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Abstract— Frequency regulation balances the supply and
demand of power within a power network to maintain the
network’s frequency about its nominal value. Using residential
loads to supply frequency regulation while respecting user
comfort can require costly communication infrastructure. De-
veloping control algorithms that are resilient to communication
network imperfections, e.g., delays, can allow the usage of less
costly, lower reliability communication infrastructure. Previous
work developed a model predictive control (MPC) approach
that enables aggregations of loads to track a desired power
signal despite communication delays. This work presents a
novel model-reduction method to produce a minimal aggregate
load model, and then uses state augmentation to include the
effect of input delays. This allows the reformulation of the MPC
controller into a linear controller yielding a closed-form control
law that reduces online computation. We present simulations
that compare the MPC and linear controllers’ tracking ability
given input delays. The linear controller neglects input con-
straints explicitly included within the MPC controller, and we
characterize the impact of neglecting these constraints through
simulations. The linear controller reduces the computation time
by a factor of 100, but the RMS tracking error increases 11%
in the cases studied.

[. INTRODUCTION

Demand response refers to the manipulation of the electric
power usage, or demand, of devices to provide some oper-
ational benefit to an electric power network. These benefits
can include both peak load reduction and participation in
frequency regulation [1]. Peak load reduction limits the
electricity demand during a period of interest with a goal
of reducing the system’s operating costs or improving the
system’s reliability [1]. Demand response for frequency regu-
lation manipulates the electric power demand to help balance
the supply and demand of electricity, maintaining the power
network’s frequency near its operating point. Frameworks for
implementing demand response include both price-based and
direct control schemes [2]. Price-based approaches encourage
or discourage additional demand by adjusting the price of
power. In contrast, direct control methods manipulate the
state of the loads, e.g., switching a device on or off.

In this work, we use non-disruptive on/off switching of
residential thermostatically controlled loads (TCLs) to pro-
vide frequency regulation. Residential TCLs are household
loads such as air conditioners, water heaters, and heat pumps
that draw electricity to maintain the temperature of an
internal medium, e.g., a house’s air temperature, about a user-
defined set-point. These loads periodically switch between
an on mode, where the device draws power, and an off
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mode, where it does not, to keep the medium’s temperature
within a dead-band around the set-point. While some res-
idential demand response schemes manipulate user-defined
set-points, non-disruptive demand response [1] respects the
users’ temperature settings while imposing additional on/off
switching on the device.

There exists a large potential capacity of residential TCLs
for demand response due to their widespread usage, and
smart meters can enable communication between a central
controller and TCLs. However, practical issues associated
with implementing residential demand response include the
high cost of the sensing and communication infrastructure
due to the resource’s spatially distributed nature. Developing
demand response control algorithms that cope with imperfect
communication systems may allow lower cost communica-
tion networks, e.g., existing legacy equipment, to become
viable. Also, reducing the sensing requirements of these
algorithms can reduce sensor costs.

Existing smart meters have communication limitations [3],
e.g., infrequent data transmission, and demand response state
estimation approaches have been developed to cope with
unavailable measurements [4]—[7]. Networked control is a
class of control that addresses imperfect communication
between components within the control system, see e.g.,
[8]. Demand response literature incorporating these concepts
include [9], which investigates lost messages in optimal
load scheduling, and [10], which adapts networked control
algorithms and uses infrequent state measurements. Ref.
[11] characterizes the effects of (but does not compensate
for) communication latencies. Finally, [12] considers the
required rate of communication to enable their demand
control mechanism, [13] investigates the cost of generation
during economic dispatch where packet loss influences the
uncertainty of the demand estimate, and [14], [15] investigate
the impact of packet loss on demand response control.

In this paper, we develop a linear controller that accounts
for input delays, and we compare it to the model predictive
control (MPC) algorithm from [10] that also accounts for
input delays. We account for input delays within both meth-
ods by i) including the delay statistics, which are assumed
to be known, within the control algorithms, ii) generating a
sequence of inputs at each time-step rather than an individual
input, and iii) allowing the TCLs to select inputs based on
the realized delays, which are assumed to be known by
the TCLs based on the capabilities of digital communica-
tion networks. While our controller uses off-the-shelf linear
control techniques, the challenge is to model the large-scale
hybrid system subject to input delays as a compact linear
system amenable these techniques. For this, we extend the



linear aggregate TCL modeling approach in [4]. We present a
novel model-reduction method that produces a reduced-order
model similar to that in [16] but provides additional insights.
We then use state augmentation to capture the impact of
input delays. We present case studies for both the linear and
MPC controllers to compare computation times and tracking
performance under several delay scenarios. The benefits of
the linear controller over the MPC controller are reduced
online computation time and a simple, closed-form control
law. Drawbacks of the linear controller compared to the MPC
controller include increased tracking error and the inability
to enforce constraints that the MPC formulation includes
explicitly.

The remainder of the paper is organized as follows:
Section II describes the problem setting, Section III details
the models used within this work, Section IV develops the
control algorithms, Section V describes the case studies
and summarizes the results, and Section VI discusses the
conclusions.

II. PROBLEM SETTING AND OVERVIEW

Figure 1 provides an overview of the problem setting.
We assume two-way communication is possible between a
population of residential TCLs and an aggregator, which in-
terfaces between a power system operator and a population of
loads. The aggregator can manipulate the total power demand
of a TCL population to track a desired aggregate power
signal. The desired aggregate power signal is generated by a
system operator, and we assume it corresponds to a frequency
regulation signal.

To manipulate the aggregate TCL demand, the aggregator
broadcasts an input signal to all TCLs within the population.
The inputs, detailed in Section III-B, induce on/off switching,
and the inputs are updated and broadcast at intervals of
seconds. Communication delays cause the inputs to arrive
asynchronously at the TCLs, and the implemented input at
an individual TCL is not known by the aggregator in real-
time. Finally, TCLs transmit their individual on/off modes
and internal air temperatures (which comprise the “TCL state
measurement”) to the aggregator at each time-step, providing
aggregate state information to the controller.

This work focuses on comparing the ability of controllers
to mitigate input delays, and so we neglect communication
limitations and delays associated with the TCL state mea-
surements, which were considered in [10]. As a result, we
assume TCL state measurements are available at every time-
step and without delay. Realistically, state measurements are
available infrequently, e.g., due to smart meter limitations, or
not at all, and they may also be delayed if they are available.
Similarly, output measurements may be delayed. Therefore,
state estimators would be needed. Future work will address
this.

Our assumptions regarding the communication network
include synchronized clocks across the network, the ability
to transmit multiple values in a single message [8], the
ability to time-stamp messages [8], and input delays that
are independent and identically distributed (IID). We assume
time-stamping enables the aggregator to know the delay
statistics, and so we use these statistics within the controller.
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Fig. 1.
The aggregator’s control algorithms incorporate the pre-
dictive control approach described in [8] to construct an
open-loop input sequence at each time-step. The input se-
quence is broadcast to the TCLs, and we assume the TCLs
use selection logic and time-stamping to implement the most
recently generated input vector that applies to a given time-
step. The controller uses stochastic programming concepts to
account for previously transmitted inputs by combining them
into a weighted combination where the weights are generated
based on the delay statistics. The following section presents
the necessary models before incorporating them within the
control algorithms detailed in Section IV.

III. MODELING

Several models are used within this work. The individual
TCL model developed in [17] and described in Section III-
A represents the TCLs within the simulated plant. It models
the heat transfer driving the duty cycle of each residential
TCL using discrete and continuous states. A linear time
invariant aggregate model developed in [4] and described
in Section III-B is a probability-based model that captures
the behavior of the TCL population with reduced complexity.
It is used within the MPC algorithm. Section III-C derives
a reduced-order aggregate model similar to [16]. It allows
usage of linear quadratic regulator (LQR) techniques in
designing the linear controller.

A. Individual TCL Model

In this paper, the individual TCL model represents each of
the NTC residential air conditioners within the controllable
load population. Table I provides the notation, description,
and approximate distributions of the individual model’s
parameters within this work. The nominal parameters are
based on [18] with two exceptions: 6° and Q7. The outdoor
temperature 0° is set to be a reasonably hot day, and Q}"
includes Gaussian disturbances as in [10]. Values sampled
from uniform and normal distributions are denoted [a, 8] and
N (a, B), respectively. In the latter, o and /3 are the mean and
variance of the normal distribution.

The parameter distributions in Table I are randomly sam-
pled to generate the population of TCLs, and we denote the
set of TCLs as Z™F = {1,2,..., N}, We use i € 2™
to index an arbitrary TCL from the set. Each TCL contains
three states — its internal air temperature 9;“, its internal

mass temperature 6;"*, and its current on/off mode m;. We
]T
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define the internal temperature vector as 0 = [9? " ;" ¥



TABLE I
TCL MODEL PARAMETERS
Parameter ~ Description Value
At Time-Step Duration [s] 2
0t Temperature Set-Point [°C] [24, 26]
6% Temperature Dead-band [°C] [1.9,2.2]
0°  Outdoor Temperature [°C] 32
U™  Envelope Conductance [%] [0.89, 1.09]
U?*  Internal Conductance [%] [0.2, 0.25]
A™  Mass Heat Capacitance [*e] [4.75, 5.80]
A*  Air Heat Capacitance [kyg‘] [0.16, 0.20]
Q™ TCL Mass Heat Gain [kW] N(Q,0)
@* TCL Air Heat Gain [kW] N(Q,2.58-9)
@  Heat Gain Distribution Mean [0.45, 0.55]
Q"  TCL Heat Transfer [kW] [-17.0, -13.8]
n  Coefficient of Performance [-] 3
A disturbance vector di = [0 Q}" It“’l}T captures the

exogenous, environmental inputs that influence the TCL’s
on/off cycling where Q7" and Q}"' capture heating from
loads and occupants within the house as well as solar irradi-
ance. Finally, the TCL state measurement includes the TCL’s

. i i T
air temperature and on/off mode y; =" = (07" mi]
The model’s discrete-time state-update equations are

i1 = A'0; + B'm; + E'd; i€ I (la)
0 if 0, < @b — g®i /2
if )1 > 0%t + g0 /2
mi  otherwise

mi, =41 i€ I™ (1b)

where (1a) updates the internal temperatures and (1b) updates
the on/off mode. The power draw is P} = (|Q™| m?)/n’
with Q™ < 0 for cooling loads. The matrices in these equa-
tions are discretized using [19, p. 315] where the underlying
continuous-time matrices are

AC?Z_ = (Ua,i _,'_' Um,i) /Aa,i Um,i/Aa,i '
- Um,z/Am,'L _Um,z/Am,z
BY — [Qh,i/Aa,i O}T
EC,i B Ua,i/Aa,i 1/Aa,i O
| o0 0 1/Ami

The average cycle time of the discrete-time model using the
parameters in Table I is 10 minutes with a 20% duty cycle.

B. Aggregate TCL Population Model

The aggregate model [4] captures the power draw behavior
of the TCL population with reduced modeling complexity,
and we summarize it here for completeness. The model is

T =Ax +Buyg €)]
yr = C xy. “4)

The aggregate state, z; € RY, is a set of discrete state
bins constructed from a normalized temperature dead-band.
The entries in z; correspond to the portion of TCLs in each
bin, and each TCL maps to a bin based on its current air
temperature and on/off mode. The state transition matrix,
A € RN*N" is a transposed Markov transition matrix
describing the probability of transitioning between state bins
during a time-step. Elements in the input u, € RN /2
correspond to the probability mass that should be switched

within each temperature interval, and B € RN *N"/2 ghifts
the probability mass accordingly. The inputs are broadcast
to the TCLs as switching probabilities, and TCLs switch
their on/off mode with the probability corresponding to their
current bin. The output y; € R is the total, or aggregate,
power demand of the TCL population. It is formed using
C € RN which sums the portion of TCLs that are on,
and then scales this by P, a historical average power draw
of TCLs that are on. This model is observable [4], but it is
over-defined, as x; must sum to one. Given this and our input
definition, there is one uncontrollable state. The reduced-
order model presented in the following section eliminates
this one uncontrollable state.

Note that [20] develops an alternative aggregate model that
models the effect of the TCLs’ internal mass temperature
on the aggregate dynamics. Since we assume a stationary
outdoor temperature, stationary disturbance distributions, and
on/off control, we do not observe significant changes in the
thermal mass temperature, and so we do not use this model.

C. Reduced-Order Aggregate Model

This section develops the reduced-order aggregate model
from aggregate model in the previous section. Removing the
single uncontrollable state results in a controllable reduced-
order model that retains the observability of the original
system. Eliminating a constant-valued state in the system’s
modal representation, which corresponds to the steady-state
value of the aggregate state, preserves all dynamics of the
original system.

Our approach relies on several facts about the aggregate
model’s modal representation: i) it contains an eigenvalue
A1 = 1 and the subsystem corresponding to A; is decoupled
from the remaining system, ii) A; is always the uncontrol-
lable mode within the aggregate model in Section III-B, iii)
the component of the modal state corresponding to A; has
no dynamics and is actually a constant scalar equal to 1, and
iv) the output associated with A; is ys. These four points
result in the following structure for the modal system

A* I;‘ B*
— N S
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where stars and tildes denote modal and reduced-order
quantities, respectively. Eliminating the constant modal state
and defining y; = y; — yss forms the reduced-order system

Tpqy1 = /let + Eut (7
e =C 7. ®)

Point (i) follows from the proof in [16] that the state
transition matrix of the three-state aggregate model contains
an eigenvalue, \; = 1, with an algebraic and geometric
multiplicity of 1. This also holds for the aggregate model
in Section III-B, and the resulting Jordan block for g
is decoupled from the remainder of the system. The right
eigenvector for \; is a unique steady-state value zy for



the unforced, full-order aggregate model with corresponding
output yss = C'zgs. Since the columns of A sum to 1, a vector
of ones, denoted 1, is the left eigenvector of A;. Point (ii)
follows from applying the PBH eigenvector test to A\; [21].
The test fails for A1 because the columns of B sum to 0, and
s0 A1 is the uncontrollable mode of the full-order aggregate
model. The uniqueness of \; requires that the corresponding
row of B* is zeros.

Points (iii) and (iv) rely on the mapping from the original
aggregate state to the modal aggregate state x} = T~ 'z.
The rows of 7! are the left eigenvectors, and the columns
of T' are the right eigenvectors. Placing the left and right
eigenvectors of \; as the first row and first column of 7!
and T respectively provides the structure of A* and B* in
).

It also ensures the first modal state, noted as xf ’1, is always
1. Recall from Section I-B that 17 z; = 1. Given the
structure of T~1, then ] 1 = 1T%,, and (iii) follows for
all valid x;. To show (iv) note that the first column of 7T is
Tss, and the first element of C* = CT is Czg = yss. Since
x) 1o, eliminating ; ! from the model only requires that
the output of the reduced-order system is redefined as ;.

The approach above has similarities to that in [16] to
achieve an asymptotically stable system. Both methods elim-
inate an eigenvalue \; = 1 that is guaranteed to exist,
and both methods redefine the output of the reduced-order
model as ;. However, there are also differences between
the methods. Whereas the method detailed here relies on
points (i)-(iv), [16] uses projections into subspaces, does
not establish decoupling of the subspaces, and does not
note that the eliminated modal state is a constant. Also,
the method detailed here shows the reduced-order model is
controllable whereas [16] does not include inputs within their
reduced-order model. The following section incorporates the
full-order and reduced-order aggregate models into an MPC
algorithm and a linear controller, respectively.

IV. CONTROL ALGORITHMS

The controllers and the selection of inputs at the TCLs
account for input delays by i) including the delay statistics,
which are assumed to be known, within the control algo-
rithms, ii) generating a sequence of inputs at each time-step
rather than an individual input, and iii) allowing the TCLs to
select inputs based on the realized delays, which are assumed
to be known by the TCLs based on the capabilities of digital
communication networks. The controllers utilize two external
values — the desired demand level 4% and the aggregate state
measurement x; — to generate an input sequence. The input
sequence contains inputs that are designed for the current
time-step and some set of future time-steps. Each TCL uses
selection logic to first find the most recently generated input
sequence that has arrived, then it selects the input vector from
this sequence that applies to a given time-step. IID input
delays cause different TCLs to use different input vectors.
The TCL then chooses the element of the input vector that
corresponds to its current state, or it disregards the input
when necessary to maintain the temperature within its normal
operating range.

The linear controller generates the input sequence using a
simple control law, calculated offline, that consists of matrix
multiplication. Alternatively, the MPC controller solves a
quadratic program online to generate an input sequence. Both
controllers use delay statistics to compute the probabilities
that previously generated inputs are implemented by TCLs,
which reduces the effects of input delays.

Within this section, we occasionally use the time indexing
notation uy|; where k indicates the time-step that the input
applies to and ¢ indicates the time-step during which the input
was calculated. For example, an input u; 4); is generated at
time-step ¢, and it applies four time-steps after ¢. Using this
notation, the input sequence u;* € RV “/2xN" generated at
each time-step ¢ is a set of N" input vectors

T

seq __ T
Upp Nu—1)t| - 9

Uy = “tT\t utT+1\t
The number of time-steps within the input sequence is set
so that the probability of a TCL having no valid input is
1 — p™ where we choose p™**. Section IV-A.1 details the
process of setting N' from p™¥*.

Section IV-A describes the MPC algorithm originally de-
veloped in [10]. Section IV-B develops the linear controller.

A. MPC Algorithm

The MPC algorithm is a finite-horizon, quadratic pro-
gram with equality and inequality constraints. The objective
function penalizes desired aggregate power errors and input
effort. Equality constraints embed the full-order aggregate
model within the optimization problem, and inequality con-
straints impose the physical limitations on the feasible inputs
and states. We define the N" time-step horizon considered
within the calculation at time ¢t as KMPC = {t ...t +
N" —1}. The aggregate state measurement 2 initializes the
dynamics. Assume we have no knowledge of ¥ over the
horizon, so the desired aggregate power trajectory is assumed
to be constant and equal to the current value.

The MPC controller’s formulation at time ¢ is

t+N™°—1 k—N™°4+1

min Y [PeEr+ X el w)] A0
k=t j=k

S.t. Tp41 = Az + By (11)
Uy = Uy P (12)
yz" = yf:’ref — CPl‘k (13)
uly; < ie{l,...,N*/2} (14)
—up; <ap T ie{l,...,N*/2} (15)
0<z, <1 (16)

with & € KMP€ and j = k,..., k — N" + 1. The objective
function (10) minimizes the total cost of output deviations
(y5", which is defined in (13)) and input effort, where c¥ and
c* are cost coefficients. The state update (11) corresponds
to the aggregate model of (3) but uses the estimated input
a0y, from (12), which is calculated as a linear combination of
the input matrix U, € RV /2*N" and the weighting vector
P e RV %1 where U, and P are detailed below. The input
constraints (14) and (15) limit each input element based on



the fraction of TCLs available to be turned on or off. Finally,
(16) imposes physical limitations on the aggregate state. We
implement the algorithm using [22].

1) Constructing Input Estimates: This section explains
the construction of U and P. To construct U, note that
inputs corresponding to a given time-step k appears within
N" MPC calculations. After each of these MPC calculations,
an input sequence ;! containing an input corresponding
to time-step k is sent to the TCLs. The columns of the
matrix Uy = [uk‘k uk“ﬁ_NuH} are the N separate
input vectors that could apply to time-step k where the
inputs become “older”, i.e., they were generated at earlier
calculations, as we go from left to right in the matrix.

The TCLs use the leftmost column of U{}, that has arrived.
The probability of using a column depends on two necessary
events: 1) the column has arrived, and 2) the columns left of
it within Jf; must not have arrived. Denote the ith element
of P as p', the corresponding column of U, as u’, and the
probability of first and second necessary events as p** and
p>t. Using the assumption of IID delays, p' = plip?i.
Define the delay 7° associated with column w‘. The input
u® arrives by k if its delay is less than 4

pl’i :p(T’L <Z> Z:17'7Nu (17)

Using IID delays, the probability that all columns left of
column 7 have not arrived by time-step & is

i—1
P =]]p(r"=n) i=1,...,N" (18)
n=1

The first column is used if its delay is less than one. Use
of the second column requires that its delay is less than two
and the first column’s delay is at least one, and so on.

B. Linear Controller

This section reformulates the MPC algorithm into a linear
controller that accounts for input delays through state-space
augmentation of the aggregate model. We include an inte-
grator for disturbance rejection, use reference feedforward
to achieve tracking, and use an infinite-horizon output-
regulating LQR for pole placement. To decouple reference
tracking from disturbance rejection, the integrator dynamics
are not included within the feedforward gain, which only
includes the augmented aggregate model dynamics. Ref. [23]
also uses LQR methods within demand response, however,
they use a finite-horizon, output-tracking, LQR controller
for commercial air conditioning systems. The following
subsection develops the augmented system, and Section I'V-
B.2 develops the linear feedback law.

1) Augmenting the Aggregate Model: The augmented
state vector, Xy, includes the original state zj, and previously
transmitted inputs that TCLs could still implement

— _[.r -7 T —T

T = [xk Ukl Uk41|k uk+N“f2|k} (19)
The Uy 45 values with a = 0,..., N — 2 are constructed

— _[,r T

Uk talk = [uk+a|k—1 uk+u\k—N“+1+a} (20)

When updating Ty, to T 1, the U, ), values become Uy 4 1jp41-

=T =T —T
U3|3 Ugq13 Us|3

T
— _[.T.T T T T T T
T3 = [Ts Uzj2 U3)1 Usj0 Uq|2 Yap1 “5\2]
e 22
,/<

T
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Fig. 2. Diagram portraying the effects of A, and B, when advancing
the augmented state from £ = 3 to & = 4 with N" = 4. The dash-dotted
lines correspond to manipulations by A, which advances inputs for future
time-steps within 3. The solid lines corresponds the action of B,,, which

places inputs from ugeq into T4.

The block matrix form of the augmented system is then

A B
_ A A 0]_ B 0
Th41 = {0 OB A } TE + [pb B ] uZeq 21)
Y = [C 0 0] Tk 22)
f
C

where * indicates augmented quantities, u, " is defined in
(9), and p; is the first element of P. We explain Ag, A,
and B, below. The first block row of the block matrices A
and B updates x;. The second block row manipulates the
inputs within T as time progresses. The construction of Zj
multiplies the first column of A and C with zy, the second
column multiplies with %y, and the last column multiplies
with the remaining inputs within Tg.

Finally, we explain the Ag, A,, and B, matrices. To
construct Apg, we reorganize Buy, = BU,P into

BUP =p1Bugi + - - - + pne Bugjp—noy1
=p1 Bug)i, + AplUp|x

where Ag = [p2B pneB]. The components of A,
and B, are identity and zero matrices of various sizes that
appear without a simple pattern. Rather than constructing A,
and B, explicitly, Fig. 2 depicts their effect on the augmented
state.

The augmented system above uses the matrices from (3)-
(4) and adds controllable and observable modes at O into the
system. The model reduction method in Section III-C can
still eliminate the uncontrollable mode within the extended
system. We denote the reduced-order, augmented matrices

(23)
(24)

as A, B, and C respectively. The reduced-order, augmented
state is Ty, and the corresponding output is still yz. These
are used below.

2) Control Law Development: We define the linear con-
trol law with constant gain matrices K%, K, and K. Y as

ult = KX T — K w, + K ydes (25)

where w; is an the integrator state that captures the historical
tracking error. An output-regulating LQR formulation with
7% = 0 generates the feedback terms K*_ and K¥

oo r~ 1T
. x
min E |: k:l
u Wi
k=t k

©)T¢C 0
0 qv

] o

W

(26)
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s.t. F’““} = lé 0] [g’“} -
Wk+1 C 0| Wk

where the scalars ¢ and ¢" penalize ¥, and wy, respectively.
The input penalty is R = ¢"I where ¢" is a scalar. This
formulation results in a feedback gain for the reduced-
ordgr augmented state, KX, that we convert using K =
[0 KX ] T, where T denotes the mapping from modal states.
Output tracking and regulating formulations produce iden-
tical feedback gains [24]. However, using the tracking formu-
lation above would result in a feedforward gain incorporating
the integrator. We use an alternative feedforward gain that
excludes the integrator while attempting to achieve steady-
state tracking
KY, = (6{21 A+ Ff{g;}—lﬁ) ' (28)
where —7 is a pseudo-inverse that is needed because there
are more inputs than outputs, and we set z = 1.

V. CASE STUDIES

This section evaluates the MPC controller and linear
controller, denoted as LIN, while tracking a desired aggregate
demand signal under a variety of scenarios. We present RMS
tracking errors and statistics on each controllers’ computation
time to quantify and compare the scenarios. Section V-A
defines the scenarios used to simulate the system and presents
the performance metrics. Section V-B summarizes the results
of the scenarios.

A. Scenario Definitions

We simulate 12 scenarios using combinations of the two
controllers, two reference signals, and three delay scenarios.
Fifty instances of each scenario use different realizations of
the random quantities. The simulation time is one hour, with
1800 time-steps, and we use the following parameter settings:
NTCL = 10,000, N* = 30, p™> = 0.999, ¢ =1, " =1,
¢ =0.1,¢" =1, ¢¥ = 0.01. In all scenarios, a population of
NTCL hybrid models, detailed in Section ITI-A, are simulated
to represent the plant whereas the controllers rely on the
aggregate models detailed in Sections III-B and III-C.

The two reference signals correspond to historical dynamic
and traditional PJM frequency regulation signals, denoted
as “Reg-D” and “Reg-A” references respectively. Data pub-
lished by PIM [25] from May 4, 2014 are interpolated to
two second time-steps, and each signal is scaled so that the
maximum demand change request corresponds to +£20% of
the average steady-state aggregate TCL demand.

The scenarios include three delay distributions — a delay-
free scenario referred to as delay case O and two scenarios
with delays. In the scenarios with delays, IID delays are
sampled by i) sampling values from a log-normal distribution
with mean p and variance o2, then ii) rounding down the
sampled values. Delay cases 1 and 2 set p to 10 and 20
seconds respectively, and the variance is 0.25 for both.
Note that the choice of distribution and their parameters are
examples, not requirements of the algorithm.

We quantify each simulation using the normalized RMS
tracking error (RMSE), the average time to compute an input,

TABLE II
COMPUTATION TIMES FOR GENERATING INPUTS

Controller ~ Mean Delay (s) Mean Time (s) Max Time (s)
MPC 0 0.187 0.978
10 0.589 2.185
20 1.123 3.800
LIN 0 0.001 0.031
10 0.003 0.055
20 0.014 0.132
8 ) Reg-A Reference Reg-D Reference
g T T T T T T
E I MPC
a LIN
E 0 1 2 0 1 2

Delay Scenario

Fig. 3. RMS errors of the LIN and MPC controllers in delay scenarios 0,
1, and 2 when attempting to track the Reg-A and Reg-D reference signals.

Delay Scenario

and the maximum time to compute an input. The tracking
error for each time-step is y; — y$*, and the standard RMSE
is then expressed as a percentage of the average steady-
state aggregate TCL demand. The RMSE value associated
with each scenario is the average RMSE across all of the
scenario’s instances. We compute an average computation
time for each controller to generate an input during each
delay case, meaning we average across instances without
differentiating the reference signal used. Finally, the single
maximum computation time for generating an input is taken
from the set of instances for a controller and delay case.

B. Results

Table II summarizes computation times for the controllers,
Fig. 3 summarizes the RMSE of the scenarios, Fig. 4 pro-
vides sample time series. The simulations were carried out on
a server using Matlab. Note that the controllers were roughly
tuned to values that provide good performance across all
scenarios. Improved performance for both controllers may
be achievable by additional tuning, but we do not believe
additional tuning would make LIN outperform MPC.

From Table II, we see that LIN, the linear controller,
achieves a significant reduction in computation time needed
to generate an input. The average time and maximum time
for the linear controller is roughly 100 times faster than the
MPC controller. Also, the maximum time needed to generate
an input is 0.132 seconds in the case with the largest delay.
This compares with the MPC controller’s maximum time of
3.8 seconds in the same scenario, which exceeds the 2 second
time-step and means the MPC approach will not always be
able to compute an input within the given time-step. While
the computation times are dependent on the machine running
the simulations, LIN clearly achieves faster computation
times. This is especially important when considering the
more realistic case where delays and communication net-
work limitations affect the transmission of state and output
measurements, which will require use of an estimator. By
reducing the computation time of the controller, we allow
more time to compute the state estimates within the given
time-step duration.

This reduction in computation time comes at the cost
of increased RMSE, as Fig. 3 shows. Without delays, the
MPC and LIN controllers perform roughly equivalently. As
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Fig. 4. Time series showing the tracking of the Reg-A and Reg-D references
under delay scenario 2.

the delays increase, the MPC controller is able to achieve
better tracking with slightly reduced RMSE. However, the
differences in RMSE are not large, and it may be worth sac-
rificing some tracking accuracy for simplicity (i.e., a closed-
form control law) and reduced computational requirements.
In addition, simulations not presented here show that LIN is
better able to compensate for errors in the probability vector
‘P than the MPC approach, likely because of the integrator.

The number of state bins and amplitude of the reference
signal also influence the results; when using a more extreme
reference signal, input inequalities become more important,
and LIN (which does not explicitly include these constraints)
performs worse. To explore this scenario, we increase the
amplitude of the reference signal to 80% of the mean steady-
state TCL demand. When tracking the “Reg-D” Reference
without delays, LIN has an RMSE of 0.74% and hundreds
of input constraint violations. Alternatively, MPC achieves
an RMSE of 0.59% and no constraint violations.

VI. CONCLUSIONS

In this paper, we developed a linear controller that mit-
igates the effect of input delays in residential demand re-
sponse, and we compared it to a previously developed MPC
controller through simulations that manipulate the aggregate
demand of thousands of air conditioners to track real fre-
quency regulation signals. Both methods counteract input
delays by generating an open-loop input sequence at each
time-step and by incorporating knowledge about the input
delay statistics. The linear controller reduces computation
time significantly while losing some tracking performance in
the scenarios investigated. This may be a reasonable trade-off
since the MPC computation time is sometimes longer than
the time-step duration and, in practice, the algorithm will
require a state estimator, which will also take time to run.
Additionally, the integrator makes LIN more robust to errors
in the delay statistics. Future work will design the linear
controller in conjunction with an estimator that addresses
communication issues in state and output measurement trans-
mission, as considered in the MPC controller [10].
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