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 Part I: General Background 
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Background: The University of Michigan, the ECE department, and MPEL 

UofM is located roughly 30 minutes from Detroit, MI; 16K 
graduate and 30K undergraduate students enrolled. 

 

• ECE in 2016: 

– 759 graduate students (283 PhD) 

– 69 faculty 

– $36.5M in research 

• 70 Invention Disclosures  

• 41 US Patents 

• 6 Licenses 
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Background: Professors’ Research Interests 

Profs Mathieu and Hiskens are interested in uncertainty, 

distributed energy resources, and stability in power systems. 

• Johanna Mathieu 

» Demand response 

• respecting distribution network constraints, improving power system stability 

margins, investigating environmental impacts, investigating energy efficiency 

impact on buildings 

• Taking into account communication and sensing limitations 

» Energy storage 

• environmental impacts, multitasking and aggregation  

» Stochastic optimal power flow  

 

• Ian Hiskens 

» Stochastic optimal power flow  

» Grid integration of renewable generation 

» Stability boundaries for nonlinear systems. 

» Fast-acting, non-disruptive demand response 

» Dynamical systems with uncertainties 
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 Part II: Research Presentation 

 
“Real-Time Energy Disaggregation of a Distribution 

Feeder’s Demand Using Online Learning” [1] 

 

[1] Ledva et al. 2017. (Under Review).  Available on Arxiv 
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Feeder-Level Energy Disaggregation: Overview 

The goal is to separate demand measurements for a 
distribution feeder into components as they arrive 
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Feeder-Level Energy Disaggregation: Overview 

The goal is to separate demand measurements for a 
distribution feeder into components as they arrive 

  

 

 

 

Why is this useful?   
• Inform balancing reserve requirements 

• Plan demand response actions  

• Inform real-time demand response capacity 

• Feedback signal for demand response 
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“Real-Time Energy Disaggregation of a Distribution 
Feeder’s Demand Using Online Learning” [1] 

  

Contents 
• Problem Framework 

• Online Learning Algorithms 

• Models 

• Results 

• Conclusions 

[1] Ledva et al. 2017. (Under Review).  Available on Arxiv 
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Problem Framework 

Energy disaggregation is performed on real-time demand 
measurements using DFS, an online learning algorithm. 
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Problem Framework 

DFS incorporates predictions from models that are 
generated from historical building- and device-level data. 
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“Real-Time Energy Disaggregation of a Distribution 
Feeder’s Demand Using Online Learning” [1] 

  

Contents 
• Problem Framework 
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• Models 

• Results 

• Conclusions 
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Algorithms 

Dynamic mirror descent (DMD) is an algorithm that uses a 
model, measurements, and a user-defined convex program. 
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Algorithms 

Dynamic fixed share (DFS) combines predictions from 
different models into an overall prediction.  
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Models 

The models used are based on linear regression, linear 
time-invariant systems, and linear time-varying systems. 
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Results 

The simulation setup uses real-world data at the device 
level, allowing the true AC demand to be known. 

 

• Demand data sources 
– Feeder model from Gridlab-D feeder taxonomy [2] 

– Commercial building data from PG&E  

– Residential building and device data from Pecan Street [3] 

 

• One minute time-steps 
 

• Three model sets 
– All models 

– Reduced set of models 

– LTV AC models only 

 

• Benchmark Algorithm 
– Kalman filters 
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Results 

RMS prediction errors (kW) for the DFS scenarios averaged 

over 10 simulated days and example time series. 
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Results 

Time series of model weights indicating the most accurate 
(available) model is a combination of two candidate models. 
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Conclusions 

The online learning algorithm is able to effectively separate 
the AC and OL demand in real-time 

 

• Conclusions 
– Better models improve performance 

– Competitive with the “best’’ Kalman Filter 

 

• Work under review 
– Comparison of DFS with Kalman filter methods 

– Incorporating statistical information into DFS 

 

• Future work 
– Include active control 

– Use data sampled at faster rates (e.g., seconds) 

– Investigate transfer of theory between domains 
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   Questions? 
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