

Inference and control of electric loads given sparse measurements and communications delays

Johanna L. Mathieu

Department of Electrical Engineering & Computer Science
University of Michigan

<u>Greg Ledva</u> (UM), Laura Balzano (UM), Evangelos Vrettos (ETH), Silvia Mastellone (ABB), Göran Andersson (ETH)

Benefits and Challenges of the Modern Electric Grid

- Grid sensing and communication systems are becoming more prevalent
 - Cost & privacy concerns
 - Need methods to infer grid/load information from existing measurements
- Renewable energy resources are also becoming more prevalent
 - Most (e.g., wind and solar) are intermittent and uncertain
 - Need new sources of power system reserves

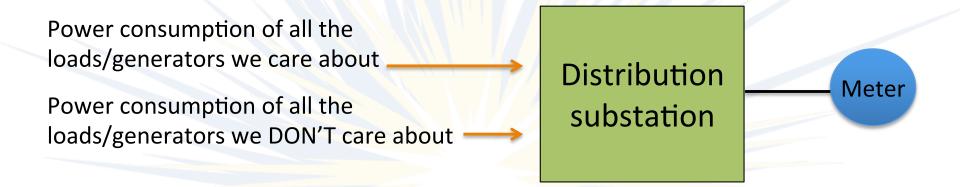
Overview

• Inference: Inferring the behavior of distributed energy resources with sparse measurements [Ledva, Balzano, & Mathieu Allerton 2015]

 Control: Controlling distributed electric loads to provide power system services with sparse measurements and input/measurement delays

[Ledva, Vrettos, Mastellone, Andersson & Mathieu *HICSS* 2015] [Ledva & Mathieu CDC *(in review)* 2016]

Disaggregating substation load data



Why do we want to disaggregate resources at the substation?

- Energy efficiency via conservation voltage reduction
- Contingency planning
- Optimal reserve contracting
- Demand response event signaling
- Demand response bidding
- Load coordination feedback

Disaggregation methods

e.g., [Berges et al. 2009; Kolter et al. 2010; Dong et al. 2013]

- State estimation
 - Linear techniques require LTI system models
 - Nonlinear techniques can be computationally demanding
- Online learning
 - Optimization formulations
 - Model-free
- Hybrid approach: Dynamic Mirror Descent [Hall & Willet 2015]
 - Admits dynamic models of arbitrary forms
 - Optimization-based method to choose a weighted combination of the estimates of a collection of models

Outline: Part 1

- Dynamic Mirror Descent
- Problem setting: Plant data/models
- Algorithm Models
- Results
- Next steps

Dynamic Mirror Descent

- Mirror Descent: online algorithm to estimate a fixed state
- Dynamic Mirror Descent: online algorithm to estimate a dynamic state using a collection of models [Hall & Willet 2015]
 - 1. Compute the error between the model predictions and the measured data (i.e., loss function)
 - Update the state in the direction of the negative gradient of the loss function

$$\widetilde{\theta}_{t}^{i} = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \, \eta_{t} \left\langle \nabla \ell_{t}(\widehat{\theta}_{t}^{i}, y_{t}), \, \theta \right\rangle + D\left(\theta \| \widehat{\theta}_{t}^{i} \right)$$

Dynamic Mirror Descent

3. Use the estimated states to evaluate the models for the next time step

$$\widehat{\theta}_{t+1}^i = \Phi_t^i(\widetilde{\theta}_t^i)$$

4. Compute a weighted version of the estimates

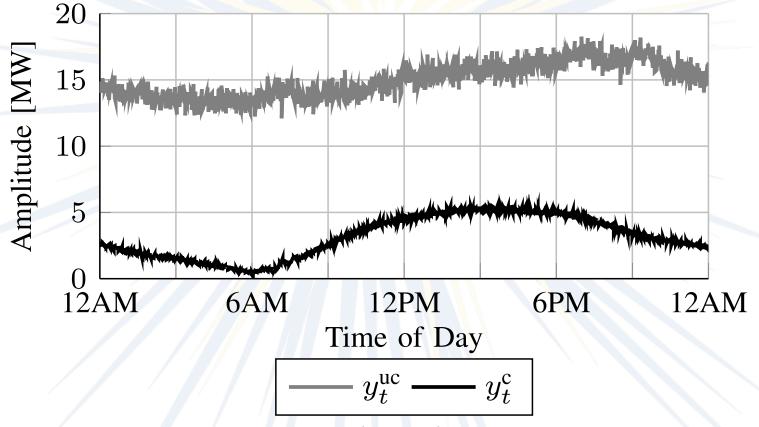
$$\widehat{\theta}_{t+1} = \sum_{i=1}^{N^{\text{mdl}}} w_{t+1}^i \widehat{\theta}_{t+1}^i.$$

5. Update the model weights

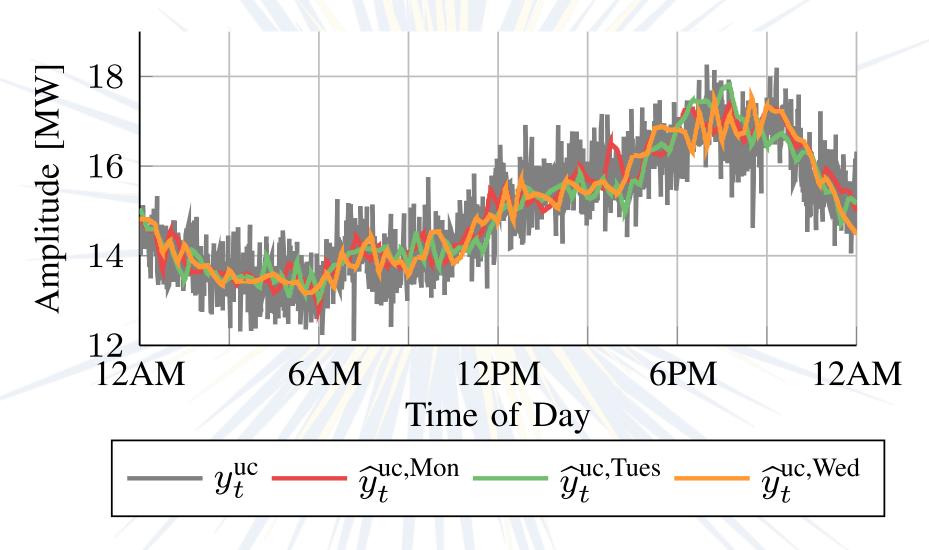
$$w_{t+1}^{i} = \frac{\lambda}{N^{\text{mdl}}} + (1 - \lambda)^{r} \frac{w_{t}^{i} \exp\left(-\eta^{r} \ell_{t}\left(\widehat{\theta}_{t}^{i}, y_{t}\right)\right)}{\sum_{j=1}^{N^{\text{mdl}}} w_{t}^{j} \exp\left(-\eta^{r} \ell_{t}\left(\widehat{\theta}_{t}^{i}, y_{t}\right)\right)}$$

Problem Setting: Plant Data/Models

- Uncontrollable loads: data from Pecan Street Inc. Dataport
- Controllable loads: three-state hybrid models of air conditioners [Sonderegger 1978]



Algorithm Models: Uncontrollable loads



Algorithm Models: Controllable loads

- Two-state hybrid models of air conditioners [Mortensen & Haggerty 1988]
 - Temperature and ON/OFF mode
- Sets of Linear Time Invariant (LTI) aggregate system models [Mathieu et al. 2013]

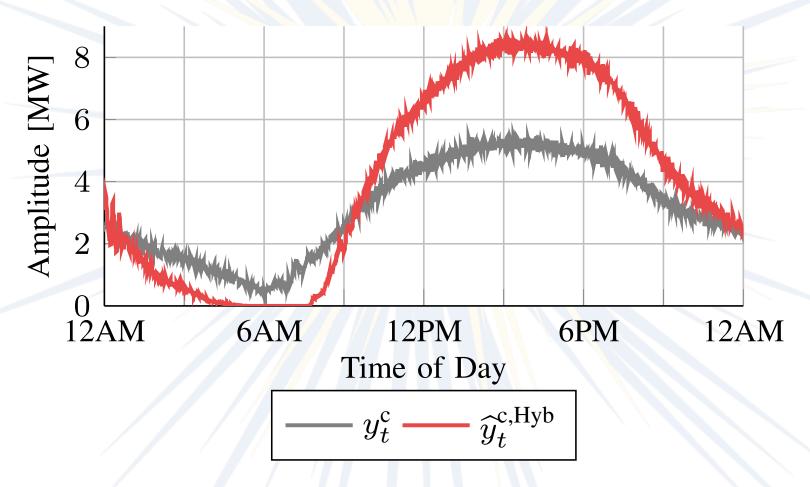
$$x_{t+1}^i = A^i x_t^i$$
 $i \in \mathbb{N}^{\text{temps}}$ $\widehat{y}_t^{\text{c,LTI},i} = C^i x_t^i$ $i \in \mathbb{N}^{\text{temps}}$.

Sets of Linear Time Varying (LTV) aggregate system models

$$x_{t+1} = A_t x_t$$
$$\hat{y}_t^{\text{c,LTV}} = C_t x_t.$$

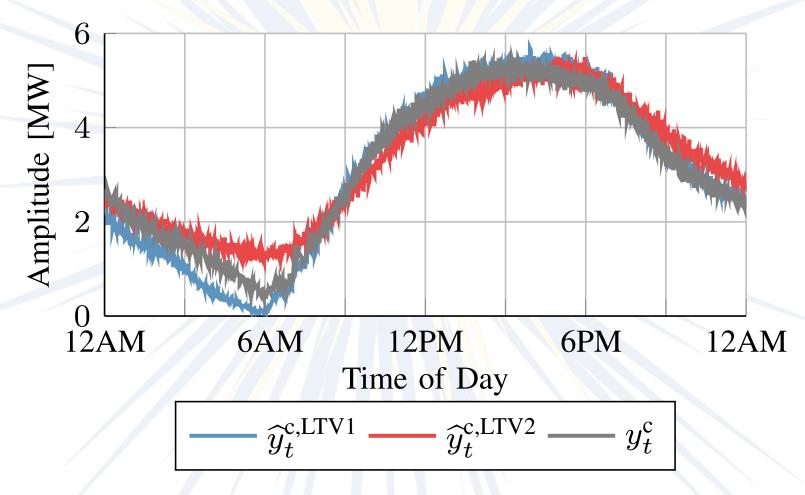
Algorithm Models: Controllable loads

Two-state hybrid AC models do not work well.



Algorithm Models: Controllable loads

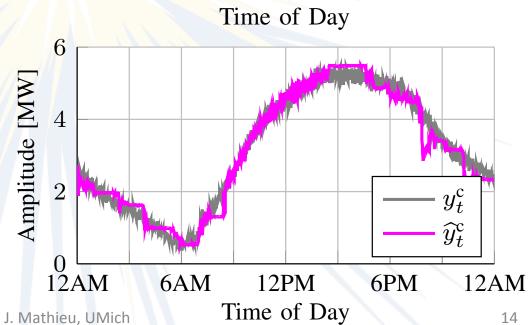
LTV models work better.



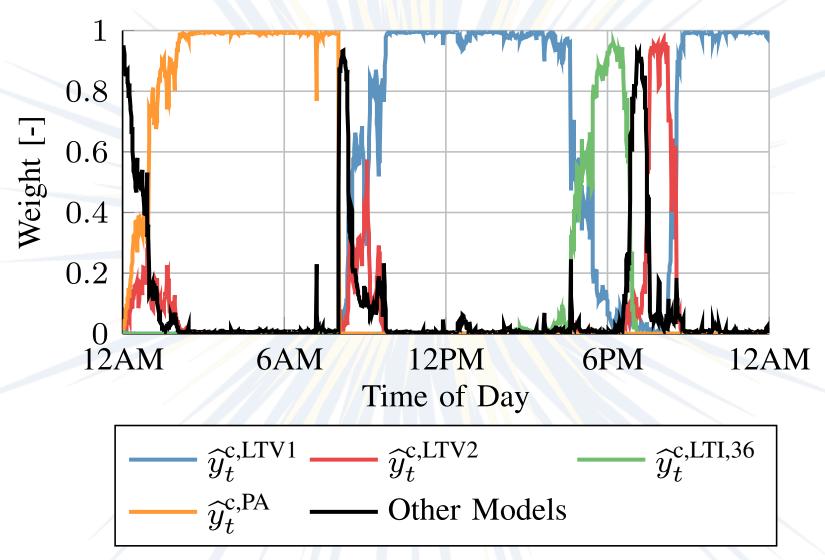
Results: All combinations of models

Total Load

Controllable Load

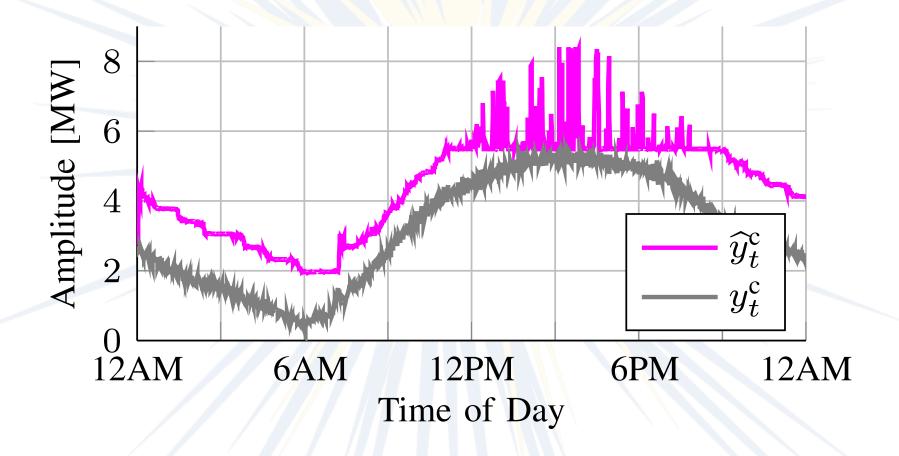


Results: Weightings



Results: Bad Models

All uncontrollable load models are too low.

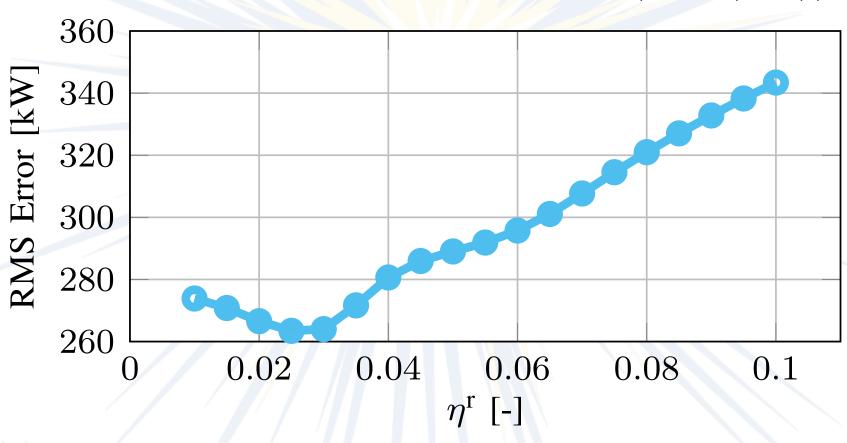


Results: Summary

Case	RMS Error (kW)
Benchmark: Use current outdoor temperature to evaluate simple controllable load model	738
DMD Case 1 : Includes every combination of uncontrollable and controllable models	264
DMD Case 2: Case 1 models plus a smoothed version of the actual uncontrollable load	211
DMD Case 3: Case 2 models plus more accurate model of the controllable load over time periods where the other models are less accurate	175
DMD Case 4 : Includes uncontrollable load models that underestimate the uncontrollable load	1392

Results: Varying Algorithm Parameters

$$\textbf{Recall:} \quad w_{t+1}^i = \frac{\lambda}{N^{\text{mdl}}} + (1 - \lambda)^t \frac{w_t^i \exp\left(-\eta^r \ell_t\left(\widehat{\theta}_t^i, y_t\right)\right)}{\sum_{j=1}^{N^{\text{mdl}}} w_t^j \exp\left(-\eta^r \ell_t\left(\widehat{\theta}_t^j, y_t\right)\right)}$$



Next steps

- Investigate more realistic settings (using more real data)
- Develop better load models
- Improve the algorithm, e.g., alternative weighting functions
- Investigate identifiability
- Incorporate additional measurements (reactive power, voltage) into the approach

Key findings

 Dynamic Mirror Descent (DMD) enables us to solve the substation disaggregation problem leveraging dynamical models of arbitrary form

 DMD can work well (on simple examples); however, it is easy to find instances where it does not work well

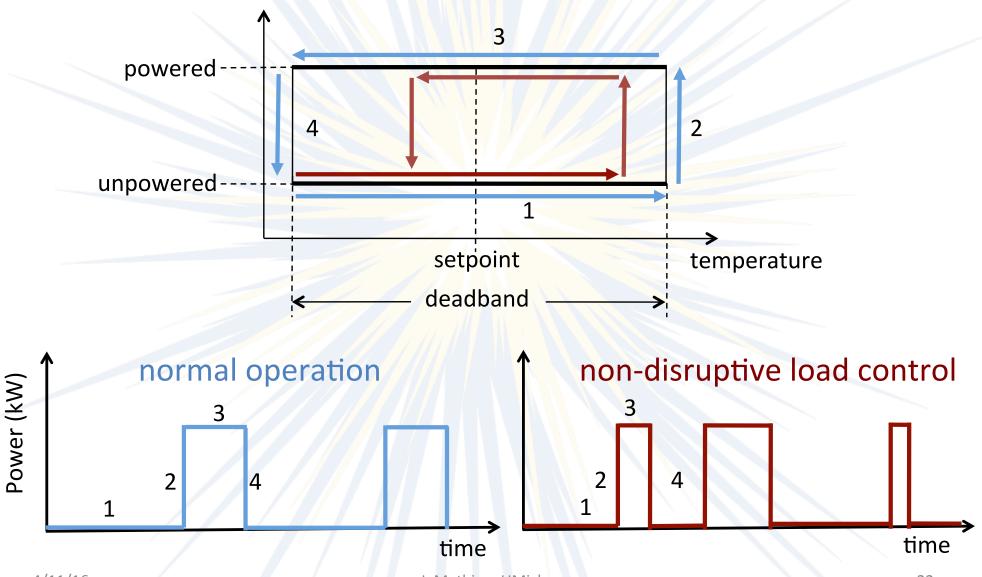
Overview

• Inference: Inferring the behavior of distributed energy resources with sparse measurements [Ledva, Balzano, & Mathieu Allerton 2015]

 Control: Controlling distributed electric loads to provide power system reserves with sparse measurements and input/measurement delays

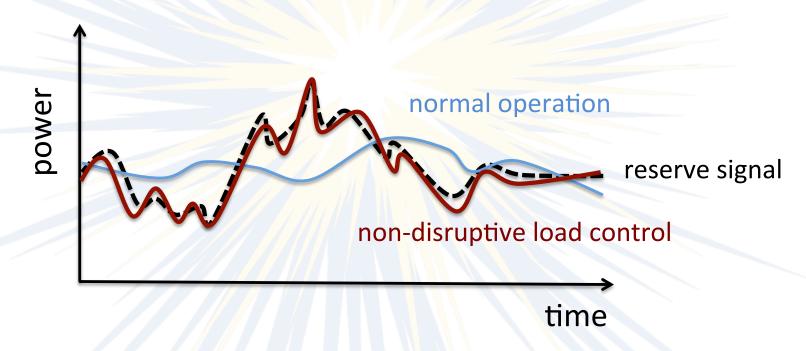
[Ledva, Vrettos, Mastellone, Andersson & Mathieu *HICSS* 2015] [Ledva & Mathieu CDC (in review) 2016]

How can loads provide reserves?→ your refrigerator is already flexible



Thousands of thermostatically controlled loads (TCLs) can track signals and provide reserves

TCLs: air conditioners, heat pumps, space heaters, electric water heaters, refrigerators

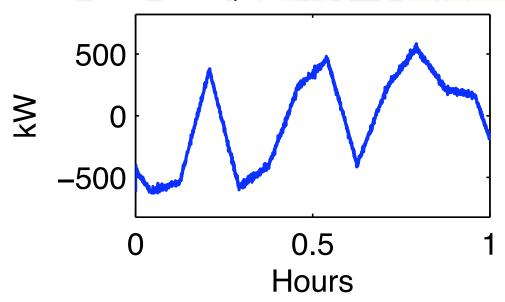


[Mathieu, Koch, and Callaway IEEE Transactions on Power Systems 2013]

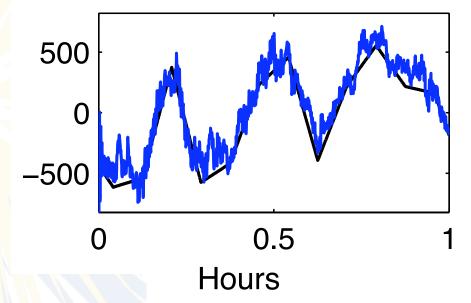
Simulation results:

1000 ACs tracking 5-minute market signal

Controller gets temperature/state of each load every 2 seconds



Controller infers TCL behavior from power measurements at the substation



The more the controller knows about the loads, the better it can track a signal

[Mathieu, Koch, and Callaway IEEE Transactions on Power Systems 2013]

Data from loads

- Parameters
 - the make/model of the load?

- → Modeling
- its temperature setpoint/dead-band width?
- some information about the household?
- Real-time data
 - Measurements of the on/off state and/or internal temperature?

→ Feedback control

– Household smart meter data?

High quality, infrequent

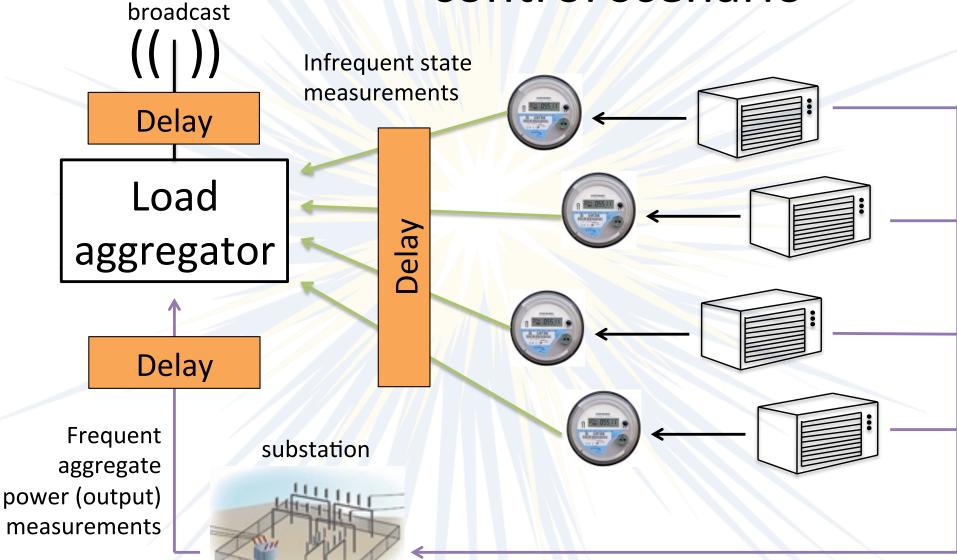
– Power measurements from the distribution network?

Low quality, frequent

- Recorded data
 - high resolution power measurements of each load?

→ Auditing

Communication and control scenario

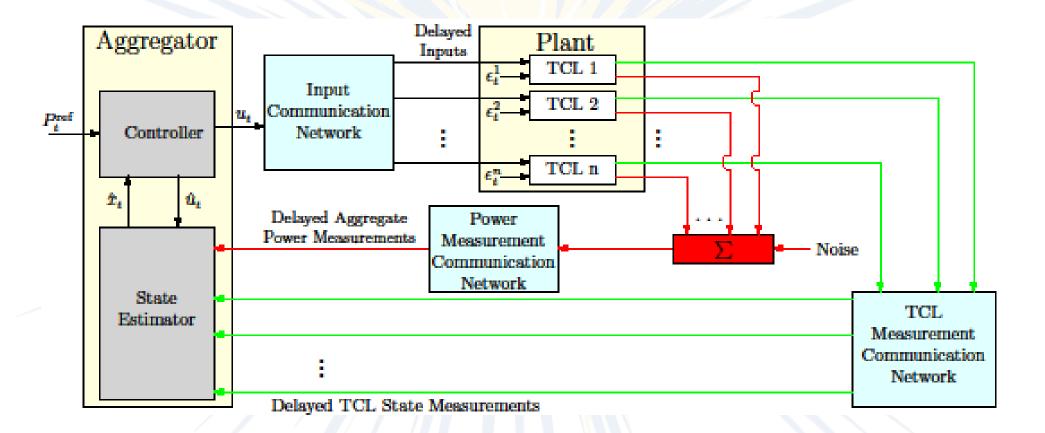


4/11/16

[Ledva, Vrettos, Mastellone, Andersson, & Mathieu HICSS 2015]

System block diagram

Delays cause unsynchronized arrivals of inputs at the loads and measurements at the controller

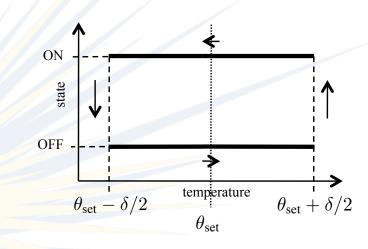


The challenge

- Design an estimator and controller to enable loads to track a signal despite delays
- Assuming...
 - Control inputs & measurements are time-stamped
 - Delay statistics are known
 - State measurements are taken frequently;
 measurement histories are transmitted infrequently
 - Aggregate power measurements are very noisy (though the noise is normally distributed, zero-mean, and the standard deviation is known)

Two-state TCL model

Each TCL *i* is modeled with a stochastic hybrid difference equation:



Temperature of the space

$$\theta_i(k+1) = a_i \theta_i(k) + (1 - a_i)(\theta_{a,i} - m_i(k)\theta_{g,i}) + \epsilon_i(k)$$

On/off state

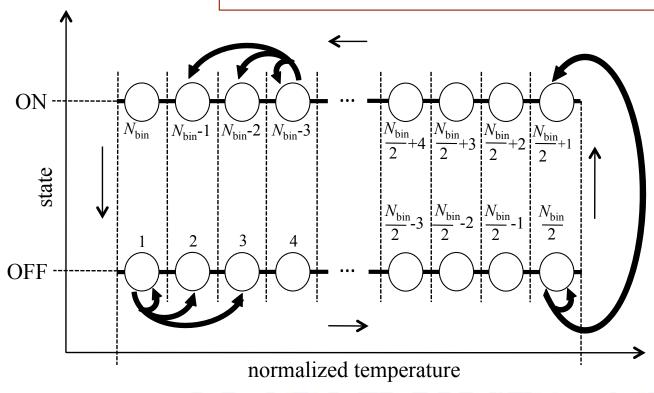
$$m_i(k+1) = \begin{cases} 0, & \theta_i(k+1) < \theta_{\text{set},i} - \delta_i/2 \\ 1, & \theta_i(k+1) > \theta_{\text{set},i} + \delta_i/2 \\ m_i(k), & \text{otherwise} \end{cases}$$

a, thermal parameter $\theta_{\rm g}$, temperature gain $\theta_{\rm a}$, ambient temperature ϵ , noise $\theta_{\rm set}$, set point δ , dead-band width

[Ihara & Schweppe 1981, Mortensen & Haggerty 1990, Uçak & Çağlar 1998]

Aggregate System Model

$$\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k) + \mathbf{B}_{\omega}\mathbf{\omega}(k)$$
$$\mathbf{y}(k) = \mathbf{C}\mathbf{x}(k) + \mathbf{\nu}(k)$$



Similar models in the literature:

- Lu & Chassin2004/2005
- Bashash & Fathy 2011/2013
- Kundu & Hiskens 2011
- Zhang et al. 2013

[Mathieu, Koch, and Callaway IEEE Transactions on Power Systems 2013]

Estimator Designs

- Based on Kalman Filtering
 - Estimator 1: Parallel filter estimator
 - One Kalman Filter per load
 - Each time a measurement arrives, filter it
 - Synthesize aggregate estimate from individual estimates
 - Estimator 2: Single Kalman Filter Using Aggregate
 State Predictions
 - Use state measurement histories to estimate
 individual load parameters (two-state model)
 - Use individual load models to predict current state
 - Use predictions in Kalman Filter

Controller Design

- Based on Model Predictive Control
 - Use knowledge of delay distributions and past control inputs

First control sequence:
$$u_1, u_2, u_3, \dots, u_n$$

Second control sequence:
$$u_2, u_3, \dots, u_{n+1}$$

Input estimate:
$$\widehat{u}_k = \mathcal{U}_k \mathcal{P}$$

Control Formulation

$$\underset{u,\delta}{\text{minimize}} \sum_{k=t}^{t+N^{\text{mpc}}-1} \left[c^y \left(y_k^{\text{err}} \right)^2 + c^\delta (\delta_k^- + \delta_k^+) + \sum_{m=k-N^{\text{mpc}}+1}^k c^u (u_{k|m}^\top \ u_{k|m}) \right]$$

 $m=k-N^{\mathrm{mpc}}+1$

Tracking error State constraint deviations

Control effort

$$x_{k+1} = A x_k + B \widehat{u}_k$$

$$\widehat{u}_k = \mathcal{U}_k \mathcal{P}$$

$$y_k^{\text{err}} = y_k^{P,\text{ref}} - C^P x_k$$

$$u_{k|m}^i \le x_k^i \qquad i \in \{1, \dots, N^x/2\}$$

$$-u_{k|m}^i \le x_k^{N^x+1-i} \qquad i \in \{1, \dots, N^x/2\}$$

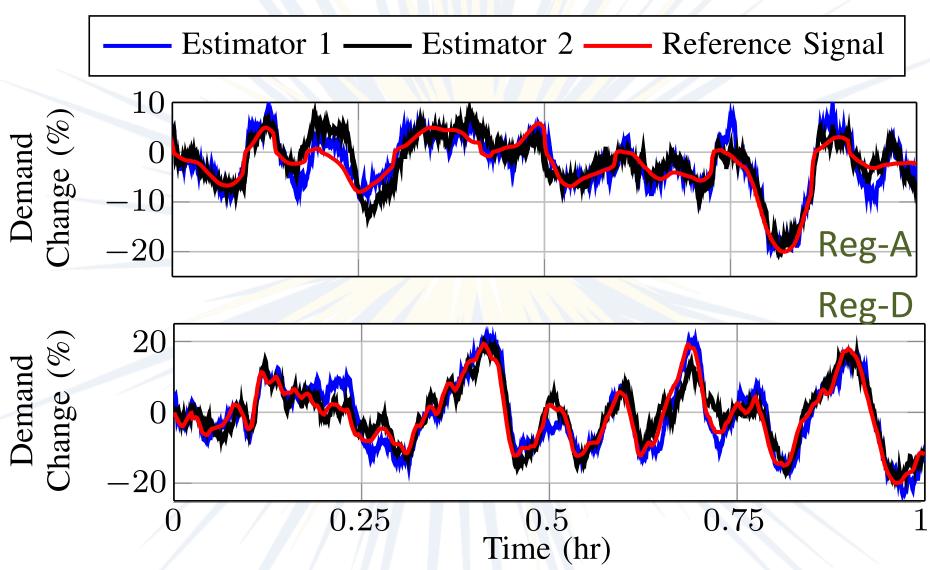
$$0 - \delta_k^- \le x_k \le 1 + \delta_k^+$$

$$0 \le \delta_k^-, \delta_k^+.$$

Case Studies

- PJM Regulation Signals, Reg-A & Reg-D
- Average input delay of 20 seconds
- (Delayed) state histories arrive every 15 minutes

Results

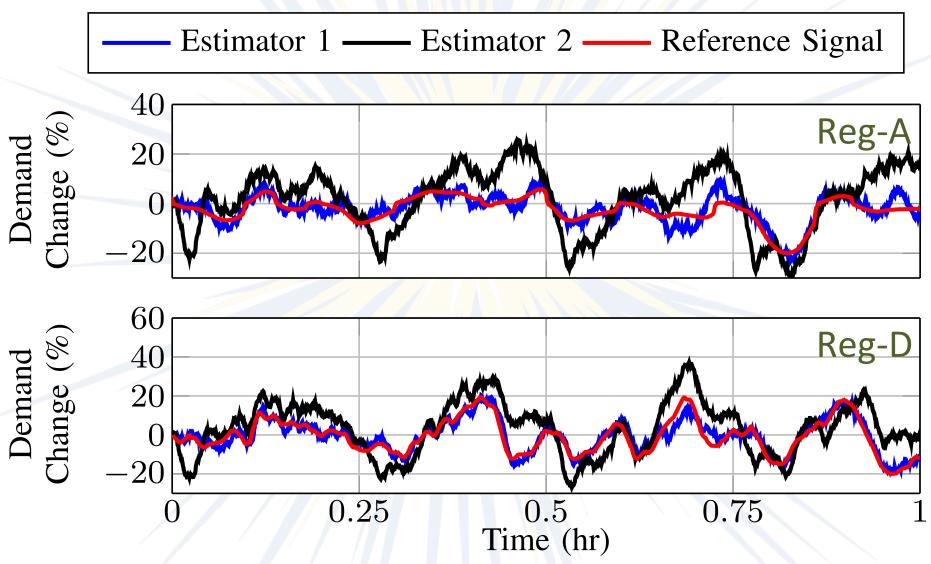


4/11/16

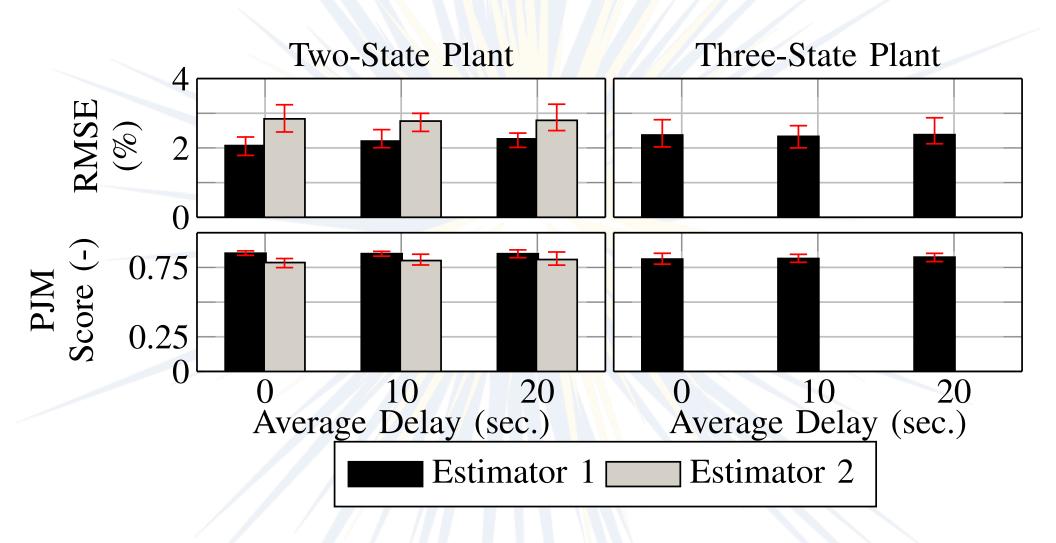
J. Mathieu, UMich

35

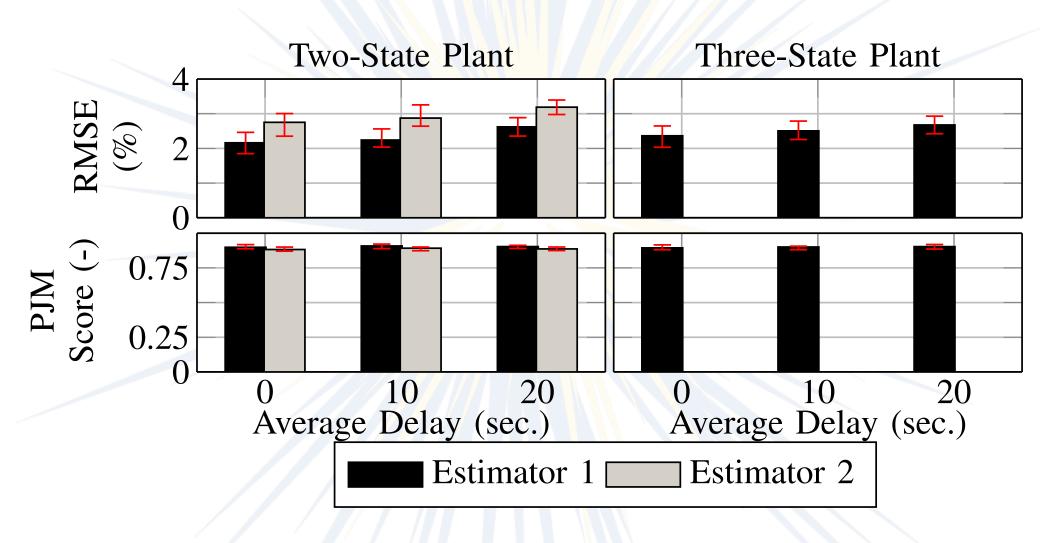
Results: Model Mismatch



Control Results: Reg-A



Control Results: Reg-D



Controller Reformulation

Original Model

$$x_{k+1} = A x_k + B u_k$$
$$y_k = C x_k.$$

Modal Model

$$\begin{bmatrix} 1 \\ \widetilde{x}_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \widetilde{A} \end{bmatrix} \begin{bmatrix} 1 \\ \widetilde{x}_k \end{bmatrix} + \begin{bmatrix} 0 \\ \widetilde{B} \end{bmatrix} u_k$$
$$y_k = \begin{bmatrix} y_{ss} & \widetilde{C} \end{bmatrix} \begin{bmatrix} 1 \\ \widetilde{x}_k \end{bmatrix}$$

Reduced-Order Model

$$\widetilde{x}_{k+1} = \widetilde{A} \, \widetilde{x}_k + \widetilde{B} u_k$$

$$\widetilde{y}_k = \widetilde{C} \, \widetilde{x}_k.$$

Controller Reformulation

The linear controller uses constant gains generated from an output-regulating Linear Quadratic Regulator (LQR) with reference feedforward.

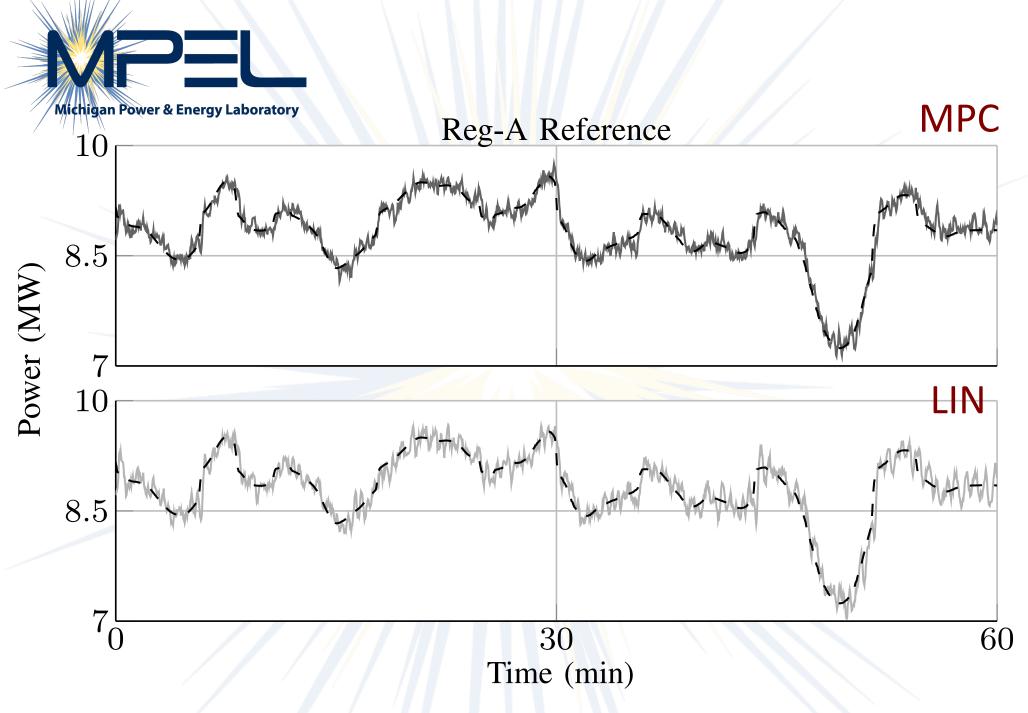
Linear Controller
$$u_t^{\rm seq} = -K_{\infty}^{\rm x} \ \overline{x}_t - K_{\infty}^{\rm w} \ w_t + K_{\infty}^{\rm y} \ y_t^{\rm des}$$

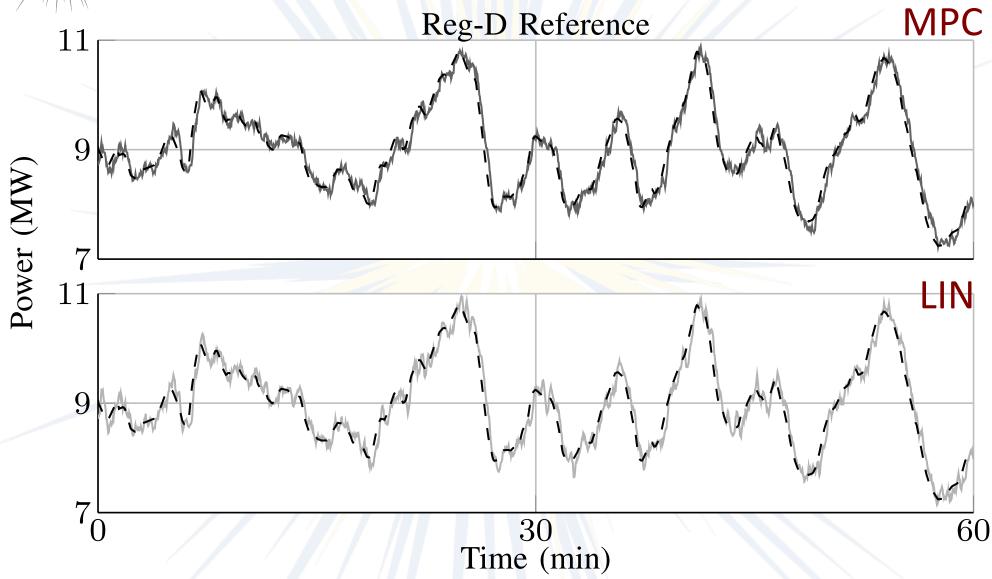
Feedforward Gain
$$K_{\infty}^{y} = \left(\widetilde{\overline{C}}\{zI - \widetilde{\overline{A}} + \widetilde{\overline{B}}\widetilde{K}_{\infty}^{x}\}^{-1}\widetilde{\overline{B}}\right)^{-1}$$

Case Studies

- PJM Regulation Signals, Reg-A & Reg-D
- Average input delay of 20 seconds
- Full state feedback, no measurement delay
- Three-state models used for the plant

4/11/16





Results Summary



→ LIN is 100 times faster than MPC

Key takeaways

Communication network limitations
 necessitate controller/estimator designs that
 cope with delays, bandwidth limitations, etc.

 Delays make loads less capable of providing fast services, but we can mitigate these impacts through delay-aware control and estimation.

Conclusions

- Need methods to infer electric load behavior from existing measurements
 - Dynamic mirror descent applied to distribution substation measurements

- Need new sources of power system reserves
 - Coordination of distributed electric loads using delay-aware control/estimation

Funding: NSF Grant ECCS-1508943.