9th Seminar for the Next Generation of Researchers in Power Systems

Greg Ledva

Advisor: Johanna Mathieu
Lab: The Michigan Power and Energy Lab (MPEL)
University: The University of Michigan (UofM)

This research was funded by NSF Grant #ECCS-1508943.
Part I: General Background
Background: The University of Michigan, the ECE department, and MPEL

UofM is located roughly 30 minutes from Detroit, MI; 16K graduate and 30K undergraduate students enrolled.

- ECE in 2016:
 - 759 graduate students (283 PhD)
 - 69 faculty
 - $36.5M in research
 - 70 Invention Disclosures
 - 41 US Patents
 - 6 Licenses
Profs Mathieu and Hiskens are interested in uncertainty, distributed energy resources, and stability in power systems.

• Johanna Mathieu
 » Demand response
 • respecting distribution network constraints, improving power system stability margins, investigating environmental impacts, investigating energy efficiency impact on buildings
 • Taking into account communication and sensing limitations
 » Energy storage
 • environmental impacts, multitasking and aggregation
 » Stochastic optimal power flow

• Ian Hiskens
 » Stochastic optimal power flow
 » Grid integration of renewable generation
 » Stability boundaries for nonlinear systems.
 » Fast-acting, non-disruptive demand response
 » Dynamical systems with uncertainties
Part II: Research Presentation

“Real-Time Energy Disaggregation of a Distribution Feeder’s Demand Using Online Learning” [1]
The goal is to separate demand measurements for a distribution feeder into components as they arrive.
The goal is to separate demand measurements for a distribution feeder into components as they arrive.

Why is this useful?

- Inform balancing reserve requirements
- Plan demand response actions
- Inform real-time demand response capacity
- Feedback signal for demand response
“Real-Time Energy Disaggregation of a Distribution Feeder’s Demand Using Online Learning” [1]

Contents

• Problem Framework
• Online Learning Algorithms
• Models
• Results
• Conclusions

“Real-Time Energy Disaggregation of a Distribution Feeder’s Demand Using Online Learning” [1]

Contents

• Problem Framework
• Online Learning Algorithms
• Models
• Results
• Conclusions

Energy disaggregation is performed on real-time demand measurements using DFS, an online learning algorithm.
DFS incorporates predictions from models that are generated from historical building- and device-level data.
“Real-Time Energy Disaggregation of a Distribution Feeder’s Demand Using Online Learning” [1]

Contents

• Problem Framework
• Online Learning Algorithms
• Models
• Results
• Conclusions

Dynamic mirror descent (DMD) is an algorithm that uses a model, measurements, and a user-defined convex program.

Note: DMD is similar to a Kalman filter but the user has more flexibility.
Dynamic fixed share (DFS) combines predictions from different models into an overall prediction.
“Real-Time Energy Disaggregation of a Distribution Feeder’s Demand Using Online Learning” [1]

Contents

• Problem Framework
• Online Learning Algorithms
• Models
• Results
• Conclusions

The models used are based on linear regression, linear time-invariant systems, and linear time-varying systems.
“Real-Time Energy Disaggregation of a Distribution Feeder’s Demand Using Online Learning” [1]

Contents

- Problem Framework
- Online Learning Algorithms
- Models
- Results
- Conclusions

The simulation setup uses real-world data at the device level, allowing the true AC demand to be known.

- **Demand data sources**
 - Feeder model from Gridlab-D feeder taxonomy [2]
 - Commercial building data from PG&E
 - Residential building and device data from Pecan Street [3]

- **One minute time-steps**

- **Three model sets**
 - All models
 - Reduced set of models
 - LTV AC models only

- **Benchmark Algorithm**
 - Kalman filters
Results

RMS prediction errors (kW) for the DFS scenarios averaged over 10 simulated days and example time series.

<table>
<thead>
<tr>
<th>Model Set Algorithm</th>
<th>$\mathcal{M}^{\text{Full}}$ DFS</th>
<th>\mathcal{M}^{Red} DFS</th>
<th>\mathcal{M}^{KF} DFS</th>
<th>\mathcal{M}^{KF} BKF</th>
<th>\mathcal{M}^{KF} AKF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Demand</td>
<td>196.8</td>
<td>100.0</td>
<td>99.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AC Demand</td>
<td>308.0</td>
<td>220.6</td>
<td>226.5</td>
<td>195.3</td>
<td>259.4</td>
</tr>
<tr>
<td>OL Demand</td>
<td>291.4</td>
<td>222.3</td>
<td>228.2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(b) OL Demand

(c) AC Demand
Time series of model weights indicating the most accurate (available) model is a combination of two candidate models.
“Real-Time Energy Disaggregation of a Distribution Feeder’s Demand Using Online Learning” [1]

Contents

• Problem Framework
• Online Learning Algorithms
• Models
• Results
• Conclusions

The online learning algorithm is able to effectively separate the AC and OL demand in real-time

• Conclusions
 – Better models improve performance
 – Competitive with the “best” Kalman Filter

• Work under review
 – Comparison of DFS with Kalman filter methods
 – Incorporating statistical information into DFS

• Future work
 – Include active control
 – Use data sampled at faster rates (e.g., seconds)
 – Investigate transfer of theory between domains
Key References

Questions?
Recent Works by Prof. Hiskens and Mathieu

