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M L Benefits and Challenges of
/S oo the Modern Electric Grid

* Grid sensing and communication systems are
becoming more prevalent

— Cost & privacy concerns

— Need methods to infer grid/load information from
existing measurements

 Renewable energy resources are also becoming
more prevalent

— Most (e.g., wind and solar) are intermittent and
uncertain

— Need new sources of power system reserves



Overview

* Inference: Inferring the behavior of distributed

energy resources Wlth Sparse measurements
[Ledva, Balzano, & Mathieu Allerton 2015]

* Control: Controlling distributed electric loads
to provide power system services with sparse

measurements and input/measurement delays

[Ledva, Vrettos, Mastellone, Andersson & Mathieu HICSS 2015]
[Ledva & Mathieu CDC (in review) 2016]



Disaggregating
substation load data

Power consumption of all the
loads/generators we care about

Distribution -
Power consumption of all ’the substation
loads/generators we DON’T care about

Why do we want to disaggregate resources at the substation?
— Energy efficiency via conservation voltage reduction
— Contingency planning
— Optimal reserve contracting
— Demand response event sighaling
— Demand response bidding
— Load coordination feedback



Disaggregation methods

e.g., [Berges et al. 2009; Kolter et al. 2010;
Dong et al. 2013]

* State estimation
— Linear techniques require LTI system models
— Nonlinear techniques can be computationally demanding

* Online learning
— Optimization formulations
— Model-free

* Hybrid approach: Dynamic Mirror Descent [Hall & Willet 2015]
— Admits dynamic models of arbitrary forms

— Optimization-based method to choose a weighted
combination of the estimates of a collection of models



/gnw - L Outline: Part 1

* Dynamic Mirror Descent

* Problem setting: Plant data/models
* Algorithm Models

* Results

* Next steps



/s —L Dynamic Mirror Descent

* Mirror Descent: online algorithm to estimate a
fixed state

* Dynamic Mirror Descent: online algorithm to
estimate a dynamic state using a collection of
models [Hall & Willet 2015]

1. Compute the error between the model predictions
and the measured data (i.e., loss function)

2. Update the state in the direction of the negative
gradient of the loss function
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Use the estimated states to evaluate the models
for the next time step
9§+1 N @2(9;)

Compute a weighted version of the estimates
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Update the model welghts
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— Problem Setting:
0—=__
Plant Data/Models

 Uncontrollable loads: data from Pecan Street Inc. Dataport

 Controllable loads: three-state hybrid models of air

conditioners [Sonderegger 1978]
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Algorithm Models:
Uncontrollable loads
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\ —L Algorithm Models:

/&m 4 Enrsy Lboraory Controllable loads

Two-state hybrid models of air conditioners
[Mortensen & Haggerty 1988]

— Temperature and ON/OFF mode

Sets of Linear Time Invariant (LTl) aggregate
system models [mathieu et al. 2013]

zi,, = A ) i € Nemps
@\E,LTI,'L' _ Cz ZC; i € Ntemps.
Sets of Linear Time Varying (LTV) aggregate

system models
LTt41 — At x4



Algorithm Models:
Controllable loads

 Two-state hybrid AC models do not work well.
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Algorithm Models:
Controllable loads

e LTV models work better.
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Results:
All combinations of models
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Results: Weightings
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EL Results: Bad Models

Power & Energy Laboratory

 All uncontrollable load models are too low.
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Case

Benchmark: Use current outdoor temperature to
evaluate simple controllable load model

DMD Case 1: Includes every combination of
uncontrollable and controllable models

DMD Case 2: Case 1 models plus a smoothed version
of the actual uncontrollable load

DMD Case 3: Case 2 models plus more accurate model
of the controllable load over time periods where the
other models are less accurate

DMD Case 4: Includes uncontrollable load models that
underestimate the uncontrollable load

Results: Summary

RMS Error
(kW)

738
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1392



Results: Varying
Algorithm Parameters
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Next steps

Investigate more realistic settings (using more

real data)

Develop better load models

Improve the algorithm, e.g., alternative

weighting functions
Investigate identifiabi
Incorporate additiona

ity
measurements

(reactive power, voltage) into the approach



/s - L Key findings

* Dynamic Mirror Descent (DMD) enables us to
solve the substation disaggregation problem
leveraging dynamical models of arbitrary form

 DMD can work well (on simple examples);
however, it is easy to find instances where it
does not work well



Overview

* Inference: Inferring the behavior of distributed

energy resources Wlth Sparse measurements
[Ledva, Balzano, & Mathieu Allerton 2015]

* Control: Controlling distributed electric loads
to provide power system reserves with sparse

measurements and input/measurement delays

[Ledva, Vrettos, Mastellone, Andersson & Mathieu HICSS 2015]
[Ledva & Mathieu CDC (in review) 2016]




\ =| How can loads provide reserves?
hempover sy > YOUT refrigerator is already flexible
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r EL Thousands of thermostatically
nrwessnergyiabenoy controlled loads (TCLs) can track
signals and provide reserves

TCLs: air conditioners, heat pumps, space heaters, electric water heaters, refrigerators

A

normal operation

power

[Mathieu, Koch, and Callaway IEEE Transactions on Power Systems 2013]
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Simulation results:
1000 ACs tracking 5-minute market signal

Controller gets temperature/state of Controller infers TCL behavior from
each load every 2 seconds power measurements at the substation
500
S 0
-500
0 0.5 1 0 0.5 1
Hours Hours

—>The more the controller knows about the loads, the better it can
track a signal

[Mathieu, Koch, and Callaway /EEE Transactions on Power Systems 2013]
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Data from loads

* Parameters

— the make/model of the load? = Modeling
— its temperature setpoint/dead-band width?
— some information about the household?
 Real-time data
— Measurements of the on/off state and/or = Feedback
internal temperature? control
— Household smart meter data? High quality, infrequent
— Power measurements from the
distribution network? Low quality, frequent
 Recorded data
— high resolution power measurements of = Auditing

each load?



— Communication and
ko sttt control scenario
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igan Power & Energy Laboratory

System block diagram

Delays cause unsynchronized arrivals of inputs at the loads and
measurements at the controller

Aggregator

£ 1w  Controller

Ae

Estimator
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The challenge

* Design an estimator and controller to enable
loads to track a signal despite delays

* Assuming...
— Control inputs & measurements are time-stamped
— Delay statistics are known

— State measurements are taken frequently;
measurement histories are transmitted infrequently

— Aggregate power measurements are very noisy
(though the noise is normally distributed, zero-mean,
and the standard deviation is known)



Each TCL i is modeled with a <
stochastic hybrid difference I !
equation: 1 iR
Ouer — 6/2 N e+ 8/2
Temperature of the space Oser
(9@(]6 + 1) = a,ﬂz(k) -+ (1 — ai)(é’a,i . mz(k)ﬁg,z) + Gz(k)
On/off state a, thermal parameter
; 0,, temperature gain
0, 0i(k + 1) < Oser,s — 0i/2 6,, ambient temperature
mi(k+1) =41, 0:(k + 1) > Ogers + 6:/2 €, noise
\m;(k), otherwise Ocev SET pOIN

0, dead-band width

[Ilhara & Schweppe 1981, Mortensen & Haggerty 1990, Ucak & Caglar 1998]



Similar models in the

literature:

* Lu & Chassin
2004/2005

* Bashash & Fathy
2011/2013

* Kundu & Hiskens 2011

 Zhangetal. 2013

—>

normalized temperature

[Mathieu, Koch, and Callaway IEEE Transactions on Power Systems 2013]
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Estimator Designs

* Based on Kalman Filtering

— Estimator 1: Parallel filter estimator
* One Kalman Filter per load
 Each time a measurement arrives, filter it
* Synthesize aggregate estimate from individual estimates

— Estimator 2: Single Kalman Filter Using Aggregate
State Predictions

e Use state measurement histories to estimate
*individual* load parameters (two-state model)

e Use individual load models to predict current state

* Use predictions in Kalman Filter



Controller Design

e Based on Model Predictive Control

— Use knowledge of delay distributions and past
control inputs

First control sequence: Uy, Uy,| U, , Uy

Second control sequence: Uy, Usg, e, Upyq

Third control sequence: Us,Ug, «o ) Uy
Uy,

Input estimate: ak I Z/{kp



VI =L Control Formulation

igan Power & Energy Laboratory
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f&yw = L Case Studies
* PJM Regulation Signals, Reg-A & Reg-D
* Average input delay of 20 seconds

* (Delayed) state histories arrive every 15
minutes



Results

Estimator 1

Estimator 2
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Estimator 2

Estimator 1

Reference Signal
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Control Results: Reg-A

Two-State Plant Three-State Plant
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Control Results: Reg-D

Two-State Plant

Three-State Plant
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Original Model  *k+1
Yk =

Modal Model [ 1 ]

Lk+1

Y =
Reduced-Order Model
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The linear controller uses constant gains generated from an
output-regulating Linear Quadratic Regulator (LQR) with
reference feedforward.

: seq X = des
Linear Controller u; ' = —K* 7 — KY w; + KY_ v

e =
C ¢C 0
= 0 q"

S.t. FkH] = [: \ {%k] +
Wk41 C 0 Wk

1.
Feedforward Gain K7 = (C{z[ A+BK T 1B>

~ T -
Lk seq\7’ seq

LQR Formulation mm + (u Ru
E [ J [wk] (ug )" Ry,

~

aNY

seq

0 k




* PJM Regulation Signals, Reg-A & Reg-D

* Average input delay of 20 seconds

* Full state feedback, no measurement delay
* Three-state models used for the plant
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Reg-D Reference

MPC
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//sm = L Results Summary
Reg-A Reference Reg-D Reference
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— LIN is 100 times faster than MPC



=L Key takeaways

* Communication network limitations
necessitate controller/estimator designs that
cope with delays, bandwidth limitations, etc.

* Delays make loads less capable of providing
fast services, but we can mitigate these
impacts through delay-aware control and

estimation.



Mr—L Conclusions
/S Power & Energy Laboratory

* Need methods to infer electric load behavior
from existing measurements

— Dynamic mirror descent applied to distribution
substation measurements

* Need new sources of power system reserves

— Coordination of distributed electric loads using
delay-aware control/estimation
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