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Background (1/5) 

An electric power network is the equipment to transport electrical 

energy from producers (generators) to consumers (loads). 
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Background (2/5) 

Electricity supply and demand must be balanced, and a system 

operator uses frequency regulation to achieve this balance.  
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Electricity supply and demand must be balanced, and a system 

operator uses frequency regulation to achieve this balance.  
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Background (3/5) 

A current demand response research trend investigates using a group 

(or aggregation) of residential loads for frequency regulation. 

“Demand response is a tariff or program established to motivate changes 

in electric use by end-use customers in response to changes in the price 

of electricity over time, or to give incentive payments designed to induce 

lower electricity use at times of high market prices or when grid reliability 

is jeopardized.“ 
[U.S. DOE 2006] 
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A current demand response research trend investigates using a group 

(or aggregation) of residential loads for frequency regulation. 

“Demand response is a tariff or program established to motivate changes 

in electric use by end-use customers in response to changes in the price 

of electricity over time, or to give incentive payments designed to induce 

lower electricity use at times of high market prices or when grid reliability 
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Background (4/5) 

Increased renewable generation, increasing “smart” 

infrastructure, and recent regulations have created a favorable 

environment for residential demand response.  
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Increased renewable generation, increasing “smart” 

infrastructure, and recent regulations have created a favorable 

environment for residential demand response.  
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Background (4/5) 

Increased renewable generation, increasing “smart” 

infrastructure, and recent regulations have created a favorable 

environment for residential demand response.  
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Research objective:  

Develop algorithms for automated, residential demand 

response that provide frequency regulation and that take 

into account practical limitations of the communication 

and sensing infrastructure 
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General Problem Framework (1/1) 

This work focuses on aggregator that is providing frequency regulation 

using an aggregation of residential, demand-responsive loads.  
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Modeling (1/3) 

Residential demand response commonly control a class of 

appliances called thermostatically controlled loads (TCLs). 
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Two-state TCL model  [Chong 1979] 
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Modeling (1/3) 
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Three-state TCL model [Sonderegger 1978] 
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Models (2/3) 
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The internal air temperature and on/off mode of these models 

can be represented using a set of discrete states. 
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Modeling (3/3) 
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An aggregate model describes the probability of portions of the 

TCL population transitioning from one discrete state to another. 

[Mathieu 2013] 

Aggregate Model 
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Managing Communication Delays (0/9) 
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22 

Enabling communication infrastructure may be present and 

working within its limitations can reduce the need for upgrades. 

 

• Existing comm. infrastructure may exist [Eto 2012]  

– May have significant delays (e.g., 70 seconds) 

 

• Smart meters have significant communication limitations [Armel 2013]  

 

• Existing work investigates unavailable TCL measurements: 

– E.g., [Mathieu 2013, Borsche 2013, Vrettos 2014, Ghaffari 2015] 

 

• [Hao 2014] investigates delays but does not compensate for them 

 

• Research goal: design estimation and control algorithms that incorporate 

 realistic delay information to mitigate the effects of delays 



Managing Communication Delays (1/9) 
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This work develops algorithms that mitigate the effects of 

communication delays by incorporating delay information. 
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Managing Communication Delays (2/9) 

24 

At each time-step, we transmit an input sequence and allow 

TCLs to select an input based on the realized delays. 
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Managing Communication Delays (3/9) 

25 

The controller is formulated as a quadratic program similar to a 

finite-horizon, tracking LQR with state and input constraints.  
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Managing Communication Delays (4/9) 

26 

This work creates two state estimators that adapt a networked 

Kalman filter to the demand response scenario. 
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This work creates two state estimators that adapt a networked 

Kalman filter to the demand response scenario. 
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The networked Kalman filter was developed in cite [Schenato 2007]  
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Managing Communication Delays (5/9) 

28 

Case studies simulated 10,000 residential air conditioners with two 

second time-steps over an hour with a constant outdoor temperature. 

• Simulate two variations of the plant 

– Two-state TCL model 

– Three-state TCL model 

• Use three delay distributions 

– No delays 

– Average delays of 10 seconds with log-normal distribution 

– Average delays of 20 seconds with log-normal distribution 

• Use three levels of delay compensation 

– No compensation (NC) 

– Time-stamping only (TS) 

– Full compensation (FC) 

• Ten instances per case study 
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Managing Communication Delays (6/9) 

29 

With average delays of 20 sec. and the two-state TCL model, 

both controller-estimator pairs track the references effectively.  
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Managing Communication Delays (7/9) 

30 

With the three-state TCL model, only Estimator 1 achieves reasonable 

tracking, and Estimator 2 is less effective due to model mismatch.   
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Managing Communication Delays (8/9) 

31 

Accounting for the delays within the algorithms reduces the 

effects of the delays, and time-stamping alone is also effective. 
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Managing Communication Delays (9/9) 

32 

In summary, this work developed a controller and two estimators to 

mitigate the effects of communication delays while investigating model 

mismatch. 
 

• The controller-estimator pairs can effectively provide frequency regulation 

with average delays up to 20 seconds 

• Results for Estimator 2 are heavily dependent on model accuracy 

 

 

• Chapter 4 develops a simplified controller 

– Linear control law 

– Reduced computation 

– Minor reduction in tracking 

 versus the MPC controller 

 due to the exclusion of constraints 
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Energy Disaggregation (0/17) 
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34 

The previous work assumed that aggregate measurements of the demand-
responsive load were available, but obtaining these in real-time is an open 
question. 

• Building-level energy  

 disaggregation is long-studied 
 [Hart 1992] 

 

• Could use many device-level sensors 

and fast communication ($$$) 

 

• Could work within capabilities of  

 distribution network sensors 

 and smart meters ($$$) 

 

• Knowing real-time demand-responsive load provides 

– Feedback signal for controller 

– Information on capacity for bids into ancillary service markets 



Energy Disaggregation (1/17) 

35 

Goal: separate measurements of the demand served by a 

distribution feeder into components as the measurements arrive. 
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Energy Disaggregation (2/17) 

36 

Energy disaggregation is performed on real-time demand measurements 
using Dynamic Fixed Share (DFS), an online learning algorithm. 
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Energy Disaggregation (3/17) 

37 

Dynamic Fixed Share incorporates predictions from models that 

are generated from historical building- and device-level data. 
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Energy Disaggregation (4/17) 

The models used are based on linear regression, linear time-

invariant systems, and linear time-varying systems. 
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Energy Disaggregation (5/17) 

The models used are based on linear regression, linear time-

invariant systems, and linear time-varying systems. 
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Energy Disaggregation (6/17) 

The models used are based on linear regression, linear time-

invariant systems, and linear time-varying systems. 
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Energy Disaggregation (7/17) 

41 

Dynamic Mirror Descent (DMD) iteratively updates an estimate based 

on a new measurement, then advances the estimate in time. 
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Energy Disaggregation (8/17) 

42 

Chapter 5 developed Dynamic Mirror Descent updates that were identical to 
those of a Kalman filter by appropriately choosing the loss and divergence 
functions. 
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Energy Disaggregation (9/17) 
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Dynamic Fixed Share combines estimates from separate Dynamic Mirror 
Descent algorithms, each using separate models, into an overall estimate. 
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Dynamic Fixed Share was developed in [Hall 2015] and uses the Fixed Share Algorithm [Herbster 1998] 



Energy Disaggregation (10/17) 

44 

Due to the different models used within this work, a modified 

version of DMD was developed that runs models in open-loop. 
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Energy Disaggregation (11/17) 

The simulation setup uses real-world data at the device level, 

allowing the true AC and OL demand to be known. 

 

• Demand data sources 

– Feeder model from Gridlab-D feeder taxonomy  

– Commercial building data from PG&E  

– Residential building and device data from Pecan Street 

 

• 10 separate “testing” days 

 

• One minute time-steps 

 

• Three model sets 

–           : all model combinations 

–           : model combinations excluding the LTI AC models 

–           : model combinations using all OL models and only the LTV AC models 

 

• Benchmark Algorithms 

– Best Kalman filter: best (ex post) filter from  the set of models  

– Average Kalman filter: average of all filters from the set of models  
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Energy Disaggregation (12/17) 
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Running Dynamic Fixed Share with Update Method 1 and 
𝕸𝑅𝑒𝑑 effectively estimates the AC demand in real-time. 
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Energy Disaggregation (13/17) 

47 

RMS Error values across the case studies show that model 

selection is important in algorithm performance.  
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RMSE of the AC demand 
 

Best  Kalman Filter:    

 min = 148.4 kW 

 mean = 195.3 kW 

 max = 318.9 kW 

 

Average Kalman Filter:    

 min = 173.1 kW 

 mean = 259.4 kW 

 max = 357.5 kW 



Energy Disaggregation (14/17) 
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Time series of model weights indicating the most accurate 

(available) model is a combination of two candidate models. 
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Energy Disaggregation (15/17) 
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Modifying the ᅍ𝑠 and ᅍ𝑟 parameters influences the AC demand RMSE by 
adjusting the model weight transitions and measurement-based adjustments. 
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Energy Disaggregation (16/17) 

50 

A parameter sweep of 𝝀 indicates that tuning the parameter 

based on similar, historical days may improve performance.  
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Energy Disaggregation (17/17) 

51 

In summary, this work applies DFS to a feeder-level energy disaggregation 
problem, separating the feeder demand into two components. 

• DFS can effective perform the disaggregation problem 

• Models within DFS strongly influence performance 

• DFS achieved lower AC demand RMSE than AKF 

• DFS achieves higher AC demand RMSE than BKF 

• Further parameter tuning may improve results 

 

 

• Additional results include different estimation error covariances within the 

DMD formulation, which is greatly influences the performance of DFS 
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Future Work (1/4) 

53 

The first avenue of future work aims to benchmark existing 

aggregate models in a common simulation case study.  

Temperature- Dependent Markov Model Transfer Function Model   [Mahdavi 2016] 

Ledva, Dissertation Proposal 
9/22/2017 



Future Work (2/4) 
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The second avenue incorporates reactive power and voltage 

measurements into the energy disaggregation problem.  

Ledva, Dissertation Proposal 
9/22/2017 



Future Work (2/4) 

55 

The second avenue incorporates reactive power and voltage 

measurements into the energy disaggregation problem.  

Ledva, Dissertation Proposal 
9/22/2017 



Future Work (2/4) 

56 

The second avenue incorporates reactive power and voltage 

measurements into the energy disaggregation problem.  

Ledva, Dissertation Proposal 
9/22/2017 



Future Work (3/4) 

57 

The second avenue incorporates reactive power and voltage 

measurements into the energy disaggregation problem.  

Ledva, Dissertation Proposal 
9/22/2017 



Future Work (3/4) 
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The second avenue incorporates reactive power and voltage 

measurements into the energy disaggregation problem.  
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The DistFlow equations were developed in [Baran 1989] 



Future Work (4/4) 

59 

The third avenue also incorporates active control of the AC load 

within the energy disaggregation problem. 
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