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=l Disaggregating
substation load data

Power consumption of all the
loads/generators we care about ¢

(e.g., Air Conditioning) e b e
substation .

Power consumption of all the
loads/generators we DON'T care about <

(“Other loads”)

In this talk, we use measurements of real power only.

We could consider additional measurements (reactive
power, voltage, etc.) from multiple meters at different
points in the distribution network.



IP=L_  Why disaggregate the
et substation load?
* Load coordination feedback

Bi-directional communication

Ioads> .

Broadcast control, aggregate measurements

loads
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M —L_  Why disaggregate the
Lt Es substation load?

 Load coordination feedback

— (noisy) measurements of the aggregate power of

coordinated loads are assumed in Mathieu et al. 2013;
Can Kara et al. 2013; Busi¢ and Meyn 2016; Callaway 2009; ...

Load 1

reference control input aggregate power
> Controller P > EETCE P

A Load 2

Load N




IP=L_  Why disaggregate the
[ABaai substation load?

Additional uses in demand response...
 Load aggregator bidding
 Demand response event signaling (when/how much)

Beyond demand response...

* Energy efficiency via conservation voltage reduction
— Disaggregate by load type

* Contingency planning
— Disaggregate motor loads

* Reserve planning
— Disaggregate PV production



Connections to other
problems

* Non-intrusive load monitoring (NILM) [Hart 2010;
Ziefman and Roth 2011; Berges et al. 2009; Zoha et al. 2012; Dong,
Sastry, et al. 2014; ...]

* Energy disaggregation [Wytock & Kolter 2013; Kolter and
Jaakkola 2012; Dong, Satsry, et al. 2013; Kim et al. 2010 ...]

Problem: Infer individual load behavior from a single power
measurement (usually) sampled at high frequency
(10kHz-1MHz) from the household main

Solution approaches: offline algorithms including change
detection, supervised learning, unsupervised learning



Key differences

 We assume measurements at the substation, not
the household

 We infer aggregate load (e.g., all air conditioning
load), not individual load behavior

 We solve the problem online, not offline

 We use lower frequency measurements (e.g.,
taken every second to minute)

* |n some cases, we may get to be “intrusive,” but
not in this talk!
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Possible Methods

* State estimation
— Linear techniques require linear system models

— Nonlinear techniques can be computationally
demanding

* Online learning
— Data-driven, model-free

* Hybrid approach: Dynamic Mirror Descent
[Hall & Willet 2015]

— Admits dynamic models of arbitrary forms

— Optimization-based method to choose a weighted
combination of the estimates of a collection of models



Outline

* Dynamic Mirror Descent

* Problem setting: Plant data/models
e Algorithm Models

* Results

* Next steps
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 Mirror Descent: online algorithm to estimate a
fixed state

* Dynamic Mirror Descent: online algorithm to
estimate a dynamic state using a collection of

models [Hall & Willet, “Online Convex Optimization in Dynamic
Environments,” IEEE Journal of Selected Topics in Signal Processing 2015]

1.

2.

Compute the error between the model predictions
and the measured data (i.e., loss function ¢, (6}, v;))

Update the state in the dlrectlon of the negative
gradient of the loss function

~~

0! = ar@gergin r <V€t( LY, ‘9> + D (‘9‘@)



3. Use the estimated states to evaluate the models

for the next time step
‘92+1 - (I)fs(‘%)

4. Compute a weighted version of the estimates

5. Update the model weights

N/ - wjexp Sae)
Wity = T (1= A) S wi exp (—77"" b @’yt))




* Regret: performance with respect to a
comparator @1

Rr(07)2) £:(6:) — > £:(6y).

e Often the comparator is the performance of a
oatch algorithm

* Hall and Willet derive bounds on the regret and
show that for many classes of comparators regret

scales sublinearly in T



honpo

— Problem Setting:
_L
N —— Plant Data/Models

Air conditioners: 1000 equivalent A <

thermal parameters (ETP) models, . [’
i.e., three-state hybrid models

state
<—

[Sonderegger 1978] OFE~L - | e

_z_|_1 — Azez —|— Bzm; —|— E,Ld; gsetsi _:gdb,i/2
. (0 if gy, <6t — g2

mi =91 if 67 > 6% 4 g9 /2

m; otherwise

= (1Q"[ my)/n’

\
where 0i=[60" 6]

Other loads: data from Pecan Street Inc. Dataport
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Model Set Estimates
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= Algorithm Models:

/10N S — Air conditioners - 1
A .

1000 two-state hybrid models " |
[Chong & Debs 1979; Ihara & Schweppe 1981] °* \L

1
OFF -} - -
1

0;., = A'0; + B'm} + E'd;

temperature

' eset,z’ . :9db,z'/2
(0 if O, < o%bi — gdi /2
my =<1 ifO7 > gt + g4 /2

| m; otherwise

Pi = (@™ mi)/n’

where | 0 = 6,




Algorithm Models:
Air conditioners - 1
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=l Algorithm Models:
W S ——— Air conditioners - 2

Linear Time Invariant (LTI) aggregate system models
[Mathieu et al. 2013]
Th, =A'z, e N

o T Y g .
g (O 1} i € Nemps,

ON 10:0,0:55:0:0.,0;
bin bin~ - bin~ ]\;_bﬂl+4 Nbin bin+

state
%
l\)| =
(98]
SETTTS

o LKA - 410K

normalized temperature
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Algorithm Models:
Air conditioners - 3

Linear Time Varying (LTV) aggregate system models
[Mathieu et al. 2015]

Temp [degC]
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Algorithm Models:
Air conditioners - 3
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Algorithm Models:
Other loads
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EL Prediction Results

igan Power & Energy Laboratory
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Weightings:

each color is a different model
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Prediction Results:
Better Models
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Prediction Results:
Bad Models

e All “other load models” are too low.
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Michigan Power & Energy Laboratory

Case

Benchmark: Use current outdoor temperature, LTI
models, and interpolation to predict

DMD Case 1: Includes every combination of aggregate
air conditioner model and “other load model”

DMD Case 2: Case 1 models plus a smoothed version
of the actual “other loads”

DMD Case 3: Case 2 models plus more accurate
models of the aggregate air conditioning load over
time periods where the other models are less accurate

DMD Case 4: Includes “other load models” that
underestimate the “other load”

RMS Error
(kW)

738

264

211

175

1392



_L Results: Varying
meme ey Aloorithm Parameters

\ w! exp (—nr l (@»?Jt))
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Next steps

Investigate more realistic settings
Develop better load models

Improve the algorithm, e.g., alternative
weighting functions

Investigate identifiability

Incorporate additional measurements
(reactive power, voltage) into the approach



Mro=L Conclusions
/ / ‘ San Power & Energy Laboratory

Dynamic Mirror Descent (DMD) enables us to
solve the substation disaggregation problem
leveraging dynamical models of arbitrary form

DMD can work well (on simple examples);
however, it is easy to find instances where it

does not work well

More details: Ledva, Balzano, and Mathieu, “Inferring the Behavior of
Distributed Energy Resources with Online Learning,” Allerton 2015.



