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How	can	loads	provide	reserves?	
	à your	refrigerator,	air	condi,oner,	and	

water	heater	are	already	flexible	
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Thousands	of	thermosta,cally	
controlled	loads	(TCLs)	can	track	
signals	and	provide	reserves	

J.	Mathieu,	UMich	

[Mathieu,	Koch,	and	Callaway	IEEE	Transac*ons	on	Power	Systems	2013]	
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Controller	gets	temperature/state	of	
each	load	every	2	seconds		

Controller	infers	TCL	behavior	from	
power	measurements	at	the	substa,on	

[Mathieu,	Koch,	and	Callaway	IEEE	Transac*ons	on	Power	Systems	2013]	

Simula,on	results:	
1000	ACs	tracking	5-minute	market	signal	

à The	more	the	controller	knows	about	the	loads,	the	beBer	it	can	
track	a	signal	
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Data	from	loads	
•  Parameters	

–  the	make/model	of	the	load?	
–  its	temperature	setpoint/dead-band	width?	
–  some	informa,on	about	the	household?	

•  Real-,me	data	
– Measurements	of	the	on/off	state	and/or	
internal	temperature?	

–  Household	smart	meter	data?	
–  Power	measurements	from	the	

	distribu,on	network?	
•  Recorded	data	

–  high	resolu,on	power	measurements	of	
each	load?	

J.	Mathieu,	UMich	

à	Modeling	

à	Feedback	
	control	

à	Audi,ng	

High	quality,	infrequent		

Low	quality,	frequent	
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Communica,on	and	
control	scenario	

Load	
aggregator	

substa,on	

Infrequent	state	
measurements	

Frequent	
aggregate	

power	(output)	
measurements	

De
la
y	

Delay	

((		))	
broadcast	

Delay	

[Ledva,	VreBos,	Mastellone,	Andersson,	&	Mathieu	HICSS	2015]	6/19/16	 6	



System	block	diagram	

J.	Mathieu,	UMich	

Delays cause unsynchronized arrivals of inputs at the loads and 
measurements at the estimator	
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The	challenge	

•  Design	an	es,mator	and	controller	to	enable	
loads	to	track	a	signal	despite	delays	

•  Assuming…	
–  Control	inputs	&	measurements	are	,me-stamped	
– Delay	sta,s,cs	are	known	
–  State	measurements	are	taken	frequently;	
measurement	histories	are	transmiBed	infrequently	

– Aggregate	power	measurements	are	very	noisy	
(though	the	noise	is	normally	distributed,	zero-mean,	
and	the	standard	devia,on	is	known)		

J.	Mathieu,	UMich	6/19/16	 8	



Two-state	TCL	model	

Each	TCL i	is	modeled	with	a		
stochas,c	hybrid	difference		
equa,on:	
	
	

ON 

OFF 

temperature 

st
at

e 
[Ihara	&	Schweppe	1981,	Mortensen	&	Haggerty	1990,	Uçak	&	Çağlar	1998]	

J.	Mathieu,	UMich	
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⎨

⎪

⎩
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Temperature	of	the	space	

On/off	state	 a,	thermal	parameter	
θg,	temperature	gain	
θa,	ambient	temperature	
  ,	noise	
θset,	set	point	
δ,	dead-band	width	
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Parameter Meaning Value
θset temperature setpoint 15-25◦C
δ dead-band width 0.25-1◦C
θa ambient temperature 32◦C
R thermal resistance 1.5-2.5◦C/kW
C thermal capacitance 8-12 kWh/◦C
Prate rated power 10-18 kW

θi,t+1 = aiθi,t + (1 − ai)(θa,i − mi,tθg,i) + ϵi,t (1)

x(k + 1) = Ax(k) + Bu(k) + Bωω(k) (2)

y(k) = Cx(k) + ν(k) (3)

Bω =

⎡

⎢

⎢

⎢

⎣

1 0
. . .

0 1
−1 ... −1

⎤

⎥

⎥

⎥

⎦

(4)

ugoal(k) = K
Pset(k + 1) − Ptotal,est(k + 1)

NTCLP̄rate, ON

, (5)

1
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Aggregate	System	Model	

J.	Mathieu,	UMich	
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one. For Scenario 4, we identified the -matrix using an EKF,

which will be described in Section IV-C. In all scenarios, we

compute by dividing the aggregate power use of the popu-

lation by the number of TCLs in the ON state at each time step,

and then finding the mean.

B. State Estimation

For Scenarios 1–3, we designed a standard Kalman filter [35]
using the MATLAB function kalman on the identified system:

(12)

(13)

where , is an process noise vector,

and is a measurement noise vector the same size as :

in Scenario 1 and a scalar in Scenarios 2 and 3.

The process noise covariance matrix, , was

computed with the residuals between the state values associ-

ated with the plant and those predicted by the model. Therefore,

“process noise” includes both noise associated with individual

TCLs and plant-model mismatch. The noise was modeled as

white since the Kalman filter assumes white noise. In reality,
plant-model mismatch results in colored process noise, making

the Kalman filter sub-optimal. Since we would never expect to
know perfectly, for each case, we constructed two system

parameterizations (different draws of TCL parameters, noise,

etc. from the same distributions), and use one to compute

and the other, along with , to assess tracking performance.

For Scenario 1 and Scenario 2 (100% metering), the aggre-

gate power measurement noise variance, , was set to zero.

However, in some cases, the function kalman was unable to
build a convergent Kalman filter with , so the value

was increased to up to 10 . For Scenario 2 (30% metering),

was computed with the residuals between the system

output associated with the plant and the measured system

output. The measurement noise was also modeled as white,

though in reality it too is colored, making the Kalman filter
sub-optimal. Again, we use one system parameterization to

compute and another to assess tracking performance. For

Scenario 3, was computed from the assumed distribution

substation power forecast error standard deviation: 5% and

10% of the distribution substation load. is held constant in

each simulation run. In reality, the distribution power forecast

error variance could change over time. Therefore, we model the

hypothetical changes in variance by having it follow a sinusoid

with a period equal to the length of the simulation run, between

0.5 and 1.5 of .

In practice, we may not have adequate information to com-

pute and as described. In that case, we could compute

and through simulation, iterative tuning, or by mea-

suring full state information and aggregate power consumption

perfectly from a small population of TCLs (e.g., in a pilot pro-

gram) and then extrapolating the results to the larger population.

C. Joint Parameter and State Estimation Method

Scenario 4 requires joint parameter and state estimation.

Treating the entries of the -matrix as unknown states that

do not vary over time, we can derive nonlinear state/output

equations and use an EKF for state (and therefore parameter)

estimation. We attempted to estimate both the -matrix and

online; however, the estimator was unable to converge to the

true value of . Therefore, this approach requires measuring,

deriving, or estimating .

Consider the system:

(14)

(15)

where , , , and are unknown parame-

ters. Since the number of TCLs is fixed, we know that

, , and . Treating

and as states, we can derive the following nonlinear

state/output equations:

(16)

(17)

(18)

(19)

Provided the system is locally observable, we can use an

EKF to estimate the three parameters/states and compute the

remaining parameter/states from the results. To check for local

observability, we employ the method detailed in [36], which re-

quires forming the discrete time, nonlinear, local observability

matrix, . must be full rank for the system to be locally ob-

servable. For our system, is a 3 3 matrix defined as follows:

(20)

where is the gradient of the output equation with respect to

each of the states/parameters at time step . For forced systems,

to compute , where , in terms of , ,

and , we assume a series of inputs . We find
that the system is locally observable everywhere,

except when

(21)

We used an EKF to identify parameters and states in the

system. We were unable to get the system to con-

verge for more complicated systems. More research is needed

to determine if other nonlinear state estimation methods might

be appropriate. Also, it may be possible to derive high order sys-

tems using parameters identified for the system along

with knowledge and/or assumptions about the TCL parameters.

To implement the EKF, we have adapted the algorithm im-

plemented in [37], which computes the Jacobian of and

through complex step differentiation and then implements the

discrete time Kalman Filter equations on the linearized system.

We chose iteratively and think of it as tuning parameter.

is computed as in Scenario 3.

[Mathieu,	Koch,	and	Callaway	IEEE	Transac*ons	on	Power	Systems	2013]	

Similar	models	in	the	
literature:	
•  Lu	&	Chassin	

2004/2005	
•  Bashash	&	Fathy	

2011/2013	
•  Kundu	&	Hiskens	2011	
•  Zhang	et	al.	2013	

6/19/16	 10	



Es,mator	Designs	

•  Based	on	Kalman	Filtering	
– Es,mator	1:	Parallel	filter	es,mator	

•  One	Kalman	Filter	per	load	
•  Each	,me	a	measurement	arrives,	filter	it	
•  Synthesize	aggregate	es,mate	from	individual	es,mates	

– Es,mator	2:	Single	Kalman	Filter	Using	Aggregate	
State	Predic,ons	

•  Use	state	measurement	histories	to	es,mate	
*individual*	load	parameters	(two-state	model)	

•  Use	individual	load	models	to	predict	current	state	
•  Use	predic,ons	as	“measurements”	in	Kalman	Filter	

J.	Mathieu,	UMich	6/19/16	 11	



Controller	Design	

•  Based	on	Model	Predic,ve	Control	
– Use	knowledge	of	delay	distribu,ons	and	past	
control	inputs		

J.	Mathieu,	UMich	

First	control	sequence:	

Second	control	sequence:	

Third	control	sequence:		 	
		

u1,	u2,	u3,…	,	un		
	

u2,	u3,	…	,	un+1		
	

u3,	u4,	…	,	un+1		
	

Input	es,mate:
	 		

6/19/16	 12	
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s.t. xk+1 = A xk +B buk (6)
buk = UkP (7)

yerr
k = yP,ref

k � CPxk (8)
ui
k|m  xi

k i 2 {1, . . . , N x/2} (9)

�ui
k|m  xN x+1�i

k i 2 {1, . . . , N x/2} (10)

0� ��k xk  1 + �+k (11)
0 ��k , �+k . (12)

The objective function in (5) minimizes the total cost over the
horizon where the costs cy , cu, and c� penalize the tracking
error yerr

k , control effort, and soft constraint violations �+k and
��k . The dynamic model in (6) corresponds to (3a) excluding
the process noise and using the estimated input from (7). The
tracking error is calculated in (8) using a persistent value of
the current aggregate demand request, i.e., yP,ref

k = yP,ref
t for

all k in the MPC horizon. The input constraints (9) and (10)
limit the fraction of TCLs to switch from a particular bin
to be less than the fraction of TCLs within that bin. The
soft state constraint (11) is satisfied regardless of the initial
value provided from the unconstrained state estimator, and
(12) restricts the soft constraint violations to positive values.
We now describe how we estimate the input.

B. Constructing Input Estimates

The the vector P weights each of the inputs in Uk based
on their probability of being implemented. The probabilities
within P are fixed during an MPC calculation. However, the
probabilities could be recomputed between MPC calculations
if the delay distribution changes, e.g., due to different traffic
levels at various times of the day.

The inputs in Uk become “older” as we go from left to
right in the matrix, and we calculate the elements of P using
the corresponding input vector’s location in Uk. Due to its
input selection logic, a TCL uses the input corresponding to
the leftmost column of Uk that has arrived. The probability of
using a column depends on two events: 1) the column must
have arrived, and 2) every column to its left within Uk must not
have arrived. We generate the elements of P based on these
two events, the necessary delays for these events to occur,
and the probability of realizing these delays. Note that while
assuming IID delays simplifies the following calculations, they
are still possible without independence.

Denote the ith element of P as pi, the corresponding column
of Uk as ui, and the probability of the first and second
necessary events as p1,i and p2,i. Using the assumption of
IID delays, pi = p1,ip2,i. Define the delay ⌧ i associated with
the arrival of column ui. The input ui arrives by time-step k
if its delay is less than i

p1,i = p(⌧ i < i) i = 1, . . . , Nmpc. (13)

Assuming IID delays, the probability that all columns left of
column i have not arrived by time-step k is

p2,i =
i�1Y

n=1

p(⌧n > i� n) i = 1, . . . , Nmpc. (14)

TABLE II
SIMULATION PARAMETERS

Parameter Description Value
Nx Number of State Bins [-] 100
NTCL Number of TCLs [-] 10,000
RP Aggregate Power Noise Covariance [kW2] N (0, 4E6)
P avg Average Steady-State TCL Demand [kW] 6E3
�t Time-Step Duration [s] 2
�tS,s TCL State Measurement Interval [s] 2
�tS,t TCL State History Transmission Interval [s] 900
nsteps Time-Steps in Simulation [-] 1800
pmax MPC Delay Probability Threshold [-] 0.999
cy MPC Output Cost [-] 1
cu MPC Input Cost [-] 1
c� MPC Soft Constraint Cost [-] 1.01

The first column is used if its delay is less than one. The
second column requires that its delay is less than two and the
first column’s delay is greater than one, and so on.

For an MPC calculation, columns within Uk whose right
time index is less than t correspond to previously transmit-
ted inputs, and they are set to the transmitted values. The
remaining columns are free decision variables within the MPC
solution, but only a portion of these are transmitted in the
input sequence. Specifically, the sequence Ut consists of the
one column from each Uk, k 2 {t, . . . , t+Nmpc � 1}, whose
right-hand time index corresponds to the current time t, i.e.,
every ua|b with b = t. Finally, the horizon length Nmpc is set
such that the sum of elements in P is greater than pmax where
Nmpc is the length of P .

VI. CASE STUDIES

In this section, we summarize two sets of simulations.
The first set indicates the impact of various level of delay
compensation, ranging from no compensation to using meth-
ods described in this paper. The second set pairs our two
developed estimators with our controller and apply the pairs to
a simulated population of TCLs to show how they can provide
frequency regulation despite communication delays and model
error. Section VI-A details the simulation parameters, delay
distributions, reference signal construction, and quantities used
to evaluate the simulations. Section VI-B presents the simula-
tion results.

A. Case Study Setup
Table II details the simulation settings. We simulate a TCL

population of 10,000 air conditioners. The average steady-state
TCL demand is slightly different between the two- and three-
state TCL model populations because of the parameters used,
and the value in the table is approximate.

We use a zero-mean, normal distribution to generate the
aggregate power measurement noise. Similar to [6], [20], we
set the noise variance assuming the average steady-state TCL
demand is 15% of the load served by the substations, and the
standard deviation of the power measurement noise is set to
5% of the total substation load. Note that the TCL population
could be served by multiple substations, and we simply use
the total substation demand in generating the covariance. We
generate the aggregate model’s process noise covariance W
using historical errors, and the resulting process noise is not
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s.t. xk+1 = A xk +B buk (6)
buk = UkP (7)

yerr
k = yP,ref

k � CPxk (8)
ui
k|m  xi

k i 2 {1, . . . , N x/2} (9)

�ui
k|m  xN x+1�i

k i 2 {1, . . . , N x/2} (10)

0� ��k xk  1 + �+k (11)
0 ��k , �+k . (12)

The objective function in (5) minimizes the total cost over the
horizon where the costs cy , cu, and c� penalize the tracking
error yerr

k , control effort, and soft constraint violations �+k and
��k . The dynamic model in (6) corresponds to (3a) excluding
the process noise and using the estimated input from (7). The
tracking error is calculated in (8) using a persistent value of
the current aggregate demand request, i.e., yP,ref

k = yP,ref
t for

all k in the MPC horizon. The input constraints (9) and (10)
limit the fraction of TCLs to switch from a particular bin
to be less than the fraction of TCLs within that bin. The
soft state constraint (11) is satisfied regardless of the initial
value provided from the unconstrained state estimator, and
(12) restricts the soft constraint violations to positive values.
We now describe how we estimate the input.

B. Constructing Input Estimates

The the vector P weights each of the inputs in Uk based
on their probability of being implemented. The probabilities
within P are fixed during an MPC calculation. However, the
probabilities could be recomputed between MPC calculations
if the delay distribution changes, e.g., due to different traffic
levels at various times of the day.

The inputs in Uk become “older” as we go from left to
right in the matrix, and we calculate the elements of P using
the corresponding input vector’s location in Uk. Due to its
input selection logic, a TCL uses the input corresponding to
the leftmost column of Uk that has arrived. The probability of
using a column depends on two events: 1) the column must
have arrived, and 2) every column to its left within Uk must not
have arrived. We generate the elements of P based on these
two events, the necessary delays for these events to occur,
and the probability of realizing these delays. Note that while
assuming IID delays simplifies the following calculations, they
are still possible without independence.

Denote the ith element of P as pi, the corresponding column
of Uk as ui, and the probability of the first and second
necessary events as p1,i and p2,i. Using the assumption of
IID delays, pi = p1,ip2,i. Define the delay ⌧ i associated with
the arrival of column ui. The input ui arrives by time-step k
if its delay is less than i

p1,i = p(⌧ i < i) i = 1, . . . , Nmpc. (13)

Assuming IID delays, the probability that all columns left of
column i have not arrived by time-step k is

p2,i =
i�1Y

n=1

p(⌧n > i� n) i = 1, . . . , Nmpc. (14)

TABLE II
SIMULATION PARAMETERS

Parameter Description Value
Nx Number of State Bins [-] 100
NTCL Number of TCLs [-] 10,000
RP Aggregate Power Noise Covariance [kW2] N (0, 4E6)
P avg Average Steady-State TCL Demand [kW] 6E3
�t Time-Step Duration [s] 2
�tS,s TCL State Measurement Interval [s] 2
�tS,t TCL State History Transmission Interval [s] 900
nsteps Time-Steps in Simulation [-] 1800
pmax MPC Delay Probability Threshold [-] 0.999
cy MPC Output Cost [-] 1
cu MPC Input Cost [-] 1
c� MPC Soft Constraint Cost [-] 1.01

The first column is used if its delay is less than one. The
second column requires that its delay is less than two and the
first column’s delay is greater than one, and so on.

For an MPC calculation, columns within Uk whose right
time index is less than t correspond to previously transmit-
ted inputs, and they are set to the transmitted values. The
remaining columns are free decision variables within the MPC
solution, but only a portion of these are transmitted in the
input sequence. Specifically, the sequence Ut consists of the
one column from each Uk, k 2 {t, . . . , t+Nmpc � 1}, whose
right-hand time index corresponds to the current time t, i.e.,
every ua|b with b = t. Finally, the horizon length Nmpc is set
such that the sum of elements in P is greater than pmax where
Nmpc is the length of P .

VI. CASE STUDIES

In this section, we summarize two sets of simulations.
The first set indicates the impact of various level of delay
compensation, ranging from no compensation to using meth-
ods described in this paper. The second set pairs our two
developed estimators with our controller and apply the pairs to
a simulated population of TCLs to show how they can provide
frequency regulation despite communication delays and model
error. Section VI-A details the simulation parameters, delay
distributions, reference signal construction, and quantities used
to evaluate the simulations. Section VI-B presents the simula-
tion results.

A. Case Study Setup
Table II details the simulation settings. We simulate a TCL

population of 10,000 air conditioners. The average steady-state
TCL demand is slightly different between the two- and three-
state TCL model populations because of the parameters used,
and the value in the table is approximate.

We use a zero-mean, normal distribution to generate the
aggregate power measurement noise. Similar to [6], [20], we
set the noise variance assuming the average steady-state TCL
demand is 15% of the load served by the substations, and the
standard deviation of the power measurement noise is set to
5% of the total substation load. Note that the TCL population
could be served by multiple substations, and we simply use
the total substation demand in generating the covariance. We
generate the aggregate model’s process noise covariance W
using historical errors, and the resulting process noise is not
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B. Variations of the Networked Kalman Filter

Because of IID measurement transmission delays, the state
measurement histories from individual TCLs do not arrive
synchronously at the aggregator. We develop and investigate
the performance of two methods to form aggregate state esti-
mates from asynchronous TCL measurements for use within
the networked Kalman filter. The method in Section IV-B1,
referred to as Estimator 1, describes an algorithm that uses
NTCL filters from Section IV-A, one for each TCL. The
method in Section IV-B2, referred to as Estimator 2, uses
a single networked Kalman filter that incorporates aggregate
state predictions generated from identified individual TCL
models.

1) Estimator 1: Parallel Kalman Filter Estimator: This
method uses a set of NTCL networked Kalman filters, which
allows each TCL’s measurements to be used as they arrive.
Aggregate power measurements are used as before, the in-
dividual networked Kalman filters use a version of a state
measurement. To construct each TCL’s state measurement, the
corresponding TCL’s most recent temperature and on/off mode
measurement is converted into a vector xj

t for j 2 J TCL that
contains discrete states as defined for xt in Section III-B. The
vector xj

t is 1 in the discrete state that the TCL’s temperature
and on/off mode maps to and zeros elsewhere. The remaining,
older TCL measurements are discarded.

Each filter uses its TCL state measurement to generate a
state estimate bxj

t for each TCL j 2 J TCL. We assume the
TCL state measurements are accurate, and so we use a near-
zero covariance, i.e., V S,j ⇡ 0, for the TCL state measurements
within each Kalman filter. An overall aggregate state estimate
is formed as x̂t =

⇣PNTCL

j=1 bxj
t

⌘
/NTCL. The main disadvan-

tages of this are its large computational requirement and the
usage of only the most recent TCL measurements.

2) Estimator 2: Single Kalman Filter Using Aggregate State
Predictions: This state estimator consists of three components:
a parameter identification algorithm, a bank of NTCL identified
two-state individual TCL models, and a single networked
Kalman filter. As each TCL’s measurement history arrives, it is
input into a nonlinear least squares algorithm that identifies the
thermal parameters b

⇤

a,j and bU a,j of the TCL. As previously
stated, measurements of the TCL’s internal mass temperature
are not available and so we assume the underlying model is
the two-state TCL model. We assume the TCL set-points,
the TCL deadband widths, and the outdoor temperature are
known. The set of identified TCL models allow each TCL to
be simulated where we assume Qa,j

t = 0 for all j. Aggregate
state predictions x?

t are formed based on these models at each
time-step.

A single networked Kalman filter treats the predictions x?
t

as measurements, allowing the individual TCL models to influ-
ence the aggregate- model-based estimator. The measurement
noise associated with the aggregate state predictions vS

t is
assumed to be zero mean and normally distributed, and the
aggregate state measurement noise covariance V S is generated
using the historical errors. Note that the noise will not be
normally distributed in general, which results in a sub-optimal
filter.

The method has the disadvantage that it relies on the
accuracy of the two-state model, and this is discussed further
in Section VI-B. The following section describes the control
algorithm, which relies on the state estimates to produce the
necessary control inputs.

V. CONTROL ALGORITHM

The aggregator uses the predictive control approach de-
scribed in [13] to counteract input delays. In this approach,
the control algorithm generates an open-loop input sequence
Ut 2 RN x/2⇥Nmpc

at each time-step based on the current state
estimate. IID delays cause asynchronous input arrival at the
TCLs. Using time-stamping, we assume that the smart meter
(or TCL) can select the most recently generated input sequence
that has arrived. The TCL also selects the input from that
sequence that applies to the current time-step, or it uses a
zero input if no input for the current time-step is available
due to the realized delays. The controller does not know the
implemented input at each TCL, and an estimated input is
generated from the known delay statistics and is used within
the aggregator’s algorithms.

We develop an MPC algorithm that considers a horizon of
Nmpc time-steps ranging from the present time-step t to future
time-step t + Nmpc � 1 to generate Ut. The MPC algorithm
uses the aggregate model to design inputs that track the desired
aggregate demand yP,ref

t .
Within this section, k is used to indicate the time-step

of the MPC horizon. Inputs corresponding to time-step k
are produced at time t = k � Nmpc

+ 1, . . . , k, resulting
in a total of Nmpc inputs for each time-step. The matrix
Uk =

⇥
uk|k . . . uk|k�Nmpc+1

⇤
denotes the set of input

vectors that apply to time-step k.
As in [28], we form an input estimate but based on previously

transmitted input sequences. Ref. [28] attempts to estimate the
single input within an actuator whereas we form the input
estimate but as the weighted sum of possible inputs and their
probability of being implemented. The probabilities, which
are the elements of the vector P , are based on known input
delay statistics and the TCL input selection logic. Section V-B
details the construction of but, Uk, and P . The following section
presents the MPC formulation, which is a finite-horizon, linear
quadratic output regulator with input and state constraints that
is implemented using [29].

A. MPC Formulation
To set Nmpc, we first fix a parameter pmax. The value

1 � pmax is the probability that no valid input is available
at the TCL, and we explain this further in Section V-B. The
MPC algorithm is initialized using the current state estimate
xt = bxt, the current aggregate demand request yP,ref

t , and any
previously transmitted inputs that apply to time-steps within
the horizon. The full formulation is

minimize
u,�

t+Nmpc�1X

k=t

h
cy (yerr

k )

2
+ c�(��k + �+k )

+

kX

m=k�Nmpc+1

cu(u>
k|m uk|m)

i
(5)
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B. Variations of the Networked Kalman Filter

Because of IID measurement transmission delays, the state
measurement histories from individual TCLs do not arrive
synchronously at the aggregator. We develop and investigate
the performance of two methods to form aggregate state esti-
mates from asynchronous TCL measurements for use within
the networked Kalman filter. The method in Section IV-B1,
referred to as Estimator 1, describes an algorithm that uses
NTCL filters from Section IV-A, one for each TCL. The
method in Section IV-B2, referred to as Estimator 2, uses
a single networked Kalman filter that incorporates aggregate
state predictions generated from identified individual TCL
models.

1) Estimator 1: Parallel Kalman Filter Estimator: This
method uses a set of NTCL networked Kalman filters, which
allows each TCL’s measurements to be used as they arrive.
Aggregate power measurements are used as before, the in-
dividual networked Kalman filters use a version of a state
measurement. To construct each TCL’s state measurement, the
corresponding TCL’s most recent temperature and on/off mode
measurement is converted into a vector xj

t for j 2 J TCL that
contains discrete states as defined for xt in Section III-B. The
vector xj

t is 1 in the discrete state that the TCL’s temperature
and on/off mode maps to and zeros elsewhere. The remaining,
older TCL measurements are discarded.

Each filter uses its TCL state measurement to generate a
state estimate bxj

t for each TCL j 2 J TCL. We assume the
TCL state measurements are accurate, and so we use a near-
zero covariance, i.e., V S,j ⇡ 0, for the TCL state measurements
within each Kalman filter. An overall aggregate state estimate
is formed as x̂t =

⇣PNTCL

j=1 bxj
t

⌘
/NTCL. The main disadvan-

tages of this are its large computational requirement and the
usage of only the most recent TCL measurements.

2) Estimator 2: Single Kalman Filter Using Aggregate State
Predictions: This state estimator consists of three components:
a parameter identification algorithm, a bank of NTCL identified
two-state individual TCL models, and a single networked
Kalman filter. As each TCL’s measurement history arrives, it is
input into a nonlinear least squares algorithm that identifies the
thermal parameters b

⇤

a,j and bU a,j of the TCL. As previously
stated, measurements of the TCL’s internal mass temperature
are not available and so we assume the underlying model is
the two-state TCL model. We assume the TCL set-points,
the TCL deadband widths, and the outdoor temperature are
known. The set of identified TCL models allow each TCL to
be simulated where we assume Qa,j

t = 0 for all j. Aggregate
state predictions x?

t are formed based on these models at each
time-step.

A single networked Kalman filter treats the predictions x?
t

as measurements, allowing the individual TCL models to influ-
ence the aggregate- model-based estimator. The measurement
noise associated with the aggregate state predictions vS

t is
assumed to be zero mean and normally distributed, and the
aggregate state measurement noise covariance V S is generated
using the historical errors. Note that the noise will not be
normally distributed in general, which results in a sub-optimal
filter.

The method has the disadvantage that it relies on the
accuracy of the two-state model, and this is discussed further
in Section VI-B. The following section describes the control
algorithm, which relies on the state estimates to produce the
necessary control inputs.

V. CONTROL ALGORITHM

The aggregator uses the predictive control approach de-
scribed in [13] to counteract input delays. In this approach,
the control algorithm generates an open-loop input sequence
Ut 2 RN x/2⇥Nmpc

at each time-step based on the current state
estimate. IID delays cause asynchronous input arrival at the
TCLs. Using time-stamping, we assume that the smart meter
(or TCL) can select the most recently generated input sequence
that has arrived. The TCL also selects the input from that
sequence that applies to the current time-step, or it uses a
zero input if no input for the current time-step is available
due to the realized delays. The controller does not know the
implemented input at each TCL, and an estimated input is
generated from the known delay statistics and is used within
the aggregator’s algorithms.

We develop an MPC algorithm that considers a horizon of
Nmpc time-steps ranging from the present time-step t to future
time-step t + Nmpc � 1 to generate Ut. The MPC algorithm
uses the aggregate model to design inputs that track the desired
aggregate demand yP,ref

t .
Within this section, k is used to indicate the time-step

of the MPC horizon. Inputs corresponding to time-step k
are produced at time t = k � Nmpc

+ 1, . . . , k, resulting
in a total of Nmpc inputs for each time-step. The matrix
Uk =

⇥
uk|k . . . uk|k�Nmpc+1

⇤
denotes the set of input

vectors that apply to time-step k.
As in [28], we form an input estimate but based on previously

transmitted input sequences. Ref. [28] attempts to estimate the
single input within an actuator whereas we form the input
estimate but as the weighted sum of possible inputs and their
probability of being implemented. The probabilities, which
are the elements of the vector P , are based on known input
delay statistics and the TCL input selection logic. Section V-B
details the construction of but, Uk, and P . The following section
presents the MPC formulation, which is a finite-horizon, linear
quadratic output regulator with input and state constraints that
is implemented using [29].

A. MPC Formulation
To set Nmpc, we first fix a parameter pmax. The value

1 � pmax is the probability that no valid input is available
at the TCL, and we explain this further in Section V-B. The
MPC algorithm is initialized using the current state estimate
xt = bxt, the current aggregate demand request yP,ref

t , and any
previously transmitted inputs that apply to time-steps within
the horizon. The full formulation is

minimize
u,�

t+Nmpc�1X

k=t

h
cy (yerr

k )

2
+ c�(��k + �+k )

+

kX

m=k�Nmpc+1

cu(u>
k|m uk|m)

i
(5)
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s.t. xk+1 = A xk +B buk (6)
buk = UkP (7)

yerr
k = yP,ref

k � CPxk (8)
ui
k|m  xi

k i 2 {1, . . . , N x/2} (9)

�ui
k|m  xN x+1�i

k i 2 {1, . . . , N x/2} (10)

0� ��k xk  1 + �+k (11)
0 ��k , �+k . (12)

The objective function in (5) minimizes the total cost over the
horizon where the costs cy , cu, and c� penalize the tracking
error yerr

k , control effort, and soft constraint violations �+k and
��k . The dynamic model in (6) corresponds to (3a) excluding
the process noise and using the estimated input from (7). The
tracking error is calculated in (8) using a persistent value of
the current aggregate demand request, i.e., yP,ref

k = yP,ref
t for

all k in the MPC horizon. The input constraints (9) and (10)
limit the fraction of TCLs to switch from a particular bin
to be less than the fraction of TCLs within that bin. The
soft state constraint (11) is satisfied regardless of the initial
value provided from the unconstrained state estimator, and
(12) restricts the soft constraint violations to positive values.
We now describe how we estimate the input.

B. Constructing Input Estimates

The the vector P weights each of the inputs in Uk based
on their probability of being implemented. The probabilities
within P are fixed during an MPC calculation. However, the
probabilities could be recomputed between MPC calculations
if the delay distribution changes, e.g., due to different traffic
levels at various times of the day.

The inputs in Uk become “older” as we go from left to
right in the matrix, and we calculate the elements of P using
the corresponding input vector’s location in Uk. Due to its
input selection logic, a TCL uses the input corresponding to
the leftmost column of Uk that has arrived. The probability of
using a column depends on two events: 1) the column must
have arrived, and 2) every column to its left within Uk must not
have arrived. We generate the elements of P based on these
two events, the necessary delays for these events to occur,
and the probability of realizing these delays. Note that while
assuming IID delays simplifies the following calculations, they
are still possible without independence.

Denote the ith element of P as pi, the corresponding column
of Uk as ui, and the probability of the first and second
necessary events as p1,i and p2,i. Using the assumption of
IID delays, pi = p1,ip2,i. Define the delay ⌧ i associated with
the arrival of column ui. The input ui arrives by time-step k
if its delay is less than i

p1,i = p(⌧ i < i) i = 1, . . . , Nmpc. (13)

Assuming IID delays, the probability that all columns left of
column i have not arrived by time-step k is

p2,i =
i�1Y

n=1

p(⌧n > i� n) i = 1, . . . , Nmpc. (14)

TABLE II
SIMULATION PARAMETERS

Parameter Description Value
Nx Number of State Bins [-] 100
NTCL Number of TCLs [-] 10,000
RP Aggregate Power Noise Covariance [kW2] N (0, 4E6)
P avg Average Steady-State TCL Demand [kW] 6E3
�t Time-Step Duration [s] 2
�tS,s TCL State Measurement Interval [s] 2
�tS,t TCL State History Transmission Interval [s] 900
nsteps Time-Steps in Simulation [-] 1800
pmax MPC Delay Probability Threshold [-] 0.999
cy MPC Output Cost [-] 1
cu MPC Input Cost [-] 1
c� MPC Soft Constraint Cost [-] 1.01

The first column is used if its delay is less than one. The
second column requires that its delay is less than two and the
first column’s delay is greater than one, and so on.

For an MPC calculation, columns within Uk whose right
time index is less than t correspond to previously transmit-
ted inputs, and they are set to the transmitted values. The
remaining columns are free decision variables within the MPC
solution, but only a portion of these are transmitted in the
input sequence. Specifically, the sequence Ut consists of the
one column from each Uk, k 2 {t, . . . , t+Nmpc � 1}, whose
right-hand time index corresponds to the current time t, i.e.,
every ua|b with b = t. Finally, the horizon length Nmpc is set
such that the sum of elements in P is greater than pmax where
Nmpc is the length of P .

VI. CASE STUDIES

In this section, we summarize two sets of simulations.
The first set indicates the impact of various level of delay
compensation, ranging from no compensation to using meth-
ods described in this paper. The second set pairs our two
developed estimators with our controller and apply the pairs to
a simulated population of TCLs to show how they can provide
frequency regulation despite communication delays and model
error. Section VI-A details the simulation parameters, delay
distributions, reference signal construction, and quantities used
to evaluate the simulations. Section VI-B presents the simula-
tion results.

A. Case Study Setup
Table II details the simulation settings. We simulate a TCL

population of 10,000 air conditioners. The average steady-state
TCL demand is slightly different between the two- and three-
state TCL model populations because of the parameters used,
and the value in the table is approximate.

We use a zero-mean, normal distribution to generate the
aggregate power measurement noise. Similar to [6], [20], we
set the noise variance assuming the average steady-state TCL
demand is 15% of the load served by the substations, and the
standard deviation of the power measurement noise is set to
5% of the total substation load. Note that the TCL population
could be served by multiple substations, and we simply use
the total substation demand in generating the covariance. We
generate the aggregate model’s process noise covariance W
using historical errors, and the resulting process noise is not

Tracking	error	
Control	effort	

State	constraint	
devia,ons	
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minutes	
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TABLE I. TCL MODEL PARAMETERS

Parameter Description Value
�t Time-Step Duration [s] 2
✓

set Temperature Set-Point [�C] [24, 26]
✓

db Temperature Dead-band [�C] [2.0, 2.5]
✓

o Outdoor Temperature [�C] 32
U

m Envelope Conductance [ kW
�C ] [0.84, 1.14]

U

a Internal Conductance [ kW
�C ] [0.2, 0.27]

⇤m Mass Heat Capacitance [ kWh
�C ] [4.48, 6.07]

⇤a Air Heat Capacitance [ kWh
�C ] [0.16, 0.21]

Q

m TCL Mass Heat Gain [kW] 0.5
Q

a TCL Air Heat Gain [kW] N (0.5, 2.5E-9)
Q

h TCL Heat Transfer [kW] [-17.7, -13.1]
⌘ Coefficient of Performance [-] 3

transmitted to the controller are the TCL’s air temperature and
on/off mode y

TCL,i
t

=

⇥
✓

a,i

m

i

t

⇤
T .

The model’s discrete-time state-update equations are

✓

i

t+1 = A

i

✓

i

t

+B

i

m

i

t

+ E

i

d

i

t

i 2 ITCL (1a)

m

i

t+1 =

8
><

>:

0 if ✓a,i
t+1 < ✓

set,i � ✓

db,i
/2

1 if ✓a,i
t+1 > ✓

set,i
+ ✓

db,i
/2

m

i

t

otherwise
i 2 ITCL (1b)

where (1a) updates the internal temperatures and (1b) updates
the on/off mode. The power draw is P

i

t

= (|Qh,i| m

i

t

)/⌘

i

with Q

h,i
< 0 for cooling appliances. The matrices in

these equations are discretized using [20, p. 315] where the
underlying continuous-time matrices are

A

c,i
=


�
�
U

a,i
+ U

m,i

�
/⇤

a,i
U

m,i

/⇤

a,i

U

m,i

/⇤

m,i �U

m,i

/⇤

m,i

�

B

c,i
=

⇥
Q

h,i
/⇤

a,i
0

⇤
T

E

c,i
=


U

a,i
/⇤

a,i
1/⇤

a,i
0

0 0 1/⇤

m,i

�
.

B. Aggregate TCL Population Model

The aggregate model [6] seeks to capture the power draw
behavior of the TCL population with reduced modeling
complexity. This model considers the TCL population as a
probability mass and the state transition matrix describes the
probability of mass moving from one discrete state bin to
another within a time-step. The aggregate demand is computed
from the portion of the probability mass in discrete state bins
corresponding to TCLs drawing power.

The aggregate state, x
k

2 RN

x
, is a set of discrete state bins

constructed from a normalized temperature dead-band. The
dead-band is divided into N

x

2 temperature intervals, and each
interval contains two states – one for TCLs that are drawing
power and and one for TCLs that are not drawing power. Each
individual TCL maps to a state bin based on its current air
temperature and on/off mode, and the entries in x

k

correspond
to the portion of TCLs in each bin; the sum of state vector
elements is 1. The state transition matrix, A 2 RN

x⇥N

x
, is a

transposed Markov transition matrix describing the probability
of transitioning between state bins during a time-step.

Elements in the input u
k

2 RN

x
/2 correspond to the prob-

ability mass that should be switched, where positive values
force TCLs on. The input matrix, B 2 RN

x⇥N

x
/2 forces prob-

ability mass into the opposite on/off bin associated with the
same temperature interval. The input elements are converted
to switching probabilities by dividing by the appropriate state
value before transmitting the input vector to the TCLs. This
introduces nonlinearities within the system, but this does not
affect the control algorithms. Finally, the aggregate model’s
output y

k

2 R is the total, or aggregate, active power demand
of the TCL population.

The input matrix for the formulation is B =

⇥
�I flip(I)

⇤
T

where flip(·) switches the first and last columns, the the second
and the second to last columns, and so on. The output matrix
is C = N

TCL
P

on ⇥
0 · · · 0 1 · · · 1

⇤
where P

on
is the

historical average power draw of TCLs that are on. Finally,
the state update and output equations are

x

k+1 =A x

k

+B u

k

(3)
y

k

= C x

k

. (4)

This system is observable [6], but it is over-defined, meaning
the value of N

x � 1 states dictates the value of the final
state. Given this and the definition of the input, there is one
uncontrollable state. The reduced-order model presented in the
following section eliminates this uncontrollable state.

As a final note, [21] develops an alternative aggregate
model, referred to here as the three-state aggregate model, that
incorporates the effect of the TCLs’ internal mass temperature
on the aggregate dynamics. We use the aggregate model sum-
marized above, referred to as the two-state aggregate model,
which does not include this information, for computational and
practical reasons. First, our use of stationary exogenous input
distributions and on/off control do not introduce transients in
the thermal mass temperature, and so the additional modeling
complexity is not needed. Second, the mass temperature in the
three-state aggregate model is not easily measurable.

C. Reduced-Order Aggregate Model
This section develops the reduced-order aggregate model.

Removing the single uncontrollable state results in a control-
lable reduced-order model that retains the observability of the
original system. Eliminating a constant-valued state preserves
all dynamics of the original system.

Our approach relies on several facts about the aggregate
model’s modal representation: i) it contains an eigenvalue
�1 = 1 and the subsystem corresponding to �1 is decoupled
from the remaining system, ii) �1 is always the uncontrollable
mode within the aggregate model in Section III-B, iii) the
component of the modal state corresponding to �1 has no
dynamics and is actually a constant scalar equal to 1, and iv)
the output associated with �1 is yss. These four points result
in the following structure for the modal system


1

ex
k+1

�
=

A

⇤

z }| {
1 0

0

e
A

�
x

⇤
kz }| {
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z}|{
0

e
B

�
u

k

(5)

y

k

=

h
yss e

C

i

| {z }
C

⇤


1

ex
k

�
(6)

where stars and tildes denote modal and reduced-order quan-
tities respectively. Eliminating the constant modal state and
defining ey

k

= y

k

� yss forms the reduced-order system

ex
k+1 =

e
A ex

k

+

e
Bu

k

(7)

ey
k

=

e
C ex

k

. (8)

Point (i) follows from the proof in [16] that the three-state
aggregate model’s state transition matrix contains an eigen-
value, �1 = 1, with an algebraic and geometric multiplicity of
1. This also holds for the two-state aggregate model, and the
resulting Jordan block for �1 is decoupled from the remainder
of the system. The right eigenvector for �1 is a unique steady-
state value xss for the unforced, full-order aggregate model
with corresponding output yss = C xss. Since the columns of
A sum to 1, a vector of ones, denoted 1, is the left eigenvector
of �1. Point (ii) follows from applying the PBH eigenvector
test to �1 [22]. The test fails for �1 because the columns of
B sum to 0, and so �1 is the uncontrollable mode of the full-
order aggregate model. The uniqueness of �1 requires that the
corresponding row of B⇤ is zeros.

Points (iii) and (iv) rely on the mapping from the original
aggregate state to the modal aggregate state x

⇤
k

= T

�1
x

k

. The
rows of T�1 are the left eigenvectors, and the columns of T are
the right eigenvectors. Placing the left and right eigenvectors of
�1 as the first row and first column of T�1 and T respectively
provides the structure of A⇤ and B

⇤ in (5).
It also ensures the first modal state, noted as x⇤,1

k

, is always
1. Recall from Section III-B that 1

T

x

k

= 1. Given the
structure of T

�1, then x

⇤,1
k

= 1

T

x

k

, and (iii) follows for
all valid x

k

. To show (iv) note that the first column of T

is xss, and the first element of C⇤
= CT is Cxss = yss. Since

x

⇤,1
k

= 1, eliminating x

⇤,1
k

from the model only requires that
the output of the reduced-order system is redefined as ey

k

.
The approach above has similarities to that in [16] to achieve

an asymptotically stable system. Both methods eliminate an
eigenvalue �1 = 1 that is guaranteed to exist, and b) both
methods redefine the output of the reduced-order model as
ey
k

. However, there are also differences between the methods.
Whereas the method detailed here relies on points (i)-(iv), [16]
uses projections into subspaces, does not establish decoupling
of the subspaces, and does not note that the eliminated modal
state is a constant. Also, the method detailed here shows the
reduced-order model is controllable whereas [16] does not
include inputs within their reduced-order model. The following
section incorporates the full-order and reduced-order aggregate
models into MPC and linear feedback algorithms respectively.

IV. CONTROL ALGORITHMS

The controllers receive two values – the desired demand
level y

des
t

and the aggregate state measurement x

t

– that
are used within algorithms to generate an input sequence.
Each TCL uses selection logic to first find the most recently

generated input sequence that has arrived then select the input
vector from this sequence that applies to a given time-step.
The TCL then chooses the applicable input element from this
vector based on its current state bin, or it disregards external
signals when necessary to maintain the temperature within the
normal operating range.

The linear controller generates the input sequence directly
from y

des
t

, x
t

, and two gain matrices, calculated offline, using
matrix multiplication. Alternatively, the MPC controller uses
the values within a quadratic program, solved online, to
generate an input sequence. Both controllers incorporate the
probability that previously generated inputs are implemented
using delay statistics, which reduces the effects of input delays.

Within this section, we occasionally use the time indexing
notation  

k|t where  is an arbitrary quantity, k indicates the
time-step that the quantity applies to, and t indicates the time-
step during which the quantity was calculated. For example,
an input u

t+4|t is generated at time-step t, and it applies
four time-steps after t. Using this notation, the input sequence
generated at each time-step t is a set of N u input vectors

u

seq
t

=

h
u

T

t|t u

T

t+1|t · · · u

T

t+N

u�1|t

i
T

. (9)

The number of time-steps within the input sequence is set so
that the probability of an input delay exceeding the sequence
length is less than 1� p

max where we choose p

max.
Section IV-A first describes the MPC algorithm originally

developed in [14]. Section IV-B develops the linear controller.

A. MPC Algorithm
The MPC algorithm is a finite-horizon, quadratic program

with equality and inequality constraints. The objective function
penalizes desired demand errors and input effort. Equality
constraints embed the full-order aggregate model within the
optimization problem, and inequality constraints impose the
physical limitations on the feasible inputs and states. We define
the N

u time-step horizon considered within the calculation at
time t as KMPC

t

= {t, . . . , t + N

u � 1}. The aggregate state
measurement x

t

initializes the dynamics. Assume we have no
knowledge of y

des
k

over the horizon, so the desired aggregate
power trajectory is set to the currently requested value.

The MPC controller’s formulation at time t is

min
u

X

k2KMPC
t

c

y

(y

k+1 � y

des
k+1)

2
+

k�N

u+1X

j=k

c

u

(u

T

k|j u

k|j) (10)

s.t. x
k+1 = A x

k

+B bu
k

(11)
y

k

= C x

k

(12)
bu
k

= U
k

P (13)
u

i

k|j  x

i

k

i 2 {1, . . . , N x
/2} (14)

�u

i

k|j  x

N

x+1�i

k

i 2 {1, . . . , N x
/2} (15)

0  x

k+1  1 (16)

with k 2 KMPC
t

and j = k, . . . , k � N

u
+ 1. The objective

function in (10) minimizes the total cost of input effort and
output deviations over the horizon. The coefficients c

y and

TABLE I. TCL MODEL PARAMETERS

Parameter Description Value
�t Time-Step Duration [s] 2
✓

set Temperature Set-Point [�C] [24, 26]
✓

db Temperature Dead-band [�C] [2.0, 2.5]
✓

o Outdoor Temperature [�C] 32
U

m Envelope Conductance [ kW
�C ] [0.84, 1.14]

U

a Internal Conductance [ kW
�C ] [0.2, 0.27]

⇤m Mass Heat Capacitance [ kWh
�C ] [4.48, 6.07]

⇤a Air Heat Capacitance [ kWh
�C ] [0.16, 0.21]

Q

m TCL Mass Heat Gain [kW] 0.5
Q

a TCL Air Heat Gain [kW] N (0.5, 2.5E-9)
Q

h TCL Heat Transfer [kW] [-17.7, -13.1]
⌘ Coefficient of Performance [-] 3

transmitted to the controller are the TCL’s air temperature and
on/off mode y

TCL,i
t

=

⇥
✓

a,i

m

i

t

⇤
T .

The model’s discrete-time state-update equations are

✓

i

t+1 = A

i

✓

i

t

+B

i

m

i

t

+ E

i

d

i

t

i 2 ITCL (1a)

m

i

t+1 =

8
><

>:

0 if ✓a,i
t+1 < ✓

set,i � ✓

db,i
/2

1 if ✓a,i
t+1 > ✓

set,i
+ ✓

db,i
/2

m

i

t

otherwise
i 2 ITCL (1b)

where (1a) updates the internal temperatures and (1b) updates
the on/off mode. The power draw is P

i

t

= (|Qh,i| m

i

t

)/⌘

i

with Q

h,i
< 0 for cooling appliances. The matrices in

these equations are discretized using [20, p. 315] where the
underlying continuous-time matrices are
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B. Aggregate TCL Population Model

The aggregate model [6] seeks to capture the power draw
behavior of the TCL population with reduced modeling
complexity. This model considers the TCL population as a
probability mass and the state transition matrix describes the
probability of mass moving from one discrete state bin to
another within a time-step. The aggregate demand is computed
from the portion of the probability mass in discrete state bins
corresponding to TCLs drawing power.

The aggregate state, x
k

2 RN

x
, is a set of discrete state bins

constructed from a normalized temperature dead-band. The
dead-band is divided into N

x

2 temperature intervals, and each
interval contains two states – one for TCLs that are drawing
power and and one for TCLs that are not drawing power. Each
individual TCL maps to a state bin based on its current air
temperature and on/off mode, and the entries in x

k

correspond
to the portion of TCLs in each bin; the sum of state vector
elements is 1. The state transition matrix, A 2 RN

x⇥N

x
, is a

transposed Markov transition matrix describing the probability
of transitioning between state bins during a time-step.

Elements in the input u
k

2 RN

x
/2 correspond to the prob-

ability mass that should be switched, where positive values
force TCLs on. The input matrix, B 2 RN

x⇥N

x
/2 forces prob-

ability mass into the opposite on/off bin associated with the
same temperature interval. The input elements are converted
to switching probabilities by dividing by the appropriate state
value before transmitting the input vector to the TCLs. This
introduces nonlinearities within the system, but this does not
affect the control algorithms. Finally, the aggregate model’s
output y

k

2 R is the total, or aggregate, active power demand
of the TCL population.

The input matrix for the formulation is B =

⇥
�I flip(I)

⇤
T

where flip(·) switches the first and last columns, the the second
and the second to last columns, and so on. The output matrix
is C = N

TCL
P

on ⇥
0 · · · 0 1 · · · 1

⇤
where P

on
is the

historical average power draw of TCLs that are on. Finally,
the state update and output equations are

x

k+1 =A x

k

+B u

k

(3)
y

k

= C x

k

. (4)

This system is observable [6], but it is over-defined, meaning
the value of N

x � 1 states dictates the value of the final
state. Given this and the definition of the input, there is one
uncontrollable state. The reduced-order model presented in the
following section eliminates this uncontrollable state.

As a final note, [21] develops an alternative aggregate
model, referred to here as the three-state aggregate model, that
incorporates the effect of the TCLs’ internal mass temperature
on the aggregate dynamics. We use the aggregate model sum-
marized above, referred to as the two-state aggregate model,
which does not include this information, for computational and
practical reasons. First, our use of stationary exogenous input
distributions and on/off control do not introduce transients in
the thermal mass temperature, and so the additional modeling
complexity is not needed. Second, the mass temperature in the
three-state aggregate model is not easily measurable.

C. Reduced-Order Aggregate Model
This section develops the reduced-order aggregate model.

Removing the single uncontrollable state results in a control-
lable reduced-order model that retains the observability of the
original system. Eliminating a constant-valued state preserves
all dynamics of the original system.

Our approach relies on several facts about the aggregate
model’s modal representation: i) it contains an eigenvalue
�1 = 1 and the subsystem corresponding to �1 is decoupled
from the remaining system, ii) �1 is always the uncontrollable
mode within the aggregate model in Section III-B, iii) the
component of the modal state corresponding to �1 has no
dynamics and is actually a constant scalar equal to 1, and iv)
the output associated with �1 is yss. These four points result
in the following structure for the modal system
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where stars and tildes denote modal and reduced-order quan-
tities respectively. Eliminating the constant modal state and
defining ey

k

= y

k

� yss forms the reduced-order system

ex
k+1 =

e
A ex

k

+

e
Bu

k

(7)

ey
k

=

e
C ex

k

. (8)

Point (i) follows from the proof in [16] that the three-state
aggregate model’s state transition matrix contains an eigen-
value, �1 = 1, with an algebraic and geometric multiplicity of
1. This also holds for the two-state aggregate model, and the
resulting Jordan block for �1 is decoupled from the remainder
of the system. The right eigenvector for �1 is a unique steady-
state value xss for the unforced, full-order aggregate model
with corresponding output yss = C xss. Since the columns of
A sum to 1, a vector of ones, denoted 1, is the left eigenvector
of �1. Point (ii) follows from applying the PBH eigenvector
test to �1 [22]. The test fails for �1 because the columns of
B sum to 0, and so �1 is the uncontrollable mode of the full-
order aggregate model. The uniqueness of �1 requires that the
corresponding row of B⇤ is zeros.

Points (iii) and (iv) rely on the mapping from the original
aggregate state to the modal aggregate state x

⇤
k

= T

�1
x

k

. The
rows of T�1 are the left eigenvectors, and the columns of T are
the right eigenvectors. Placing the left and right eigenvectors of
�1 as the first row and first column of T�1 and T respectively
provides the structure of A⇤ and B

⇤ in (5).
It also ensures the first modal state, noted as x⇤,1

k

, is always
1. Recall from Section III-B that 1

T

x

k

= 1. Given the
structure of T

�1, then x

⇤,1
k

= 1

T

x

k

, and (iii) follows for
all valid x

k

. To show (iv) note that the first column of T

is xss, and the first element of C⇤
= CT is Cxss = yss. Since

x

⇤,1
k

= 1, eliminating x

⇤,1
k

from the model only requires that
the output of the reduced-order system is redefined as ey

k

.
The approach above has similarities to that in [16] to achieve

an asymptotically stable system. Both methods eliminate an
eigenvalue �1 = 1 that is guaranteed to exist, and b) both
methods redefine the output of the reduced-order model as
ey
k

. However, there are also differences between the methods.
Whereas the method detailed here relies on points (i)-(iv), [16]
uses projections into subspaces, does not establish decoupling
of the subspaces, and does not note that the eliminated modal
state is a constant. Also, the method detailed here shows the
reduced-order model is controllable whereas [16] does not
include inputs within their reduced-order model. The following
section incorporates the full-order and reduced-order aggregate
models into MPC and linear feedback algorithms respectively.

IV. CONTROL ALGORITHMS

The controllers receive two values – the desired demand
level y

des
t

and the aggregate state measurement x

t

– that
are used within algorithms to generate an input sequence.
Each TCL uses selection logic to first find the most recently

generated input sequence that has arrived then select the input
vector from this sequence that applies to a given time-step.
The TCL then chooses the applicable input element from this
vector based on its current state bin, or it disregards external
signals when necessary to maintain the temperature within the
normal operating range.

The linear controller generates the input sequence directly
from y

des
t

, x
t

, and two gain matrices, calculated offline, using
matrix multiplication. Alternatively, the MPC controller uses
the values within a quadratic program, solved online, to
generate an input sequence. Both controllers incorporate the
probability that previously generated inputs are implemented
using delay statistics, which reduces the effects of input delays.

Within this section, we occasionally use the time indexing
notation  

k|t where  is an arbitrary quantity, k indicates the
time-step that the quantity applies to, and t indicates the time-
step during which the quantity was calculated. For example,
an input u

t+4|t is generated at time-step t, and it applies
four time-steps after t. Using this notation, the input sequence
generated at each time-step t is a set of N u input vectors

u

seq
t

=

h
u

T

t|t u

T

t+1|t · · · u

T

t+N

u�1|t

i
T

. (9)

The number of time-steps within the input sequence is set so
that the probability of an input delay exceeding the sequence
length is less than 1� p

max where we choose p

max.
Section IV-A first describes the MPC algorithm originally

developed in [14]. Section IV-B develops the linear controller.

A. MPC Algorithm
The MPC algorithm is a finite-horizon, quadratic program

with equality and inequality constraints. The objective function
penalizes desired demand errors and input effort. Equality
constraints embed the full-order aggregate model within the
optimization problem, and inequality constraints impose the
physical limitations on the feasible inputs and states. We define
the N

u time-step horizon considered within the calculation at
time t as KMPC

t

= {t, . . . , t + N

u � 1}. The aggregate state
measurement x

t

initializes the dynamics. Assume we have no
knowledge of y

des
k

over the horizon, so the desired aggregate
power trajectory is set to the currently requested value.

The MPC controller’s formulation at time t is
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with k 2 KMPC
t

and j = k, . . . , k � N

u
+ 1. The objective

function in (10) minimizes the total cost of input effort and
output deviations over the horizon. The coefficients c

y and
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2) Feedback Law Development: We define the linear feed-

back law with constant gain matrices K

x
1, Kw

1, and K
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where w

k

is an the integrator state that captures the historical
tracking error. An output-regulating LQR formulation with
eydes
k
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where the scalars q

y and q

w penalize ey
k

and w

k

respectively.
The input penalty is R = q

u
I where q

u is a scalar. This
formulation results in a feedback gain for the reduced-order
augmented state, e

K

x
1, that we convert using K

x
1 = [0

e
K

x
1]T ,

where T denotes the mapping from modal states.
Output tracking and regulating formulations produce iden-

tical feedback gains [25]. However, using the tracking formu-
lation above would result in a feedforward gain incorporating
the integrator. We use an alternative feedforward gain that
excludes the integrator while attempting to achieve steady-
state tracking
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where �† is a pseudo-inverse that is needed because there are
more inputs than outputs, and we set z = 1.

V. CASE STUDIES

This section evaluates the ability of the MPC controller and
linear feedback controller, denoted as LIN, to track a desired
aggregate demand signal under a variety of scenarios. Section
V-A defines the scenarios used to simulate the system and
presents the performance metrics. Section V-B summarizes the
results of the scenarios.

A. Scenario Definitions
We simulate 12 scenarios using combinations of the two

controllers, two reference signals, and three delay scenarios.
Fifty instances of each scenario use different realizations of
the random quantities, and each scenario’s presented results are
averages across the instances. The simulations are one hour,
with 1800 time-steps, and we use the following parameter
settings: N

TCL
= 10, 000, N

x
= 20, p

max
= 0.85, c

y
= 3,

c

u
= 1, qy

= 0.1, qu
= 1, qu

= 0.1.
The two reference signals correspond to historical dynamic

and traditional frequency regulation signals, noted as “Reg-
D” and “Reg-A” signals respectively. Data published by PJM
[26] from May 4, 2014 are interpolated to two second time-
steps, and each signal is scaled so that the maximum possible
demand change request corresponds to ±20% of the mean
steady-state TCL demand.

The scenarios include three delay distributions – a delay-
free scenario referred to as delay case 0 and two scenarios with
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Figure 3. RMS errors of the LIN and MPC controllers in delay scenarios 0,
1, and 2 when attempting to track the Reg-A and Reg-D reference signals.

delays. In the scenarios with delays, IID delays ⌧ are sampled
from a discrete, log-normal distribution ⌧ = exp(b⌧?c) where
b·c rounds down and ⌧

? comes from a normal distribution with
mean µ and variance �

2
= 0.5. The delay cases 1 and 2 set

µ to 10 and 20 seconds respectively.
We quantify each simulation’s performance as the normal-

ized RMS tracking error (RMSE) where the error for each
time-step is y

t

� y

des
t

. The standard RMSE is then expressed
as a percentage of the TCL population’s average steady-state
demand. The RMSE value associated with each scenario is the
average RMSE across all of the scenario’s instances.

B. Results
Figure 3 summarizes the RMSE of the scenarios, and Fig. 4

provides sample time series. Note that the controllers were
roughly tuned to values that provide good performance across
all scenarios, and improved performance for both controllers
may be achievable by additional tuning. The MPC and LIN
controllers have almost equivalent RMSE in delay case 0
for both references. Under delay scenarios 1 and 2, the
LIN controller provides significantly improved RMSE, and
across all scenarios the average RMSE reduction by the LIN
controller is 11.4%.

This reduction is due to the inclusion of the integrator within
LIN, which rejects biases, e.g., due to plant-model mismatch.
These biases tend to arise as input delays increase, as shown
in [14]. As shown in Fig. 4, LIN tends to overshoot when the
reference signal changes directions, but the inclusion of an
integrator suppresses the lag that remains present in the MPC
time series plots.

The number of state bins and amplitude of the reference
signal also influence the results; situations where the input
inequalities become restrictive are not reflected in LIN. To
explore this scenario, we increase the amplitude of the ref-
erence signal to 80% of the mean steady-state TCL demand.
When tracking the “Reg-A” Reference without delays, LIN
has an RMSE of 1.14% and numerous input constraint vio-
lations. Alternatively, MPC achieves 0.83% and no constraint
violations.

During sample simulations of delay case 2 with 40 state
bins, the MPC controller took 0.1095 seconds on average and
a maximum of 0.2168 to generate the input. Alternatively, LIN
took 0.0041 seconds on average and a maximum of 0.0079
to generate the inputs. The computation reduction in LIN
improves as the size of the MPC problem grows, e.g., with
more state bins or longer delays.
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where w
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where the scalars q

y and q
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and w
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respectively.
The input penalty is R = q

u
I where q

u is a scalar. This
formulation results in a feedback gain for the reduced-order
augmented state, e

K

x
1, that we convert using K

x
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1]T ,

where T denotes the mapping from modal states.
Output tracking and regulating formulations produce iden-

tical feedback gains [25]. However, using the tracking formu-
lation above would result in a feedforward gain incorporating
the integrator. We use an alternative feedforward gain that
excludes the integrator while attempting to achieve steady-
state tracking
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where �† is a pseudo-inverse that is needed because there are
more inputs than outputs, and we set z = 1.

V. CASE STUDIES

This section evaluates the ability of the MPC controller and
linear feedback controller, denoted as LIN, to track a desired
aggregate demand signal under a variety of scenarios. Section
V-A defines the scenarios used to simulate the system and
presents the performance metrics. Section V-B summarizes the
results of the scenarios.

A. Scenario Definitions
We simulate 12 scenarios using combinations of the two

controllers, two reference signals, and three delay scenarios.
Fifty instances of each scenario use different realizations of
the random quantities, and each scenario’s presented results are
averages across the instances. The simulations are one hour,
with 1800 time-steps, and we use the following parameter
settings: N

TCL
= 10, 000, N

x
= 20, p

max
= 0.85, c

y
= 3,

c

u
= 1, qy

= 0.1, qu
= 1, qu

= 0.1.
The two reference signals correspond to historical dynamic

and traditional frequency regulation signals, noted as “Reg-
D” and “Reg-A” signals respectively. Data published by PJM
[26] from May 4, 2014 are interpolated to two second time-
steps, and each signal is scaled so that the maximum possible
demand change request corresponds to ±20% of the mean
steady-state TCL demand.

The scenarios include three delay distributions – a delay-
free scenario referred to as delay case 0 and two scenarios with
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Figure 3. RMS errors of the LIN and MPC controllers in delay scenarios 0,
1, and 2 when attempting to track the Reg-A and Reg-D reference signals.

delays. In the scenarios with delays, IID delays ⌧ are sampled
from a discrete, log-normal distribution ⌧ = exp(b⌧?c) where
b·c rounds down and ⌧

? comes from a normal distribution with
mean µ and variance �

2
= 0.5. The delay cases 1 and 2 set

µ to 10 and 20 seconds respectively.
We quantify each simulation’s performance as the normal-

ized RMS tracking error (RMSE) where the error for each
time-step is y

t

� y

des
t

. The standard RMSE is then expressed
as a percentage of the TCL population’s average steady-state
demand. The RMSE value associated with each scenario is the
average RMSE across all of the scenario’s instances.

B. Results
Figure 3 summarizes the RMSE of the scenarios, and Fig. 4

provides sample time series. Note that the controllers were
roughly tuned to values that provide good performance across
all scenarios, and improved performance for both controllers
may be achievable by additional tuning. The MPC and LIN
controllers have almost equivalent RMSE in delay case 0
for both references. Under delay scenarios 1 and 2, the
LIN controller provides significantly improved RMSE, and
across all scenarios the average RMSE reduction by the LIN
controller is 11.4%.

This reduction is due to the inclusion of the integrator within
LIN, which rejects biases, e.g., due to plant-model mismatch.
These biases tend to arise as input delays increase, as shown
in [14]. As shown in Fig. 4, LIN tends to overshoot when the
reference signal changes directions, but the inclusion of an
integrator suppresses the lag that remains present in the MPC
time series plots.

The number of state bins and amplitude of the reference
signal also influence the results; situations where the input
inequalities become restrictive are not reflected in LIN. To
explore this scenario, we increase the amplitude of the ref-
erence signal to 80% of the mean steady-state TCL demand.
When tracking the “Reg-A” Reference without delays, LIN
has an RMSE of 1.14% and numerous input constraint vio-
lations. Alternatively, MPC achieves 0.83% and no constraint
violations.

During sample simulations of delay case 2 with 40 state
bins, the MPC controller took 0.1095 seconds on average and
a maximum of 0.2168 to generate the input. Alternatively, LIN
took 0.0041 seconds on average and a maximum of 0.0079
to generate the inputs. The computation reduction in LIN
improves as the size of the MPC problem grows, e.g., with
more state bins or longer delays.
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where w
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is an the integrator state that captures the historical
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where the scalars qy and q

w penalize ey
k

and w

k

respectively.
The input penalty is R = q

u
I where q

u is a scalar. This
formulation results in a feedback gain for the reduced-
order augmented state, e

K

x
1, that we convert using K

x
1 =

[0 e
K

x
1]T , where T denotes the mapping from modal states.

Output tracking and regulating formulations produce iden-
tical feedback gains [27]. However, using the tracking formu-
lation above would result in a feedforward gain incorporating
the integrator. We use an alternative feedforward gain that
excludes the integrator while attempting to achieve steady-
state tracking
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where �† is a pseudo-inverse that is needed because there
are more inputs than outputs, and we set z = 1.

V. CASE STUDIES
This section evaluates the MPC controller and linear

controller, denoted as LIN, while tracking a desired aggregate
demand signal under a variety of scenarios. We present RMS
tracking errors and statistics on each controllers’ computation
time to quantify and compare the scenarios. Section V-A
defines the scenarios used to simulate the system and presents
the performance metrics. Section V-B summarizes the results
of the scenarios.

TABLE II
INPUT COMPUATION TIME RESULTS

Controller Mean Delay (s) Mean Time (s) Max Time (s)
MPC 0 0.187 0.978

10 0.589 2.185
20 1.123 3.800

LIN 0 0.001 0.031
10 0.003 0.055
20 0.014 0.132

A. Scenario Definitions

We simulate 12 scenarios using combinations of the two
controllers, two reference signals, and three delay scenarios.
Fifty instances of each scenario use different realizations of
the random quantities. The simulation time is one hour, with
1800 time-steps, and we use the following parameter settings:
N

TCL = 10, 000, N x = 30, pmax = 0.999, cy = 1, cu = 1,
q

y = 0.1, qu = 1, qw = 0.01.
The two reference signals correspond to historical dynamic

and traditional PJM frequency regulation signals, denoted
as “Reg-D” and “Reg-A” references respectively. Data pub-
lished by PJM [28] from May 4, 2014 are interpolated to
two second time-steps, and each signal is scaled so that the
maximum demand change request corresponds to ±20% of
the average steady-state aggregate TCL demand.

The scenarios include three delay distributions – a delay-
free scenario referred to as delay case 0 and two scenarios
with delays. In the scenarios with delays, IID delays are
sampled by i) sampling values from a log-normal distribution
with mean µ and variance �

2, then ii) rounding down the
sampled values. Delay cases 1 and 2 set µ to 10 and 20
seconds respectively, and the variance is 0.25 for both.

We quantify each simulation using the normalized RMS
tracking error (RMSE), the average time to compute an input,
and the maximum time to compute an input. The tracking
error for each time-step is y

t

� y

des
t

, and the standard RMSE
is then expressed as a percentage of the average steady-
state aggregate TCL demand. The RMSE value associated
with each scenario is the average RMSE across all of the
scenario’s instances. We compute an average computation
time for each controller to generate an input during each
delay case, meaning we average across instances without
differentiating the reference signal used. Finally, the single
maximum computation time for generating an input is taken
from the set of instances for a controller and delay case.

B. Results

Table II summarizes computation times for the controllers,
Fig. 3 summarizes the RMSE of the scenarios, Fig. 4
provides sample time series, and Fig. 5 provides the cor-
responding tracking error time series. The simulations were
carried out on a server using Matlab. Note that the controllers
were roughly tuned to values that provide good performance
across all scenarios. Improved performance for both con-
trollers may be achievable by additional tuning, but we do
not believe additional tuning would make LIN outperform
MPC.
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Figure 4. Tracking the Reg-A and Reg-D references under delay scenario 2.

VI. CONCLUSIONS

In this paper, we developed a linear feedback controller that
mitigates the effect of input delays, and we compared it to a
previously developed MPC controller while attempting to track
real frequency regulation signals. Both methods counteract
input delays by generating an open-loop input sequence at
each time-step and by incorporating knowledge about the
input delay statistics. The linear feedback controller improves
tracking in the scenarios considered even though it does not
model constraints included within the MPC controller. This is
due to the inclusion of an integrator within the linear feedback
controller. Also, the linear feedback controller benefits from
reduced computational complexity and provides a closed-form
feedback law. Future work will design the linear feedback
controller in conjunction with an estimator that addresses
communication issues in measurement transmission, e.g., [14].
Future work will also explore the inclusion of an integrator
into the MPC formulation.
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where the scalars q
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respectively.
The input penalty is R = q
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I where q

u is a scalar. This
formulation results in a feedback gain for the reduced-order
augmented state, e
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1, that we convert using K
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where T denotes the mapping from modal states.
Output tracking and regulating formulations produce iden-

tical feedback gains [25]. However, using the tracking formu-
lation above would result in a feedforward gain incorporating
the integrator. We use an alternative feedforward gain that
excludes the integrator while attempting to achieve steady-
state tracking

K

y
1 =

⇣e
C{zI � e

A+

e
B

e
K

x
1}�1 e

B

⌘�†
(28)

where �† is a pseudo-inverse that is needed because there are
more inputs than outputs, and we set z = 1.

V. CASE STUDIES

This section evaluates the ability of the MPC controller and
linear feedback controller, denoted as LIN, to track a desired
aggregate demand signal under a variety of scenarios. Section
V-A defines the scenarios used to simulate the system and
presents the performance metrics. Section V-B summarizes the
results of the scenarios.

A. Scenario Definitions
We simulate 12 scenarios using combinations of the two

controllers, two reference signals, and three delay scenarios.
Fifty instances of each scenario use different realizations of
the random quantities, and each scenario’s presented results are
averages across the instances. The simulations are one hour,
with 1800 time-steps, and we use the following parameter
settings: N

TCL
= 10, 000, N

x
= 20, p

max
= 0.85, c

y
= 3,

c

u
= 1, qy

= 0.1, qu
= 1, qu

= 0.1.
The two reference signals correspond to historical dynamic

and traditional frequency regulation signals, noted as “Reg-
D” and “Reg-A” signals respectively. Data published by PJM
[26] from May 4, 2014 are interpolated to two second time-
steps, and each signal is scaled so that the maximum possible
demand change request corresponds to ±20% of the mean
steady-state TCL demand.

The scenarios include three delay distributions – a delay-
free scenario referred to as delay case 0 and two scenarios with
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Figure 3. RMS errors of the LIN and MPC controllers in delay scenarios 0,
1, and 2 when attempting to track the Reg-A and Reg-D reference signals.

delays. In the scenarios with delays, IID delays ⌧ are sampled
from a discrete, log-normal distribution ⌧ = exp(b⌧?c) where
b·c rounds down and ⌧

? comes from a normal distribution with
mean µ and variance �

2
= 0.5. The delay cases 1 and 2 set

µ to 10 and 20 seconds respectively.
We quantify each simulation’s performance as the normal-

ized RMS tracking error (RMSE) where the error for each
time-step is y

t

� y

des
t

. The standard RMSE is then expressed
as a percentage of the TCL population’s average steady-state
demand. The RMSE value associated with each scenario is the
average RMSE across all of the scenario’s instances.

B. Results
Figure 3 summarizes the RMSE of the scenarios, and Fig. 4

provides sample time series. Note that the controllers were
roughly tuned to values that provide good performance across
all scenarios, and improved performance for both controllers
may be achievable by additional tuning. The MPC and LIN
controllers have almost equivalent RMSE in delay case 0
for both references. Under delay scenarios 1 and 2, the
LIN controller provides significantly improved RMSE, and
across all scenarios the average RMSE reduction by the LIN
controller is 11.4%.

This reduction is due to the inclusion of the integrator within
LIN, which rejects biases, e.g., due to plant-model mismatch.
These biases tend to arise as input delays increase, as shown
in [14]. As shown in Fig. 4, LIN tends to overshoot when the
reference signal changes directions, but the inclusion of an
integrator suppresses the lag that remains present in the MPC
time series plots.

The number of state bins and amplitude of the reference
signal also influence the results; situations where the input
inequalities become restrictive are not reflected in LIN. To
explore this scenario, we increase the amplitude of the ref-
erence signal to 80% of the mean steady-state TCL demand.
When tracking the “Reg-A” Reference without delays, LIN
has an RMSE of 1.14% and numerous input constraint vio-
lations. Alternatively, MPC achieves 0.83% and no constraint
violations.

During sample simulations of delay case 2 with 40 state
bins, the MPC controller took 0.1095 seconds on average and
a maximum of 0.2168 to generate the input. Alternatively, LIN
took 0.0041 seconds on average and a maximum of 0.0079
to generate the inputs. The computation reduction in LIN
improves as the size of the MPC problem grows, e.g., with
more state bins or longer delays.

à	LIN	is	100	,mes	faster	than	MPC	
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Key	takeaways	

•  Communica,on	network	limita,ons	
necessitate	controller/es,mator	designs	that	
cope	with	delays,	bandwidth	limita,ons,	etc.	

•  Delays	make	loads	less	capable	of	providing	
fast	services,	but	we	can	mi,gate	these	
impacts	through	delay-aware	control	and	
es,ma,on.	
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