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M=l Benefits and Challenges of
Tudnreesmesoney - the Mlodern Electric Grid

* Grid sensing and communication systems are
becoming more prevalent

— Cost & privacy concerns

— Need methods to infer grid/load information from
existing measurements

 Renewable energy resources are also becoming
more prevalent

— Most (e.g., wind and solar) are intermittent and
uncertain

— Need new sources of power system reserves



Mro=L_ Overview
/ / San Power & Energy Laboratory

* Control: Controlling distributed electric loads
to provide power system services with sparse

measurements and input/measurement delays

[Ledva, Vrettos, Mastellone, Andersson & Mathieu, HICSS 2015 &
IEEE TPWRS (in review)]
[Ledva & Mathieu, ACC 2017 (in review)]

* Inference: Energy disaggregation at the feeder

to infer the aggregate power of flexible loads
[Ledva, Balzano, & Mathieu, Allerton 2015]



=| How can loads provide reserves?
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EL Thousands of thermostatically
nrwersznegyiaboroy - controlled loads (TCLs) can track
signals and provide reserves

e

TCLs: air conditioners, heat pumps, space heaters, electric water heaters, refrigerators

A

normal operation

power

[Mathieu, Koch, and Callaway IEEE Transactions on Power Systems 2013]
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_L Simulation results:

/ thon swersenergyLaboratory 1000 ACS tracking 5-minute market signal

Controller gets temperature/state of Controller infers TCL behavior from
each load every 2 seconds power measurements at the substation
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—>The more the controller knows about the loads, the better it can
track a signal

[Mathieu, Koch, and Callaway IEEE Transactions on Power Systems 2013]

11/5/16 J. Mathieu, UMich 6



Data from loads

e Parameters

— the make/model of the load? = Modeling
— its temperature setpoint/dead-band width?
— some information about the household?
* Real-time data
— Measurements of the on/off state and/or = Feedback
internal temperature? control
— Household smart meter data? High quality, infrequent
— Power measurements from the
distribution network? Low quality, frequent
 Recorded data
— high resolution power measurements of = Auditing

each load?



—| Communication and
s o control scenario
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Mro=L The Challenge
/ ‘ &:n ower & Energy Laboratory g

* Designh an estimator and controller to enable
loads to track a sighal despite delays

* Assuming...
— Control inputs & measurements are time-stamped
— Delay statistics are known

— State measurements are taken frequently;
measurement histories are transmitted infrequently

— Aggregate power measurements are very noisy
(though the noise is normally distributed, zero-mean,
and the standard deviation is known)



EL Two-state TCL model

A\
i&an ower & Energy Laboratory

- ! A
Each TCL i is modeled with a = ;
stochastic hybrid difference s 1
equation: M SR
Oper — 6/2 Oser + 6/2
Temperature of the space Ouer
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| m;(k), otherwise O S€L pOiNnt

0, dead-band width

[Chong & Debs 1979; Ihara & Schweppe 1981, Mortensen & Haggerty 1990, Ucak & Caglar 1998]



Similar models in the

literature:

* Lu & Chassin
2004/2005

* Bashash & Fathy
2011/2013

 Kundu & Hiskens 2011

e Zhangetal. 2013

OFF 0:0: 0. 0;

—>

normalized temperature

[Mathieu, Koch, and Callaway IEEE Transactions on Power Systems 2013]
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Estimator Designs

* Based on Kalman Filtering

— Estimator 1: Parallel filter estimator
* One Kalman Filter per load
 Each time a measurement arrives, filter it
* Synthesize aggregate estimate from individual estimates

— Estimator 2: Single Kalman Filter Using Aggregate
State Predictions

 Use state measurement histories to estimate
*individual™ load parameters (two-state model)

* Use individual load models to predict current state

* Use predictions as “measurements” in Kalman Filter



—_ Controller Design

igan ower & Energy Laboratory

e Based on Model Predictive Control

— Use knowledge of delay distributions and past
control inputs

First control sequence: U, U,,|Us,... , U,

Second control sequence: Uy, Ug, e, Up g

Third control sequence: Us, Uy, ooy Uppg
U,

Input estimate: ﬂk ¥ Z/{kP



IV — Control Formulation

an Power & Energy Laboratory
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e =L_ Case Studies

* PJM Regulation Signals, Reg-A & Reg-D
* Average input delay of 20 seconds

e (Delayed) state histories arrive every 15
minutes



Power & Energy Laboratory

—_ Results: Tracking
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& —=L_ Results: Model Mismatch

n Power & Energy Laboratory
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Control Results: Reg-A

6 Two- State Plant Three- State Plant
| | | |
B Estimator 1-NC |:| Estimator 1-TS
D I Estimator 1-FC [ Estimator 2-FC
o -
=
R i
a%
< | nal || 1 :
o0
]
% - .
0

0 10 20 0 10 20
Average Delay (sec.) Average Delay (sec.)




Control Results: Reg-D
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Original Model  Lk+1
Yk =

Modal Model [ 1 ]:

Lk+1

Yk =

Reduced-Order Model
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I —=L_ controller Reformulation

n Power & Energy Laboratory

The linear controller uses constant gains generated from an
output-regulating Linear Quadratic Regulator (LQR) with
reference feedforward.

Linear Controller  u;d = —K* T, — KY w, + KY_ y
LQR Formulation min Z [x’“] C ¢C O [w’“] + (uzeq)T Ruzeq
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‘ -s* =L_ Case Studies
* PJM Regulation Signals, Reg-A & Reg-D

* Average input delay of 20 seconds

* Full state feedback, no measurement delay
* Three-state models used for the plant
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mS....o L Results Summary

Reg-A Reference Reg-D Reference
— 2= | | | | |
S B MPC
bl LN
=
g 1 I
2
>
- | | | | | |
0 10 20 0 10 20

Average Delay (sec.) Average Delay (sec.)

— LIN is 100 times faster than MPC



Key takeaways

* Communication network limitations
necessitate controller/estimator designs that
cope with delays, bandwidth limitations, etc.

* Delays make loads less capable of providing
fast services, but we can mitigate these
impacts through delay-aware control and
estimation.



Mro=L_ Overview
/ / San Power & Energy Laboratory

* Control: Controlling distributed electric loads
to provide power system services with sparse

measurements and input/measurement delays

[Ledva, Vrettos, Mastellone, Andersson & Mathieu, HICSS 2015 &
IEEE TPWRS (in review)]
[Ledva & Mathieu, ACC 2017 (in review)]

* Inference: Energy disaggregation at the feeder

to infer the aggregate power of flexible loads
[Ledva, Balzano, & Mathieu, Allerton 2015]
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=l Disaggregating
substation load data

Power consumption of all the
loads/generators we care about ¢

(e.g., Air Conditioning) e b e
substation .

Power consumption of all the
loads/generators we DON'T care about <

(“Other loads”)

In this talk, we use measurements of real power only.

We could consider additional measurements (reactive
power, voltage, etc.) from multiple meters at different
points in the distribution network.



IP=L_  Why disaggregate the
[ABaai substation load?

Uses in demand response...

* Load coordination feedback

 Load aggregator bidding

 Demand response event signaling (when/how much)

Beyond demand response...

* Energy efficiency via conservation voltage reduction
— Disaggregate by load type

* Contingency planning
— Disaggregate motor loads

* Reserve planning
— Disaggregate PV production



Connections to other
problems

* Non-intrusive load monitoring (NILM) [Hart 2010;
Ziefman and Roth 2011; Berges et al. 2009; Zoha et al. 2012; Dong,
Sastry, et al. 2014; ...]

* Energy disaggregation [Wytock & Kolter 2013; Kolter and
Jaakkola 2012; Dong, Satsry, et al. 2013; Kim et al. 2010 ...]

Problem: Infer individual load behavior from a single power
measurement (usually) sampled at high frequency
(10kHz-1MHz) from the household main

Solution approaches: offline algorithms including change
detection, supervised learning, unsupervised learning



Key differences

 We assume measurements at the substation, not
the household

 We infer aggregate load (e.g., all air conditioning
load), not individual load behavior

 We solve the problem online, not offline

 We use lower frequency measurements (e.g.,
taken every second to minute)

* |n some cases, we may get to be “intrusive,” but
not in this talk!
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Possible Methods

* State estimation
— Linear techniques require linear system models

— Nonlinear techniques can be computationally
demanding

* Online learning
— Data-driven, model-free

* Hybrid approach: Dynamic Mirror Descent
[Hall & Willet 2015]

— Admits dynamic models of arbitrary forms

— Optimization-based method to choose a weighted
combination of the estimates of a collection of models



Outline

* Dynamic Mirror Descent

* Problem setting: Plant data/models
e Algorithm Models

* Results

* Next steps
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 Mirror Descent: online algorithm to estimate a
fixed state

* Dynamic Mirror Descent: online algorithm to
estimate a dynamic state using a collection of

models [Hall & Willet, “Online Convex Optimization in Dynamic
Environments,” IEEE Journal of Selected Topics in Signal Processing 2015]

1.

2.

Compute the error between the model predictions
and the measured data (i.e., loss function ¢, (6}, v;))

Update the state in the dlrectlon of the negative
gradient of the loss function

~~

0! = ar@gergin r <V€t( LY, ‘9> + D (‘9‘@)



3. Use the estimated states to evaluate the models

for the next time step
‘92+1 - (I)fs(‘%)

4. Compute a weighted version of the estimates

5. Update the model weights

N/ - wjexp Sae)
Wity = T (1= A) S wi exp (—77"" b @’yt))




* Regret: performance with respect to a
comparator @1

Rr(07)2) £:(6:) — > £:(6y).

e Often the comparator is the performance of a
oatch algorithm

* Hall and Willet derive bounds on the regret and
show that for many classes of comparators regret

scales sublinearly in T



Plant Data/Models

Air conditioners:
— Three-state (hybrid) TCL models

Other loads:
— Data from Pecan Street Inc. Dataport
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e Air conditioners:

— Two-state (hybrid) TCL
models

— Linear time-invariant
aggregate system
model

— Linear time-varying
aggregate system
model

e Other loads:
— Smoothed data from

previous days

11/5/16
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Model Set Estimates
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EL Prediction Results

igan Power & Energy Laboratory
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Weightings:

each color is a different model
1 -
w |} [N f A

| i
’ A » @
1 ' M.J i J i

12AM 3AM 6AM  9AM 12PM 3PM 6PM  9PM 12AM
Time of Day

o
o)

o
~

Amplitude [-]

o
V)

11/5/16 J. Mathieu, University of Michigan 41



Prediction Results:
Better Models
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Prediction Results:
Bad Models

e All “other load models” are too low.
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Michigan Power & Energy Laboratory

Case

Benchmark: Use current outdoor temperature, LTI
models, and interpolation to predict

DMD Case 1: Includes every combination of aggregate
air conditioner model and “other load model”

DMD Case 2: Case 1 models plus a smoothed version
of the actual “other loads”

DMD Case 3: Case 2 models plus more accurate
models of the aggregate air conditioning load over
time periods where the other models are less accurate

DMD Case 4: Includes “other load models” that
underestimate the “other load”

RMS Error
(kW)

738

264

211

175

1392



Next steps

* |[nvestigate more realistic settings
* Develop better load models

* Improve the algorithm, e.g., alternative
weighting functions

* |[ncorporate additional measurements
(reactive power, voltage) into the approach



Key findings

* Dynamic Mirror Descent (DMD) enables us to
solve the substation disaggregation problem
leveraging dynamical models of arbitrary form

e DMD can work well (on simple examples);
however, it is easy to find instances where it
does not work well



Conclusions

* Need new sources of power system reserves

— Coordination of distributed electric loads using
delay-aware control/estimation

* Need methods to infer electric load behavior
from existing measurements

— Dynamic mirror descent applied to distribution
substation measurements

Contact: jimath@umich.edu
Funding: NSF Grant ECCS-1508943 .



