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Background

The power consumption of TCLs can be coordinated to help the 

electric power grid balance supply and demand of electricity

• Large populations of TCLs

• Often residential air conditioners (ACs)

• Can provide frequency regulation

• Common to assume an aggregator receives 

a desired power signal and controls an 

aggregation of loads to match that signal

• Rely on control and estimation algorithms

• Estimates of the aggregate AC demand can 

be used as a feedback signal for control and 

estimation algorithms



• Contribution 1: We show that Dynamic Fixed Share (DFS) can be 

constructed to produce identical estimates to those produced by a multiple 

model Kalman filter (MMKF)

• Contribution 2: We incorporate three heuristics used within MMKFs into 

DFS

• Contribution 3: We compare the performance of DFS and a MMKF within a 

demand response simulation

Background

In this work, we apply Kalman filter and online learning 
algorithms to estimate the aggregate AC demand. 
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Kalman Filter Background

A Kalman filter relies on a linear model of the system and 
normally-distributed random variables to estimate a state.

• System model:

• Model-based update:

• Measurement-based update:

• Convex optimization formulation [Mattingley 2010]:

[Simon 2006]



• System model: Assumed below

• Model-based update:

• Measurement-based update: Depends on the user construction of the convex optimization 

function below

• Convex optimization formulation:

Dynamic Mirror Descent (DMD) Background

Similar to a Kalman filter, DMD uses a system model and a 
convex optimization formulation to update the predictions

[Hall 2015]



DMD and KF Equivalent Updates

DMD can produce identical updates to a Kalman filter if the user-

defined functions and parameters are chosen appropriately.

• Desired update: 

1. Choose the Bregman divergence:

2. Set step-size parameter:

3. Solve the convex optimization formulation:

4. Select the loss function to match the desired update:

[Ledva 2018]



MMKF Background

An MMKF combines estimates from separate underlying 
Kalman filters using a Gaussian likelihood function.

• Likelihood function: 

• Weighting function: 

• Overall prediction: 

[Welch 2001]



DFS Background

DFS combines estimates for separate underlying DMD 
algorithms, which each incorporate different models.

• Weighting Function:

• Overall estimate:

[Hall 2015]



• Set parameters in DFS:

• Both weight updates now have the form: 

• Scale output covariance: 

MMKF and DFS Equivalent Updates

We can make the weighting functions equivalent between the 

MMKF and DFS by scaling parameters within the functions.



Heuristics

We show that several heuristic adjustments that are used within 
MMKFs can be incorporated into DFS by modifying the weight update.

• A minimum weight:

• Exponential decay:

• Sliding Window:



Case Studies

We simulate a demand response scenario to evaluate the ability of 
different algorithm implementations to estimate the aggregate demand.

• Each algorithm uses three underlying models to form its overall prediction

• Identical individual predictions across the multiple model algorithm implementations



Case Studies

We simulate a population of 1,000 ACs over six hours using 
4 second time-steps and a sinusoidal outdoor temperature.



Case Studies

Performing the scaling of the MMKF weight update 
produces the same estimates for both the MMKF and DFS

104.5 kW RMSE



Case Studies

Including a minimum weight into DFS and a MMKF 
significantly improves the estimation accuracy

104.5 kW RMSE

61.9 kW RMSE



Case Studies

A minimum weight in MMKF allows the algorithm to shift weight 

to the most accurate model near the end of the simulation.

104.5 kW RMSE

63.4 kW RMSE



Case Studies

Incorporating a sliding window and exponential decay allow 
the weights to remain dynamic as time progresses.

61.9 kW RMSE

61.4 kW RMSE

60.9 kW RMSE



Conclusions

There are close similarities between online learning 
methods and Kalman filter approaches

• Manipulating the weighting equations in the MMKF results in an 
identical weight update as in DFS

• DFS can be modified to incorporate heuristics that are commonly 
used within a MMKF

• Including a minimum weight threshold improves the performance of 
DFS and a MMKF

• Including exponential decay or a sliding window in the DFS weight 
update allows more consistent, responsive behavior in the weights.

• The DFS and MMKF algorithms effectively estimate the aggregate 
AC demand within the demand response simulation.
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