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Background (1/5)

An electric power network is the equipment to transport electrical
energy from producers (generators) to consumers (loads).
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[ http://electrical-engineering-course.blogspot.com/p/modulel-what-is-electricity-and.html ]
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Background (2/5)

Electricity supply and demand must be balanced, and a syste
operator uses frequency regulation to achieve this balance.
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[TEPCO “Where does excess electricity go?”]
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Background (2/5)
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[ Distributed energy solutions for the 21st century grid. Solar City. ]
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Background (3/5)
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A current demand response research trend investigates using a grougl’"’m
(or aggregation) of residential loads for frequency regulation.

“Demand response is a tariff or program established to motivate changes
In electric use by end-use customers in response to changes in the price
of electricity over time, or to give incentive payments designed to induce
lower electricity use at times of high market prices or when grid reliability

IS jeopardized.”

[U.S. DOE 20086]
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A current demand response research trend investigates using égroup
(or aggregation) of residential loads for frequency regulation.

“Demand response is a tariff or program established to motivate changes
In electric use by end-use customers in response to changes in the price
of electricity over time, or to give incentive payments designed to induce

lower electricity use at times of high market prices or when grid reliability
IS jeopardized.”
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Background (4/5)

Increased renewable generation, increasing “smart”
Infrastructure, and recent regulations have created a favorable
environment for residential demand response.

[Ryan Kh 2015]
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Increased renewable generation, increasing “smart”
infrastructure, and recent regulations have created a favorable
environment for residential demand response.
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Background (4/5)

Increased renewable generation, increasing “smart”
infrastructure, and recent regulations have created a favorable
environment for residential demand response.
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Research objective:

Develop algorithms for automated, residential demand
response that provide frequency regulation and that take
Into account practical limitations of the communication
and sensing infrastructure
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General Problem Framework (1/1)

This work focuses on aggregator that is providing frequency reguldtion
using an aggregation of residential, demand-responsive loads.

| - -
| The Plant | |CommumcatJon : The Aggregator
! Weather-Related | | NetWOI‘kS | | |
| MEEI.SLII‘EIlIeIltS | | |> |
- T T : l
| Distribution | | Wide-Area | | |
| Substation - - I- ----- T = = =p» DMeasurement -: --== = = |
| . I | Network | |> Inference |
| . . . ' | - =" Lt |
| Distribution e =1 | | o | Algorithms | |
| 1
l Feeder Feeder-Level l | | I | |
| Measurements | | | I | 1 |
| | | |
| | : S ! 1 | |
| i ] | Building-Level | | I N B
1l Immg-leve ~ esligne
| B . ld . L l Measurri‘nents | I\-’IeaSllI‘enlent : : |111f2r?111;‘13:i01) Illpgl;lts |
u]_ lng— eve I N N B S O O O . LB | - - -
| - | |
| Network |
| Loads | | | |
| | | |
| | : ! | | |
| Demand- ! | : | |
: ReSponSive A synchronous : | | : :
Input .
| | . | Input Network | | Broadcast | Algorithms |
| | | | Inputs | |
| | | | | |

Ledva, Dissertation Proposal

9/22/2017 13



Contents

2. Modeling Preliminaries

L Di .
9/22/2017 edva, Dissertation Proposal

14



Modeling (1/3)

W

Residential demand response commonly control a class of
appliances called thermostatically controlled loads (TCLS).

ﬁ Two-state TCL model [Chong 1979]
o/ = [07]
0., = Aol + Bim] + Eld]
Y 0 002, < - g0
Ronorts 2016] ml =<1 if e > eehd 4 g /2
\m{' otherwise,

[clker 2006]

[okclipart]
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Modeling (1/3) —

Residential demand response commonly control a class of
appliances called thermostatically controlled loads (TCLS).

g ; Two-state TCL model [Chong 1979]
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Modeling (1/3)

W

Residential demand response commonly control a class of
appliances called thermostatically controlled loads (TCLS).

Three-state TCL model [Sonderegger 1978]
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Modeling (1/3) N4

Residential demand response commonly control a class of
appliances called thermostatically controlled loads (TCLS).

: Three-state TCL model [Sonderegger 1978]
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Models (2/3)

The internal air temperature and on/off mode of these models
can be represented using a set of discrete states.
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Modeling (3/3)

normalized temperature

[Mathieu 2013]

Aggregate Model

Tl = Az, + B ug
yr = C xy,

Ledva, Dissertation Proposal
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Managing Communication Delays (0/9)

Enabling communication infrastructure may be presentand
working within its limitations can reduce the need for upgrades.

Existing comm. infrastructure may exist [Eto 2012]
— May have significant delays (e.g., 70 seconds)

« Smart meters have significant communication limitations [Armel 2013]

» Existing work investigates unavailable TCL measurements:
— E.g., [Mathieu 2013, Borsche 2013, Vrettos 2014, Ghaffari 2015]

« [Hao 2014] investigates delays but does not compensate for them

« Research goal: design estimation and control algorithms that incorporate
realistic delay information to mitigate the effects of delays




Managing Communication Delays (1/9)

This work develops algorithms that mitigate the effects of
communication delays by incorporating delay information.
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Managing Communication Delays (2/9)

At each time-step, we transmit an input sequence and allow
TCLs to select an input based on the realized delays.

A

seq

Input Sequence ’U,_1 ul') U’G U7‘ }u
TransmissionTime seq

Us|z | Uq)s | Us|3 | Ug fu
seq

Ug|o | Uzjo | Ug|2 | Us fu
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Uy | U2|1 | U3 1| Ug fu

>

Input Vector’s Applicable Time-Step
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Managing Communication Delays (3/9)

The controller is formulated as a quadratic program similarto a
finite-horizon, tracking LQR with state and input constraints.

t+N

min Z {c’y (tracking 61‘1*01‘)2 + ¢"(input eff(:)rt)2
S.t. Tpe1 = Az + Buy

yr =C g

up = ULP

input constraints

state constraints
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Managing Communication Delays (4/9)

m T
/Michigan Power & Energy Laboratory

This work creates two state estimators that adapt a networked
Kalman filter to the demand response scenario.

Estimator 1

TCL 1 Measurement

Aggregate Power Measurement

TCL 2 Measurement

Aggregate Power Measurement

TCL NTCL Measurement

Aggregate Power Measurement

The networked Kalman filter was developed in cite [Schenato 2007]

9/22/2017
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Managing Communication Delays (4/9) A A=
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This work creates two state estimators that adapt a networked
Kalman filter to the demand response scenario.

Estimator 2

Individual Aggoregate Aggregate
TCL State B State
Measurement Prediction Networked Estimate
Histories c c
————————— ~ - - -»TCL Model Bank >  Kalman -
\ Filter
|
|
|
|
| )
| ID’ed TCL
| Parameters Aggregate
| Power
: Parameter Measurement
L Identification
Algorithm

The networked Kalman filter was developed in cite [Schenato 2007]
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Managing Communication Delays (5/9)

second time-steps over an hour with a constant outdoor temperature.

« Simulate two variations of the plant
— Two-state TCL model
— Three-state TCL model
« Use three delay distributions
— No delays
— Average delays of 10 seconds with log-normal distribution
— Average delays of 20 seconds with log-normal distribution
« Use three levels of delay compensation
— No compensation (NC)
— Time-stamping only (TS)
— Full compensation (FC)
« Ten instances per case study



Managing Communication Delays (6/9)

{ﬂ g

With average delays of 20 sec. and the two-state TCL model,
both controller-estimator pairs track the references effectively.

e ESHMALOr 1-FC s Estimator 2-FC == Reference Signal
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(b) Two-State Plant, Reg-D Reference

L Di .
9/22/2017 edva, Dissertation Proposal 59




Managing Communication Delays (7/9)
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With the three-state TCL model, only Estimator 1 achieves reasonable
tracking, and Estimator 2 is less effective due to model mismatch.

s ESHMALOr 1-FC mm Estimator 2-FC mem— Reference Signal

*::-E 40 I [ I

S . 201
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Managing Communication Delays (8/9)

effects of the delays, and time-stamping alone is also effective.

6 Two-State Plant Three-State Plant
| : : :

B Cstimator 1-NC [ ] Estimator 1-TS
B Estimator 1-FC [ Estimator 2-FC
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0 10
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0 10
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Managing Communication Delays (9/9)

In summary, this work developed a controller and two estimators to
mitigate the effects of communication delays while investigating model
mismatch.

« The controller-estimator pairs can effectively provide frequency regulation
with average delays up to 20 seconds

» Results for Estimator 2 are heavily dependent on model accuracy

« Chapter 4 develops a simplified controller
— Linear control law AEETCENOT | Does Apsonare powe
— Reduced computation
— Minor reduction in tracking
versus the MPC controller [ o s —
due to the exclusion of constraints : LJ.

Communication|
Network

TCL 2 |«
TCL 1 |e
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Energy Disaggregation (0/17)

s ——
Mi higan i'na & Energy Laboratory

The previous work assumed that aggregate measurements of the deman
responsive load were available, but obtaining these in real-time is an open
guestion.

* Building-level energy
I 1 1 - I Plant | [ Uncontrollable Loads
disaggregation is long-studied nt o il
[Hart 1992] _ ——
[ TCL2 o),
_ (Toi
* Could use many device-level sensors
and fast communication ($$$) | _ e _
‘ omumunication Network |
« Could work within capabilities of ]
distribution network sensors | R
Aggregator
and smart meters ($$%$)

sired Aggregate TCL
Demand

Knowing real-time demand-responsive load provides
— Feedback signal for controller

— Information on capacity for bids into ancillary service markets
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Energy Disaggregation (1/17)

Goal: separate measurements of the demand served by a
distribution feeder into components as the measurements arrive.
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Energy Disaggregatio

n (2/17)
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Energy disaggregation is performed on real-time demand measurements
using Dynamic Fixed Share (DFS), an online learning algorithm.
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(a) Real-time estimation mode
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Energy Disaggregation (3/17)

Physical Plant I

I

| Substation |
| Feeder Demand |
I
I
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Power System Entity
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T Model

Model Creation

(b) Offline model generation mode
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Energy Disaggregation (4/17)

The models used are based on linear regression, linear tlme
Invariant systems, and linear time-varying systems.
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Yy =y Yt =Y + Y
~20L.r OL.res _OL, OL,com
:;'JJ res Ty + , com 7
O gL Mon GOL Tues GOLWed GOLMLR
=
< 751 .
= iy ’ /]
W T
éS NP oy i Ay o
s v
5 ol W
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Energy Disaggregation (5/17) =l_
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The models used are based on linear regression, linear time-
Invariant systems, and linear time-varying systems.
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Energy Disaggregation (6/17)

The models used are based on linear regression, linear tlme—
Invariant systems, and linear time-varying systems.
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Energy Disaggregation (7/17) p\ /-
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Dynamic Mirror Descent (DMD) iteratively updates an estimate based
on a new measurement, then advances the estimate in time.

ﬁt = argmin 77° { VI ( ﬁt ﬁ> + D (ﬁHﬁt)
0O

§t+1 :‘T}(gt)

DMD was developed in [Hall 2015]
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Energy Disaggregation (8/17)

Chapter 5 developed Dynamic Mirror Descent updates that were |dent|caT o
those of a Kalman filter by appropriately choosing the loss and divergence
functions.

Ht = argmin 7° { VI ( Ht F)> + D (HHHt)
0c©

2
(0 — 0:)

[ &1

(Py)~

2
2

(B H(Ch —wn)|

AN T
SRS
| I
B — | =

~ 1 ~
0, =0, + P.C [( P ("T + R w (yt e t’__’t(;’t)

(See Chapter 5 for more details)
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Energy Disaggregation (9/17) A A=
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Dynamic Fixed Share combines estimates from separate Dynamic Mirror
Descent algorithms, each using separate models, into an overall estimate.

TR wit exp (= 6 (07 .

moo—=_ 4 (]. — A) - e M™
N mdl ' j i .y AJ_‘

ijl Wy €Xp (—?]? ly (Ht))

i1 = Z Wity B

Dynamic Fixed Share was developed in [Hall 2015] and uses the Fixed Share Algorithm [Herbster 1998]
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Energy Disaggregation (10/17) v/
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Due to the different models used within this work, a mOdIerd
version of DMD was developed that runs models in open-loop.

Ree1 = argmin 7° { VI ( Ht f9> + D (6|ry)
He©

§t+l :(I)(Et)

Ois1 =0i1 + Kita
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The simulation setup uses real-world data at the device level,
allowing the true AC and OL demand to be known.

Demand data sources
— Feeder model from Gridlab-D feeder taxonomy
— Commercial building data from PG&E
— Residential building and device data from Pecan Street

» 10 separate “testing” days

* One minute time-steps

* Three model sets
— M™l :all model combinations
— Mt - model combinations excluding the LTI AC models
— MK model combinations using all OL models and only the LTV AC models

* Benchmark Algorithms
— Best Kalman filter: best (ex post) filter from the set of models M"¥
— Average Kalman filter: average of all filters from the set of models MXF
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Running Dynamic Fixed Share with Update Method 1 and
MREed effectively estimates the AC demand in real-time.

g 6 -

< yAC @»?C ;gt o

= Pl g M

é 4 A\ I "

) 8,

Q I.II|II|F|I| Ir

E 2 Al h A

I

U e A L.

s ’

Z ) | | | |
< 12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM

(¢) AC Demand
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Energy Disaggregation (13/17) A=

RMS Error values across the case studies show that model
selection Is iImportant in algorithm performance.

Hl A C Demand Il OL Demand ZZ7 Total Demand

= 600
=
w400
RMSE of the AC demand <
ez 200
Best Kalman Filter: 0
min = 148.4 kW MKF
mean = 195.3 kW
max = 318.9 kW
800
Average Kalman Filter: - a
min = 173.1 kW ?’j 600 |
mean = 259.4 kW 4 400 i i
max = 357.5 kW g i B
B VT “m
L 7 2
M Full M Red M KF

(b) Update Method 2
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Time series of model weights indicating the most accurate
(available) model is a combination of two candidate models.

o— PACMLR g GOLMIR o HACLTVE g OLMLR
—e— HACLTV2 g POLMLR g Other Models
0.8
Z 06
‘D
=
0.4
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0
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12:00 AM
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Modifying the n° and n” parameters influences the AC demand RMSE b
adjusting the model weight transitions and measurement-based adjustments.

RMSE (kW)
103 -
- — 1 260
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10 -~ | 250

240

n" (-)
—t
-]

:

230

220
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based on similar, historical days may improve performance.
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Energy Disaggregation (17/17)

In summary, this work applies DFS to a feeder-level energy disaggregation
problem, separating the feeder demand into two components.

 DFS can effective perform the disaggregation problem
« Models within DFS strongly influence performance
 DFS achieved lower AC demand RMSE than AKF

« DFS achieves higher AC demand RMSE than BKF

» Further parameter tuning may improve results

 Additional results include different estimation error covariances within the
DMD formulation, which is greatly influences the performance of DFS
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The first avenue of future work aims to benchmark existing
aggregate models in a common simulation case study.

Temperature- Dependent Markov Model Transfer Function Model [Mahdavi 2016]
— ) _ TF . o 0
Tip1 = Apry T =A " o+ (17 =17)
yr = Cray

ye = O a2 + o

0 6 12 18 24
Time (hr)

Active Power (MW)
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Future Work (2/4)

measurements into the energy disaggregation problem.

feeder
Pf

Y =

A . 1
B PAC 4 poL i _ P
QAC 4 QoL

L

Ifeeder
Q!
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Future Work (2/4) A4
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The second avenue incorporates reactive power and voltage
measurements into the energy disaggregation problem.

feeder
‘Pf

Y =

- [ PAC | PtOL] ; pi

(;} gee der (;}t&(:' - {’2?]_

Active Power

¥ Measurement of Feeder Demand
A A
pPAC AC DemandComponent
A
pOL | OL Demand Component
i
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Future Work (2/4)

The second avenue incorporates reactive power and voltage
measurements into the energy disaggregation problem.

feeder AC OL : z

T Qe | T Qac o V(P +(Q)?

Active Power Active Power

A

P ) - Yarman il ' Measurement of Feeder Demand
Measurement of Feeder Demand ekt ! SERHEIE

A\ ,.

; . , PAC | AC DemandComponent
pPAC AC DemandComponent : | [

A
poOL OL Demand Component
pOL | OL Demand Component !
t
QPt Qe Reactive Power
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Future Work (3/4)

The second avenue incorporates reactive power and voltage
measurements into the energy disaggregation problem.

i Pﬂ:cdct_ Substation Tap-Changing
t Transformer
v — _ E:edet / 7{_\ . rl 4 j 2l i r? 4 i 22 __
t L,;f'ccdﬂ / ye i _}{_— / Vf} I’? 1,:t-3
L:;m:-dcs ¢,

PR+ Qe [P +5 Qi
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Future Work (3/4) \ A=
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The second avenue incorporates reactive power and voltage
measurements into the energy disaggregation problem.

i Pﬂ:cds:t_ Substation Tap-Changing
t Transformer
v — _ E:eds:t / 7{_\ . rl 4 j 2l i r? 4 i 22 __
t v;f'ccdcr / ye i _}{_— / Vf} I’? 1,:t-3
L:;m:-dcs ¢,

PR+ Qe [P +5 Qi

pkil _ pk_ .k ([F:k-‘g = (QF)*Y pLk
‘ ‘ (V)2 ‘

. (PR (QF)? Lk
R B
L i )

(PF)? +(QF)?
I'1[:'["I-}

rk+1 7k _ ork pk &k Ak (ke 2 Ky 2
V. VE—=2(r% PP+ 2% QF) + ((r%)" + (%))

The DistFlow equations were developed in [Baran 1989]
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The third avenue also incorporates active control of the AC load
within the energy disaggregation problem.

9/22/2017

Algorithms
. Estimated Estimated
. Energ}- . AC Demand > . AC DEllllanC.i AC State > Input .
Disaggregation State Estimation Computation
A
Inputs
Total Feeder AC Demand AC Loads |
Demand
OL Demand OL Loads

The Plant
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Future Work (4/4)
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The third avenue also incorporates active control of the AC load
within the energy disaggregation problem.

Algorithms
Estimated Estimated
. Energ}- . AC Demand. ) AC DE‘IlllallC.i AC State > Input .
Disaggregation State Estimation Computation
A
Inputs
Tort)a‘;lni?;ger AC Demand AC Loads |
OL Demand OL Loads
The Plant
minimize (y, — yfes)T Y (y; — yfes) + uf U uy
” . .
subject to yr = flxg, uy)

d ref
yr o =1 + Ay
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Future Work (4/4) R/ o
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The third avenue also incorporates active control of the AC load
within the energy disaggregation problem.

Algorithms
Estimated Estimated
. Energ} . AC Demand. AC DEI_-HanC_l AC State > Input i
Disaggregation State Estimation Computation
A
Inputs
To[t)al Feeder AC Demand AC Loads |
emand
OL Demand OL Loads
The Plant
minimize (y; — yfes)T Y (y; — yfes) + uf U uy
Ut
subject to yr = flxe, uy)
des ref
Yy =Y + Ay
minimize (yr — yff)T Y (yr — yf'd) + utT U+ ol Cpa

1Lt

subject to Y = [, uy)
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