of the TCL population’s average steady-state
demand. The RMSE value associated with each scenario is the
average RMSE across all of the scenario’s instances.

B. Results
Figure 3 summarizes the RMSE of the scenarios, and Fig. 4

provides sample time series. Note that the controllers were
roughly tuned to values that provide good performance across
all scenarios, and improved performance for both controllers
may be achievable by additional tuning. The MPC and LIN
controllers have almost equivalent RMSE in delay case 0
for both references. Under delay scenarios 1 and 2, the
LIN controller provides significantly improved RMSE, and
across all scenarios the average RMSE reduction by the LIN
controller is 11.4%.

This reduction is due to the inclusion of the integrator within
LIN, which rejects biases, e.g., due to plant-model mismatch.
These biases tend to arise as input delays increase, as shown
in [14]. As shown in Fig. 4, LIN tends to overshoot when the
reference signal changes directions, but the inclusion of an
integrator suppresses the lag that remains present in the MPC
time series plots.

The number of state bins and amplitude of the reference
signal also influence the results; situations where the input
inequalities become restrictive are not reflected in LIN. To
explore this scenario, we increase the amplitude of the ref-
erence signal to 80% of the mean steady-state TCL demand.
When tracking the “Reg-A” Reference without delays, LIN
has an RMSE of 1.14% and numerous input constraint vio-
lations. Alternatively, MPC achieves 0.83% and no constraint
violations.

During sample simulations of delay case 2 with 40 state
bins, the MPC controller took 0.1095 seconds on average and
a maximum of 0.2168 to generate the input. Alternatively, LIN
took 0.0041 seconds on average and a maximum of 0.0079
to generate the inputs. The computation reduction in LIN
improves as the size of the MPC problem grows, e.g., with
more state bins or longer delays.

2) Feedback Law Development: We define the linear feed-
back law with constant gain matrices K
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where w

k

is an the integrator state that captures the historical
tracking error. An output-regulating LQR formulation with
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= 0 generates the feedback terms K
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where the scalars q

y and q

w penalize ey
k

and w

k

respectively.
The input penalty is R = q

u
I where q

u is a scalar. This
formulation results in a feedback gain for the reduced-order
augmented state, e

K

x
1, that we convert using K

x
1 = [0

e
K

x
1]T ,

where T denotes the mapping from modal states.
Output tracking and regulating formulations produce iden-

tical feedback gains [25]. However, using the tracking formu-
lation above would result in a feedforward gain incorporating
the integrator. We use an alternative feedforward gain that
excludes the integrator while attempting to achieve steady-
state tracking
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where �† is a pseudo-inverse that is needed because there are
more inputs than outputs, and we set z = 1.

V. CASE STUDIES

This section evaluates the ability of the MPC controller and
linear feedback controller, denoted as LIN, to track a desired
aggregate demand signal under a variety of scenarios. Section
V-A defines the scenarios used to simulate the system and
presents the performance metrics. Section V-B summarizes the
results of the scenarios.

A. Scenario Definitions
We simulate 12 scenarios using combinations of the two

controllers, two reference signals, and three delay scenarios.
Fifty instances of each scenario use different realizations of
the random quantities, and each scenario’s presented results are
averages across the instances. The simulations are one hour,
with 1800 time-steps, and we use the following parameter
settings: N

TCL
= 10, 000, N
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= 20, p
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= 0.85, c
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= 3,
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= 1, qy

= 0.1, qu
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= 0.1.
The two reference signals correspond to historical dynamic

and traditional frequency regulation signals, noted as “Reg-
D” and “Reg-A” signals respectively. Data published by PJM
[26] from May 4, 2014 are interpolated to two second time-
steps, and each signal is scaled so that the maximum possible
demand change request corresponds to ±20% of the mean
steady-state TCL demand.

The scenarios include three delay distributions – a delay-
free scenario referred to as delay case 0 and two scenarios with
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Figure 3. RMS errors of the LIN and MPC controllers in delay scenarios 0,
1, and 2 when attempting to track the Reg-A and Reg-D reference signals.

delays. In the scenarios with delays, IID delays ⌧ are sampled
from a discrete, log-normal distribution ⌧ = exp(b⌧?c) where
b·c rounds down and ⌧

? comes from a normal distribution with
mean µ and variance �

2
= 0.5. The delay cases 1 and 2 set

µ to 10 and 20 seconds respectively.
We quantify each simulation’s performance as the normal-

ized RMS tracking error (RMSE) where the error for each
time-step is y

t
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des
t

. The standard RMSE is then expressed
as a percentage of the TCL population’s average steady-state
demand. The RMSE value associated with each scenario is the
average RMSE across all of the scenario’s instances.

B. Results
Figure 3 summarizes the RMSE of the scenarios, and Fig. 4

provides sample time series. Note that the controllers were
roughly tuned to values that provide good performance across
all scenarios, and improved performance for both controllers
may be achievable by additional tuning. The MPC and LIN
controllers have almost equivalent RMSE in delay case 0
for both references. Under delay scenarios 1 and 2, the
LIN controller provides significantly improved RMSE, and
across all scenarios the average RMSE reduction by the LIN
controller is 11.4%.

This reduction is due to the inclusion of the integrator within
LIN, which rejects biases, e.g., due to plant-model mismatch.
These biases tend to arise as input delays increase, as shown
in [14]. As shown in Fig. 4, LIN tends to overshoot when the
reference signal changes directions, but the inclusion of an
integrator suppresses the lag that remains present in the MPC
time series plots.

The number of state bins and amplitude of the reference
signal also influence the results; situations where the input
inequalities become restrictive are not reflected in LIN. To
explore this scenario, we increase the amplitude of the ref-
erence signal to 80% of the mean steady-state TCL demand.
When tracking the “Reg-A” Reference without delays, LIN
has an RMSE of 1.14% and numerous input constraint vio-
lations. Alternatively, MPC achieves 0.83% and no constraint
violations.

During sample simulations of delay case 2 with 40 state
bins, the MPC controller took 0.1095 seconds on average and
a maximum of 0.2168 to generate the input. Alternatively, LIN
took 0.0041 seconds on average and a maximum of 0.0079
to generate the inputs. The computation reduction in LIN
improves as the size of the MPC problem grows, e.g., with
more state bins or longer delays.

2) Feedback Law Development: We define the linear feed-
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where w
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is an the integrator state that captures the historical
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where the scalars q

y and q

w penalize ey
k

and w
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respectively.
The input penalty is R = q

u
I where q

u is a scalar. This
formulation results in a feedback gain for the reduced-order
augmented state, e
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1, that we convert using K
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1]T ,

where T denotes the mapping from modal states.
Output tracking and regulating formulations produce iden-

tical feedback gains [25]. However, using the tracking formu-
lation above would result in a feedforward gain incorporating
the integrator. We use an alternative feedforward gain that
excludes the integrator while attempting to achieve steady-
state tracking
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1}�1 e

B

⌘�†
(28)

where �† is a pseudo-inverse that is needed because there are
more inputs than outputs, and we set z = 1.

V. CASE STUDIES

This section evaluates the ability of the MPC controller and
linear feedback controller, denoted as LIN, to track a desired
aggregate demand signal under a variety of scenarios. Section
V-A defines the scenarios used to simulate the system and
presents the performance metrics. Section V-B summarizes the
results of the scenarios.

A. Scenario Definitions
We simulate 12 scenarios using combinations of the two

controllers, two reference signals, and three delay scenarios.
Fifty instances of each scenario use different realizations of
the random quantities, and each scenario’s presented results are
averages across the instances. The simulations are one hour,
with 1800 time-steps, and we use the following parameter
settings: N

TCL
= 10, 000, N

x
= 20, p

max
= 0.85, c

y
= 3,

c

u
= 1, qy

= 0.1, qu
= 1, qu

= 0.1.
The two reference signals correspond to historical dynamic

and traditional frequency regulation signals, noted as “Reg-
D” and “Reg-A” signals respectively. Data published by PJM
[26] from May 4, 2014 are interpolated to two second time-
steps, and each signal is scaled so that the maximum possible
demand change request corresponds to ±20% of the mean
steady-state TCL demand.

The scenarios include three delay distributions – a delay-
free scenario referred to as delay case 0 and two scenarios with
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Figure 3. RMS errors of the LIN and MPC controllers in delay scenarios 0,
1, and 2 when attempting to track the Reg-A and Reg-D reference signals.

delays. In the scenarios with delays, IID delays ⌧ are sampled
from a discrete, log-normal distribution ⌧ = exp(b⌧?c) where
b·c rounds down and ⌧

? comes from a normal distribution with
mean µ and variance �

2
= 0.5. The delay cases 1 and 2 set

µ to 10 and 20 seconds respectively.
We quantify each simulation’s performance as the normal-

ized RMS tracking error (RMSE) where the error for each
time-step is y

t

� y

des
t

. The standard RMSE is then expressed
as a percentage of the TCL population’s average steady-state
demand. The RMSE value associated with each scenario is the
average RMSE across all of the scenario’s instances.

B. Results
Figure 3 summarizes the RMSE of the scenarios, and Fig. 4

provides sample time series. Note that the controllers were
roughly tuned to values that provide good performance across
all scenarios, and improved performance for both controllers
may be achievable by additional tuning. The MPC and LIN
controllers have almost equivalent RMSE in delay case 0
for both references. Under delay scenarios 1 and 2, the
LIN controller provides significantly improved RMSE, and
across all scenarios the average RMSE reduction by the LIN
controller is 11.4%.

This reduction is due to the inclusion of the integrator within
LIN, which rejects biases, e.g., due to plant-model mismatch.
These biases tend to arise as input delays increase, as shown
in [14]. As shown in Fig. 4, LIN tends to overshoot when the
reference signal changes directions, but the inclusion of an
integrator suppresses the lag that remains present in the MPC
time series plots.

The number of state bins and amplitude of the reference
signal also influence the results; situations where the input
inequalities become restrictive are not reflected in LIN. To
explore this scenario, we increase the amplitude of the ref-
erence signal to 80% of the mean steady-state TCL demand.
When tracking the “Reg-A” Reference without delays, LIN
has an RMSE of 1.14% and numerous input constraint vio-
lations. Alternatively, MPC achieves 0.83% and no constraint
violations.

During sample simulations of delay case 2 with 40 state
bins, the MPC controller took 0.1095 seconds on average and
a maximum of 0.2168 to generate the input. Alternatively, LIN
took 0.0041 seconds on average and a maximum of 0.0079
to generate the inputs. The computation reduction in LIN
improves as the size of the MPC problem grows, e.g., with
more state bins or longer delays.
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Case	Studies	

•  PJM	Regula7on	Signals,	Reg-A	&	Reg-D	
•  Average	input	delay	of	20	seconds	
•  No	measurement	delay,	full	state	feedback	
•  More	accurate	plant	model	(3-state	individual	
TCL	models)	
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Figure 4. Tracking the Reg-A and Reg-D references under delay scenario 2.

VI. CONCLUSIONS

In this paper, we developed a linear feedback controller that
mitigates the effect of input delays, and we compared it to a
previously developed MPC controller while attempting to track
real frequency regulation signals. Both methods counteract
input delays by generating an open-loop input sequence at
each time-step and by incorporating knowledge about the
input delay statistics. The linear feedback controller improves
tracking in the scenarios considered even though it does not
model constraints included within the MPC controller. This is
due to the inclusion of an integrator within the linear feedback
controller. Also, the linear feedback controller benefits from
reduced computational complexity and provides a closed-form
feedback law. Future work will design the linear feedback
controller in conjunction with an estimator that addresses
communication issues in measurement transmission, e.g., [14].
Future work will also explore the inclusion of an integrator
into the MPC formulation.
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[23] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in
MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004. [Online]. Available: http://users.isy.liu.se/johanl/yalmip

[24] H. Hao, T. Middelkoop, P. Barooah, and S. Meyn, “How demand
response from commercial buildings will provide the regulation needs of
the grid,” in Communication, Control, and Computing (Allerton), 2012
50th Annual Allerton Conference on. IEEE, 2012, pp. 1908–1913.

[25] B. Anderson and J. Moore, “Optimal control: linear quadratic methods,”
Prentice Hall information and system sciences series, 1990.

[26] PJM. (2015) Ancillary Services. reg-data-external-may-2014.xls.
[Online]. Available: https://www.pjm.com/markets-and-operations/
ancillary-services.aspx

MPC	

LIN	



7

8.5

10

Po
w

er
(M

W
)

Reg-A Reference

0 30 60
7

8.5

10

7

9

11

Po
w

er
(M

W
)

Reg-D Reference

0 30 60
7

9

11

Time (min)

Ref. MPC LIN

Figure 4. Tracking the Reg-A and Reg-D references under delay scenario 2.

VI. CONCLUSIONS

In this paper, we developed a linear feedback controller that
mitigates the effect of input delays, and we compared it to a
previously developed MPC controller while attempting to track
real frequency regulation signals. Both methods counteract
input delays by generating an open-loop input sequence at
each time-step and by incorporating knowledge about the
input delay statistics. The linear feedback controller improves
tracking in the scenarios considered even though it does not
model constraints included within the MPC controller. This is
due to the inclusion of an integrator within the linear feedback
controller. Also, the linear feedback controller benefits from
reduced computational complexity and provides a closed-form
feedback law. Future work will design the linear feedback
controller in conjunction with an estimator that addresses
communication issues in measurement transmission, e.g., [14].
Future work will also explore the inclusion of an integrator
into the MPC formulation.
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VI. CONCLUSIONS

In this paper, we developed a linear feedback controller that
mitigates the effect of input delays, and we compared it to a
previously developed MPC controller while attempting to track
real frequency regulation signals. Both methods counteract
input delays by generating an open-loop input sequence at
each time-step and by incorporating knowledge about the
input delay statistics. The linear feedback controller improves
tracking in the scenarios considered even though it does not
model constraints included within the MPC controller. This is
due to the inclusion of an integrator within the linear feedback
controller. Also, the linear feedback controller benefits from
reduced computational complexity and provides a closed-form
feedback law. Future work will design the linear feedback
controller in conjunction with an estimator that addresses
communication issues in measurement transmission, e.g., [14].
Future work will also explore the inclusion of an integrator
into the MPC formulation.
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2) Feedback Law Development: We define the linear feed-
back law with constant gain matrices K
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where w

k

is an the integrator state that captures the historical
tracking error. An output-regulating LQR formulation with
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where the scalars q

y and q

w penalize ey
k

and w

k

respectively.
The input penalty is R = q

u
I where q

u is a scalar. This
formulation results in a feedback gain for the reduced-order
augmented state, e

K

x
1, that we convert using K

x
1 = [0

e
K

x
1]T ,

where T denotes the mapping from modal states.
Output tracking and regulating formulations produce iden-

tical feedback gains [25]. However, using the tracking formu-
lation above would result in a feedforward gain incorporating
the integrator. We use an alternative feedforward gain that
excludes the integrator while attempting to achieve steady-
state tracking
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where �† is a pseudo-inverse that is needed because there are
more inputs than outputs, and we set z = 1.

V. CASE STUDIES

This section evaluates the ability of the MPC controller and
linear feedback controller, denoted as LIN, to track a desired
aggregate demand signal under a variety of scenarios. Section
V-A defines the scenarios used to simulate the system and
presents the performance metrics. Section V-B summarizes the
results of the scenarios.

A. Scenario Definitions
We simulate 12 scenarios using combinations of the two

controllers, two reference signals, and three delay scenarios.
Fifty instances of each scenario use different realizations of
the random quantities, and each scenario’s presented results are
averages across the instances. The simulations are one hour,
with 1800 time-steps, and we use the following parameter
settings: N

TCL
= 10, 000, N

x
= 20, p

max
= 0.85, c

y
= 3,

c

u
= 1, qy

= 0.1, qu
= 1, qu

= 0.1.
The two reference signals correspond to historical dynamic

and traditional frequency regulation signals, noted as “Reg-
D” and “Reg-A” signals respectively. Data published by PJM
[26] from May 4, 2014 are interpolated to two second time-
steps, and each signal is scaled so that the maximum possible
demand change request corresponds to ±20% of the mean
steady-state TCL demand.

The scenarios include three delay distributions – a delay-
free scenario referred to as delay case 0 and two scenarios with
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Figure 3. RMS errors of the LIN and MPC controllers in delay scenarios 0,
1, and 2 when attempting to track the Reg-A and Reg-D reference signals.

delays. In the scenarios with delays, IID delays ⌧ are sampled
from a discrete, log-normal distribution ⌧ = exp(b⌧?c) where
b·c rounds down and ⌧

? comes from a normal distribution with
mean µ and variance �

2
= 0.5. The delay cases 1 and 2 set

µ to 10 and 20 seconds respectively.
We quantify each simulation’s performance as the normal-

ized RMS tracking error (RMSE) where the error for each
time-step is y

t

� y

des
t

. The standard RMSE is then expressed
as a percentage of the TCL population’s average steady-state
demand. The RMSE value associated with each scenario is the
average RMSE across all of the scenario’s instances.

B. Results
Figure 3 summarizes the RMSE of the scenarios, and Fig. 4

provides sample time series. Note that the controllers were
roughly tuned to values that provide good performance across
all scenarios, and improved performance for both controllers
may be achievable by additional tuning. The MPC and LIN
controllers have almost equivalent RMSE in delay case 0
for both references. Under delay scenarios 1 and 2, the
LIN controller provides significantly improved RMSE, and
across all scenarios the average RMSE reduction by the LIN
controller is 11.4%.

This reduction is due to the inclusion of the integrator within
LIN, which rejects biases, e.g., due to plant-model mismatch.
These biases tend to arise as input delays increase, as shown
in [14]. As shown in Fig. 4, LIN tends to overshoot when the
reference signal changes directions, but the inclusion of an
integrator suppresses the lag that remains present in the MPC
time series plots.

The number of state bins and amplitude of the reference
signal also influence the results; situations where the input
inequalities become restrictive are not reflected in LIN. To
explore this scenario, we increase the amplitude of the ref-
erence signal to 80% of the mean steady-state TCL demand.
When tracking the “Reg-A” Reference without delays, LIN
has an RMSE of 1.14% and numerous input constraint vio-
lations. Alternatively, MPC achieves 0.83% and no constraint
violations.

During sample simulations of delay case 2 with 40 state
bins, the MPC controller took 0.1095 seconds on average and
a maximum of 0.2168 to generate the input. Alternatively, LIN
took 0.0041 seconds on average and a maximum of 0.0079
to generate the inputs. The computation reduction in LIN
improves as the size of the MPC problem grows, e.g., with
more state bins or longer delays.

2) Feedback Law Development: We define the linear feed-
back law with constant gain matrices K
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where the scalars q

y and q

w penalize ey
k

and w

k

respectively.
The input penalty is R = q

u
I where q

u is a scalar. This
formulation results in a feedback gain for the reduced-order
augmented state, e

K

x
1, that we convert using K

x
1 = [0

e
K

x
1]T ,

where T denotes the mapping from modal states.
Output tracking and regulating formulations produce iden-

tical feedback gains [25]. However, using the tracking formu-
lation above would result in a feedforward gain incorporating
the integrator. We use an alternative feedforward gain that
excludes the integrator while attempting to achieve steady-
state tracking
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where �† is a pseudo-inverse that is needed because there are
more inputs than outputs, and we set z = 1.

V. CASE STUDIES

This section evaluates the ability of the MPC controller and
linear feedback controller, denoted as LIN, to track a desired
aggregate demand signal under a variety of scenarios. Section
V-A defines the scenarios used to simulate the system and
presents the performance metrics. Section V-B summarizes the
results of the scenarios.

A. Scenario Definitions
We simulate 12 scenarios using combinations of the two

controllers, two reference signals, and three delay scenarios.
Fifty instances of each scenario use different realizations of
the random quantities, and each scenario’s presented results are
averages across the instances. The simulations are one hour,
with 1800 time-steps, and we use the following parameter
settings: N

TCL
= 10, 000, N

x
= 20, p

max
= 0.85, c

y
= 3,

c

u
= 1, qy

= 0.1, qu
= 1, qu

= 0.1.
The two reference signals correspond to historical dynamic

and traditional frequency regulation signals, noted as “Reg-
D” and “Reg-A” signals respectively. Data published by PJM
[26] from May 4, 2014 are interpolated to two second time-
steps, and each signal is scaled so that the maximum possible
demand change request corresponds to ±20% of the mean
steady-state TCL demand.

The scenarios include three delay distributions – a delay-
free scenario referred to as delay case 0 and two scenarios with
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delays. In the scenarios with delays, IID delays ⌧ are sampled
from a discrete, log-normal distribution ⌧ = exp(b⌧?c) where
b·c rounds down and ⌧

? comes from a normal distribution with
mean µ and variance �

2
= 0.5. The delay cases 1 and 2 set

µ to 10 and 20 seconds respectively.
We quantify each simulation’s performance as the normal-

ized RMS tracking error (RMSE) where the error for each
time-step is y

t
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des
t

. The standard RMSE is then expressed
as a percentage of the TCL population’s average steady-state
demand. The RMSE value associated with each scenario is the
average RMSE across all of the scenario’s instances.

B. Results
Figure 3 summarizes the RMSE of the scenarios, and Fig. 4

provides sample time series. Note that the controllers were
roughly tuned to values that provide good performance across
all scenarios, and improved performance for both controllers
may be achievable by additional tuning. The MPC and LIN
controllers have almost equivalent RMSE in delay case 0
for both references. Under delay scenarios 1 and 2, the
LIN controller provides significantly improved RMSE, and
across all scenarios the average RMSE reduction by the LIN
controller is 11.4%.

This reduction is due to the inclusion of the integrator within
LIN, which rejects biases, e.g., due to plant-model mismatch.
These biases tend to arise as input delays increase, as shown
in [14]. As shown in Fig. 4, LIN tends to overshoot when the
reference signal changes directions, but the inclusion of an
integrator suppresses the lag that remains present in the MPC
time series plots.

The number of state bins and amplitude of the reference
signal also influence the results; situations where the input
inequalities become restrictive are not reflected in LIN. To
explore this scenario, we increase the amplitude of the ref-
erence signal to 80% of the mean steady-state TCL demand.
When tracking the “Reg-A” Reference without delays, LIN
has an RMSE of 1.14% and numerous input constraint vio-
lations. Alternatively, MPC achieves 0.83% and no constraint
violations.

During sample simulations of delay case 2 with 40 state
bins, the MPC controller took 0.1095 seconds on average and
a maximum of 0.2168 to generate the input. Alternatively, LIN
took 0.0041 seconds on average and a maximum of 0.0079
to generate the inputs. The computation reduction in LIN
improves as the size of the MPC problem grows, e.g., with
more state bins or longer delays.



Key	takeaways	

•  Communica7on	network	limita7ons	
necessitate	controller/es7mator	designs	that	
cope	with	delays,	bandwidth	limita7ons,	etc.	

•  Delays	make	loads	less	capable	of	providing	
fast	services,	but	we	can	mi7gate	these	
impacts	through	delay-aware	control	and	
es7ma7on	techniques.	
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Conclusions	
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•  Grid	sensing	and	communica7on	systems	are	
becoming	more	prevalent	
–  Cost	&	privacy	concerns	
– Need	methods	to	infer	grid/load	informa7on	from	
exis7ng	measurements		

	
•  Renewable	energy	resources	are	also	becoming	
more	prevalent	
– Most	(e.g.,	wind	and	solar)	are	intermiFent	and	
uncertain	

– Need	new	sources	of	power	system	reserves	


