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Abstract— Kalman filtering and online learning are two
approaches to estimate the state of a system in the pres-
ence of inaccurate (e.g., noisy) measurements. While many
online learning algorithms are model-free and data-driven,
two recently developed online learning algorithms, Dynamic
Mirror Descent (DMD) and Dynamic Fixed Share (DFS),
incorporate dynamic models, similarly to Kalman filtering
algorithms. Our previous work showed that DMD can be
constructed to produce state estimates that are identical to
those produced by a discrete-time Kalman filter. This work
extends our previous work by exploring connections between a
multiple model Kalman filter (MMKF) and DFS, which both
incorporate a set of candidate models to address situations in
which the underlying model is unknown. We show that the
functions/parameters used within DFS can be constructed to
produce the same estimates as a MMKF. We then modify
DFS to include several heuristics that are used to improve
the performance of a MMKF in order to assess whether
they can also be used to improve the performance of DFS.
Finally, we investigate the performance of the algorithms and
their variations in a simulation study. Specifically, we seek to
estimate the time-varying power consumption of an aggregation
of electric loads, which could be used as the feedback signal
within a demand response algorithm. The simulation results
empirically show that DFS implementations generally perform
better than comparable MMKF implementations since we are
able to tune the functions/parameters used within DFS.

I. INTRODUCTION
State estimation and online learning are two approaches

to estimate the state of a dynamic system as measurements
arrive at sequential, discrete time-steps. The discrete-time
Kalman filter (hereafter referred to simply as a Kalman
filter) relies on a model-based update that advances the
state estimate in time according to an assumed model of
the underlying system, and a measurement-based update that
incorporates newly arrived measurements of the system into
the state estimate. While a Kalman filter uses a single model
of the system to estimate the state, a multiple model Kalman
filter (MMKF) [1], [2] uses a set of possible models to
compute the state estimate, addressing situations where the
model is unknown beforehand. The Kalman filter and MMKF
make assumptions on the generative model of the data,
i.e., that the system model is linear and that each model’s
error and measurement noise are normally distributed. The
assumptions lead to a fixed structure for the state estimation
equations, and a user implementing the algorithms can only
tune the model-based parameters within the update equa-
tions.
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While many online learning algorithms are model-free
and data-driven, two recently developed online learning
algorithms, Dynamic Mirror Descent (DMD) and Dynamic
Fixed Share (DFS) [3], incorporate dynamic models and use
both a model-based update and a measurement-based update,
similarly to Kalman filtering algorithms. DMD is an online
learning analogue to a Kalman filter, and DFS is comparable
to a MMKF. DMD and DFS both estimate a dynamic system
state without making assumptions of the generative model
of the data. These online learning algorithms are based on
online convex optimization [4], where a user-defined convex
optimization problem is solved online, or at each time-step,
to update estimates using each new measurement as it arrives.
These algorithms are more flexible and more data-driven
than the Kalman filter algorithms. Flexibility arises from the
user’s ability to use a nonlinear system model within the
algorithm and the ability for the user to design the online,
convex optimization problem that dictates the way that a
new measurement is incorporated into the estimate. The
algorithms are more data-driven in the sense that historical
data can be used do design this convex optimization problem
as well as to select the form of the possibly nonlinear
model(s) along with its (their) parameters. Within a Kalman
filter, the user can tune the parameters within the update
equations to improve performance, but within DMD, the user
can tune the equations themselves (as well as the parameters)
to improve performance. However, DMD and DFS are not
guaranteed to be the best estimator from specific class of
estimators, unlike a Kalman filter, which is the best linear
estimator out of all linear estimators.

In this paper, we compare the multiple model algorithms,
DFS and a MMKF, and apply them to a demand response
simulation. Our previous work [5] showed that DMD can
be constructed to produce identical state estimates to those
produced by a Kalman filter. This work builds on this prior
result and shows that the user-defined functions/parameters
within DFS can be constructed to produce identical states
estimates to those produced by a MMKF. We then modify
DFS to include three heuristics that are used to improve the
performance of a MMKF in order to assess whether they
can also be used to improve the performance of DFS. While
these heuristics result in a suboptimal MMKF, they often
improve its estimation accuracy in practice, which we will
demonstrate empirically.

In our simulation study, we aim to estimate the time-
varying aggregate demand of a population of residential
air conditioners (ACs). Such estimates could be used as a
feedback signal within a demand response algorithm that
aims to coordinate the aggregate demand to provide ser-



vices (e.g., frequency regulation) to the electricity grid. We
compare the estimation error of various DFS and MMKF
implementations, which all rely on a set of aggregate load
models that vary in their relative accuracy over the course
of the simulation horizon.

The contributions of this paper are as follows: 1) we show
that DFS can be constructed to produce identical estimates
to those produced by a MMKF; 2) we incorporate three
heuristics used within MMKFs into DFS; and 3) we compare
the performance of DFS and a MMKF within the demand
response simulation. This is in contrast with our previous
works [5], [6], where [6] applied DMD and DFS to a
feeder-level energy disaggregation problem, which sought to
separate measurements of a distribution feeder’s aggregate
demand into parts in real-time and [5] drew parallels between
DMD and Kalman filtering and showed that the design of
the online convex program used within DMD/DFS strongly
influences its estimation accuracy.

The remainder of this paper is organized as follows. Sec-
tion II presents the general estimation problem; Section III
summarizes the Kalman filter algorithms; Section IV summa-
rizes the DMD and DFS algorithms; Section V reviews the
method to construct the functions/parameters within DMD
to achieve the same estimates as a Kalman filter from [5],
derives a method to construct the functions/parameters within
DFS to achieve the same estimates as a MMKF, and derives
heuristic adjustments to DFS based on those commonly
used in MMKFs; Section VI describes the demand response
simulation study and its results; and Section VII concludes.

II. ESTIMATION PROBLEM
The general estimation problem considered within this

work is to estimate the value of a dynamic system state using
1) a priori knowledge about the system and 2) measurements
of the system as they arrive at sequential, discrete time-steps.
For the Kalman filter methods summarized in Section III, a
priori knowledge corresponds to the assumption of a linear
system model and the assumption of zero-mean, normally-
distributed process and measurement noise. For the online
learning methods summarized in Section IV, a priori knowl-
edge corresponds to the model, which may be nonlinear, and
the construction of the convex optimization problem that is
solved at each time-step.

Each algorithm uses a model to advance an estimate in
time, which we refer to as the model-based update, and
then uses a measurement to adjust the estimate, which we
refer to as the measurement-based update. At time-step k,
the algorithm first advances its estimate of the system state
to the next time-step using an assumed model of the system
to produce an a priori estimate for time-step k + 1. The
system then produces a measurement for time-step k + 1.
The algorithm uses this new measurement to adjust the a
priori estimate and compute the a posteriori estimate. The
algorithm then uses the model to advance the estimate in
time again, and the process repeats.

Furthermore, to address modeling uncertainty, there may
be multiple versions of each algorithm running where each
version incorporates a separate model from a set of models
and forms its own estimate of the state. Then, the individual

estimates are combined into an overall estimate. Models that
are more accurate are given more weight and can dominate
the overall estimate. These “multiple-model” algorithms can
be used in situations where the system model is not known
beforehand or when the system operates in different regimes
best described by different models.

We denote the system state xk ∈ X , the a priori estimate
as x̂k ∈ X , the a posteriori estimate as x̃k ∈ X , and the
measurement as yk ∈ Y . We assume that the domain of
the state X ⊂ Rp is a bounded, closed, convex feasible
set, which is required by the online learning algorithms
summarized in Section IV but not by the Kalman filter
algorithms summarized in Section III. Finally, we assume
that the domain of the measurements is Y ⊂ Rq . The set of
Nmdl models is denoted Mmdl, and i ∈Mmdl indexes them.

III. KALMAN FILTER ALGORITHMS

We next summarize the Kalman filter and MMKF al-
gorithms to introduce notation. Section III-A describes the
Kalman filter, and Section III-B describes the MMKF.

A. Kalman Filter

A Kalman filter can be viewed as a stochastic approach to
estimating the state of a dynamic system where updates to the
estimate rely on a system model that is assumed to be linear
along with process and measurement noise that are assumed
to be normally distributed. The assumed system model is

xk+1 = Ak xk + ωk (1)
yk = Ck xk + vk, (2)

where (1) advances the state in time and (2) relates the state
to a measurement. In these equations, xk ∈ Rp is the state,
ωk ∈ Rp is the process noise (or modeling error), yk ∈
Rq is the output (or observation/measurement), and vk ∈
Rq is the measurement noise. Samples of ωk and vk are
assumed to be IID and to follow separate zero-mean, normal
distributions. Their respective covariances Qk and Rk are
each symmetric, positive definite matrices. The system is
assumed to be observable, and the matrices Ak, Ck, Qk,
and Rk are assumed to be known.

The Kalman filter finds a state estimate that minimizes
the mean squared estimation error based on the assumed
system model. The model-based update is x̂k+1 = Ak x̃k.
The measurement-based update is

x̃k = x̂k + P̂kC
T
k

[
CkP̂kC

T
k +Rk

]−1
(yk − Ckx̂k) , (3)

where P̂k is the estimation error covariance, which is known
at each time-step. Equation (3) can be viewed as the solution
to the following online, convex optimization problem [7]:

min
x,vk

vT
kR
−1
k vk + (x− x̂k)T P̂−1k (x− x̂k) (4)

s.t. yk = Ckx+ vk. (5)

When implementing a Kalman filter, the user can choose
the model parameters – Ak, Ck, Qk, and Rk – but the
mathematical equations for the model-based update and the
measurement-based update are otherwise fixed.



B. Multiple Model Kalman Filter

The MMKF uses a set of Nmdl independent Kalman filters
that each run in parallel using one model from Mmdl, and
the MMKF combines the estimates of each Kalman filter
into an overall estimate. Each model i ∈ Mmdl satisfies the
assumptions of the Kalman filter and has corresponding ma-
trices denoted Aik, Cik, Qik, and Rik. We denote the estimate
using model i ∈Mmdl as x̂ik and the covariance of the output
estimation error as P̂ y,i

k = Cik P̂
i
k (Cik)T + Rik. Finally, we

define a quantity dy
k(ŷik) that is the squared Mahalanobis

distance of Kalman filter i’s output estimate versus the
measurement yk, i.e., dy

k(ŷik) = (ŷik−yk)T (P̂ y,i
k )−1(ŷik−yk)

with ŷik = Cikx̂
i
k.

The equations that form the weights and combine the
estimates within the MMKF are

h(yk|mi) =

[
(2π)q/2

√
|P̂ y,i
k |
]−1

exp

(
−1

2
dy
k(ŷik)

)
(6)

wik+1 =
h(yk|mi) wik∑

j∈Mmdl h(yk|mj) wjk
(7)

x̂k+1 =
∑

i∈Mmdl

wik+1 x̂
i
k+1, (8)

with i ∈ Mmdl for (6) and (7). In the above, (6) is a
conditional probability of the likelihood of the observation
yk given that the underlying system is model mi, (7) is a
weighting function where the weights can be viewed as a
probability that model mi matches the underlying system
model, and (8) forms the overall estimate using the individual
Kalman filter estimates and their weights.

Note that other algorithms exist for situations where the
system models switches as time progresses, e.g., the first-
and second-order generalized pseudo-Bayesian algorithms
and the interacting multiple model algorithm, all from [2].
However, these algorithms require the probability of tran-
sitioning from one model to another during a time-step to
be known a priori; here, we assume that this is unknown
a priori. In addition, whereas online learning assumes that
the underlying models (or “experts”) operate independently,
the first- and second-order generalized pseudo-Bayesian al-
gorithms and the interacting multiple model algorithm do not
make this assumption. As a result, we do not include further
discussion of these algorithms.

IV. ONLINE LEARNING ALGORITHMS

In this section we summarize the DMD and DFS algo-
rithms, which were originally developed in [3]. Section IV-A
describes DMD, and Section IV-B describes DFS.

A. Dynamic Mirror Descent

The DMD algorithm uses a user-defined convex optimiza-
tion formulation and a single model of the underlying system
to estimate its state. Specifically, DMD uses the convex
optimization formulation to adjust the estimate x̂k using
the new measurement yk, and then applies the model to
advance the adjusted estimate to the next time-step. The

DMD algorithm formulation is [3]

x̃k = argmin
x∈X

ηs (∇`k(x̂k))
T
x+D (x‖x̂k) (9)

x̂k+1 =Φ(x̃k), (10)

where (9) computes the adjusted estimate and (10) applies
the model. In these equations, Φ(·) is the (possibly nonlinear)
model, ηs > 0 is a user-defined step size, and ∇`k(x̂k)
is the gradient or subgradient of the convex loss function
`k(x̂k), which computes the error on the output estimate.
The function D(x‖x̂k) is a Bregman divergence, which is
similar to a distance function. As an example, we could
use D(x‖x̂k) = ‖x − x̂k‖22 and `t(x̂k) = ‖Cx̂k − yk‖22,
where the matrix C translates the state estimate into an
output estimate. The choice of loss function establishes
the relationship between output estimate errors and state
estimate errors, since the gradient of this function helps to
determine how the state estimate is adjusted based on the
output estimate errors. The choice of the Bregman divergence
helps to establish the relationship between estimation errors
within the different components of the state. The parameter
ηs controls how closely the algorithm matches the output
estimates with the measurements (by adjusting the state
estimate) versus trusting the models.

B. Dynamic Fixed Share
The DFS algorithm uses a set of DMD algorithms, each

using a separate (possibly nonlinear) model from Mmdl,
as experts (i.e., algorithms that generate estimates) into the
Fixed Share Algorithm developed in [8]. Similar to a MMKF,
DFS forms an overall state estimate from the Nmdl experts.
The DFS algorithm’s weight updates and overall estimate are
those of the Fixed Share Algorithm where the estimates x̂ik
for i ∈Mmdl are generated using DMD:

wik+1 =
λ

Nmdl + (1− λ)
wik exp

(
−ηr `k

(
x̂ik
))

Nmdl∑
j=1

wjk exp
(
−ηr `k

(
x̂jk

)) (11)

x̂k+1 =
∑

i∈Mmdl

wik+1 x̂
i
k+1 (12)

with i ∈Mmdl for (11). Equation (11) updates the weight of
each expert, where wik is the weight of expert i, λ ∈ (0, 1)
is a user-defined parameter that sets the minimum weight of
each expert, and ηr is a user-defined parameter that scales the
total accumulated loss (which is related to output estimation
errors). Equation (12) combines the individual estimates into
an overall estimate x̂k. Setting ηr to larger values forces
exp

(
−ηr `k

(
x̂ik
))

to be near one regardless of `k
(
x̂ik
)
, and

this results in faster changes to the weights.

V. CONNECTIONS BETWEEN THE KALMAN FILTERING
AND ONLINE LEARNING ALGORITHMS

Section V-A reviews the method developed in [5] to
construct the functions/parameters within DMD to produce
estimates identical to those produced by a Kalman filter.
Section V-B builds on this result and presents our main
result: a method to construct the functions/parameters used
within DFS to produce estimates identical to those produced



by a MMKF. Finally, Section V-C adapts several heuristics
commonly used within MMKFs to DFS.

A. Producing Identical Estimates with DMD and a Kalman
Filter

We construct DMD by choosing the model, user-defined
parameters, and user-defined functions. As with a Kalman
filter, we assume as linear model and that the model matrices
Ak, Ck, Qk, and Rk are known, and additionally, that P̂k is
known. Choosing the model used within DMD to be identical
to that used within the Kalman filter results in the same
model-based update. The remaining step is to construct the
convex program (9) such it corresponds to (3).

In (9) we have the ability to choose the ηs, D(x‖x̂k),
and `k(x̂k). Recall that the measurement-based update in a
Kalman filter is

x̃k = x̂k + P̂kC
T
k (P̂ y

k)−1 (yk − Ckx̂k) ,

and the measurement-based update in DMD is

x̃k = arg min
x∈X

ηs (∇`k(x̂k))
T
x+D (x‖x̂k) .

Choosing the Bregman divergence as D (x‖x̂k) =
1
2 (x− x̂k)

T
P̂−1k (x− x̂k), setting ηs = 1, and solving for

the closed form solution of the convex program (i.e., taking
the gradient with respect to x and setting this equal to zero)
gives

x̃k = x̂k + P̂k (−∇`k(x̂k)) . (13)

Note that with the appropriate selection of the Bregman
divergence, the structure of DMD’s measurement-based up-
date closely matches that of the Kalman filter, and the
remaining step is to choose `k(x̂k) appropriately. Noting that
δ
da

[
(Ma− b)TV (Ma− b)

]
= 2MTV (Ma−b), we choose

`k(x̂k) =
1

2
(Ckx̂k − yk)

T
(P̂ y
k)−1 (Ckx̂k − yk) ,

and then −∇`k(x̂k) = CTk (P̂ y
k)−1 (yk − Ckx̂k). Plugging

−∇`k(x̂k) into (13) gives the same measurement-based
update as the Kalman filter.

B. Producing Identical Estimates with DFS and a MMKF
Since DMD can be constructed to produce identical esti-

mates to those produced by a Kalman filter, all that is needed
to produce identical updates with DFS and MMKF is to
ensure that the updates to the weights wik are equal. We
first set λ = 0, ηr = 1, and use the loss function developed
in Section V-A. The resulting weight update in DFS is

hDFS(yk|mi) = exp
(
−`k(x̂ik)

)
(14)

wik+1 =
hDFS(yk|mi) wik∑

j∈Mmdl hDFS(yk|mj) wjk
(15)

for i ∈ Mmdl. Note that (15) corresponds exactly to (7),
and the remaining step is to construct hDFS(yk|mi) to equal
h(yk|mi).

To make hDFS(yk|mi) equal h(yk|mi), we will scale P̂ y,i
k

by a parameter βi such that (2π)−q/2 (|βiP̂ y,i
k |)−1/2 = 1.

The parameter βi will be positive since P̂ y,i
k is positive

definite, and we also define αi ,
√
βi. Scaling P̂ y,i

k by
βi amounts to adjusting our belief of the accuracy of the
output estimate, and the output equations should be changed
accordingly. To see this, recall that P̂ y,i

k = CikP̂
i
k(Cik)T +Rik,

and then βiP̂ y,i
k = (αiCik)P̂ ik(αiCik)T +βiRik, i.e., the scal-

ing parameters only appear with the output-related quantities.
As a result, the outputs are scaled, i.e., ŷik = Cikx̂

i
k becomes

αiŷik = (αiCik)x̂ik, the measurement noise covariance Rik
becomes βiRik, and the output yk = Cikxk + vk becomes
αiyk = αiCikxk + αivk.

To determine βi, we use the property of determinants
where |γV | = γn|V | for an n × n matrix V and scalar
γ. To set βi, we replace P̂ y,i

k with (βiP̂ y,i
k ), and then solve

for βi:

1 =
1

(2π)q/2
√
|βiP̂ y,i

k |
(16)

=⇒ βi =
q

√
(2π)−q |P̂ y,i

k |−1. (17)

Using this scaling to adjust h(yk|mi) within the MMKF
gives

h(yk|mi) =

exp

(
−1

2
(αiŷik − αiyk)T (βiP̂ y,i

k )−1(αiŷik − αiyk
)
,

where the scaling eliminated the constant in front of the ex-
ponential, and where the scaling cancels out in the exponent.
Applying the scaling to hDFS(yk|mi) gives hDFS(yk|mi) =
h(yk|mi), and so the updates to the weights are equal.

However, since we have modified the expression for
h(yk|mi) within the MMKF, we must carry the scaling
through each MMKF equation. Within the Kalman gain,
we see that replacing the output matrices and the estimated
output with their scaled values results in a scaled gain:

K
i

k = P̂ ikα
i(Cik)T

[
αiCikP̂

i
kα

i(Cik)T + βiRik

]−1
(18)

=
αi

βi
Ki
k. (19)

However, the scaling cancels out within the measurement-
based update:

x̃ik = x̂ik +
αi

βi
Ki
k

(
αiyk − αiCikx̂ik

)
(20)

= x̂ik +Ki
k

(
yk − Cikx̂ik

)
(21)

for i ∈Mmdl. The model-based update does not contain any
scaled quantities, and the scaling factor also cancels out in
the update to the state estimation error covariance.

C. Adapting MMKF Heuristics to DFS

We next show that several heuristic adjustments that are
commonly used within MMKFs can be readily incorporated
into DFS by modifying the weight update. The heuristics
include 1) setting a minimum weight such that a model’s
weight does not go to zero [2], 2) using exponential decay
within the likelihood function [9], and 3) using a sliding
window within the likelihood function [9].



To incorporate these methods into DFS, we can change
the weighting equation (11). The first heuristic is equivalent
to setting λ to a value greater than zero within DFS. The
second heuristic is equivalent to adjusting (11) to

wik+1 =
λ

Nmdl + (1− λ)
(wik)γ exp

(
−ηr`k(x̂ik)

)
Nmdl∑
j=1

(wjk)γ exp
(
−ηr`k(x̂jk)

) .
(22)

The parameter γ ∈ (0, 1) reduces the impact of the previ-
ously accumulated loss on the model’s weight, where smaller
values of γ reduce the effect more dramatically. The third
method is equivalent to adjusting (11) to

wik+1 =
λ

Nmdl + (1− λ)

k∏
t=k−N`

exp
(
−ηr `t

(
x̂it
))

Nmdl∑
j=1

k∏
t=k−N`

exp
(
−ηr `t

(
x̂jt

)) ,
(23)

where N ` is the number of time-steps within the sliding
window. By using (22) and (23), it is possible to discount
and exclude historical estimation errors (and their resulting
losses), which leads to a more dynamic set of weights
that depend on the recent estimation accuracy. Simulations
presented in Section VI investigate how these weighting
functions affect the overall estimates within DFS and a
MMKF.

VI. CASE STUDIES

In this section, we use the MMKF and DFS algorithms to
estimate the total active power demand of an aggregation of
residential ACs. Specifically, we investigate the estimation
accuracy of DFS and a MMKF, with and without the scaling
in Section V-B, and with and without the heuristics in
Section V-C, where each expert (i.e., instance of DMD)
in DFS is a separate Kalman filter from the MMKF. Such
estimates could be used as a feedback signal within a demand
response algorithm that aims to coordinate the aggregate
demand to provide services (e.g., frequency regulation) to
the electricity grid. However, here we assume that the loads
are not controlled (making the estimation problem more
difficult).

A. Problem Setup and Simulation Details

Figure 1 gives the block diagram of the estimation prob-
lem. The plant is our representation of the physical system.
It consists of a set of nAC residential AC models along
with other loads within a distribution network. The demand
response provider would like an estimate of the aggregate
AC demand (i.e., the flexible demand), but it only has a
measurement of the total demand. It subtracts an estimate
of the demand of the other loads from the measurement of
the total demand to obtain a noisy estimate of the aggregate
AC demand. This noisy estimate is used as a measurement
within the DFS/MMKF algorithms to obtain a better estimate
of the aggregate AC demand.

The Plant

Distribution Network

Other LoadsAC nACAC 1 AC 2 · · ·
Total Demand
Measurement

Estimated Demand
of Other Loads

Noisy Aggregate
AC Demand Estimate

Estimation Algorithm Aggregate AC
Demand Estimate

The Demand Response Provider

Fig. 1. Block diagram of the estimation problem.

Each AC within the plant is modeled with the following
equations [10]:

θk+1 =a θk + (1− a) (θo
k −mkΛP ) (24)

mk+1 =


0 if θk+1 < θset − θdb

2

1 if θk+1 > θset + θdb

2

mk otherwise,
(25)

where θk ∈ R is the internal air temperature of the house,
mk ∈ {0, 1} is the AC’s on/off switch value, θo

k ∈ R is
the time-varying outdoor temperature, a = exp(−∆t/ΛC),
and ∆t ∈ R is the time-step. The remaining parameters are
sampled from uniform distributions with ranges from [11],
where θset ∈ R is the temperature set-point, θdb ∈ R is
the temperature dead-band, Λ ∈ R is the thermal resistance,
C ∈ R is the thermal capacitance, η ∈ R is the coefficient
of performance, and P ∈ R is the energy transfer rate.
The aggregate power draw of the set of ACs is yAgg

k =∑nAC

i=1m
i
kP

i(ηi)−1. In this work, we assume the estimation
error vk associated with the demand of the other loads is
normally distributed with variance R. Therefore, the noisy
aggregate AC demand estimate (i.e., the measurement used
within the DFS and MMKF algorithms) is yk = yAgg

k + vk.
We simulate the plant with nAC = 1000, ∆t = 4 seconds,

and with a time-varying outdoor temperature over the course
of six hours. The time-varying outdoor temperature corre-
sponds to one period of a sine wave initialized at 31◦C and
varying from 28 − 34◦C over the course of the simulation.
We set the standard deviation of the measurement noise, i.e.,√
R, equal to 10% of the AC demand’s average value over

the simulation.
Each algorithm uses a set of dynamic models, developed

in [11], [12], that capture the aggregate AC demand. Each
model is a linear, time-invariant autonomous system xk+1 =
Axk, yk = Cxk, where the state xk ∈ R2 captures the por-
tion of ACs that are on versus off, A ∈ R2×2 is a transposed
Markov transition matrix, and C ∈ R1×2 multiplies the the
portion of ACs switched on by a scalar, resulting in the
aggregate AC demand y ∈ R. Both A and C are a function
of the outdoor temperature. We use Nmdl = 3 aggregate
models, where A and C are identified by simulating a set of
ACs with the same parameter distributions as those within
the plant at outdoor temperatures θo = 28, 31, and 34◦C.
We denote these aggregate models as m28, m31, and m34.

The algorithm implementations are summarized in Table I.



TABLE I
SUMMARY OF ALGORITHMS AND THEIR RMS ESTIMATION ERRORS (KW)

Abbreviation Details RMS Error (kW)
MMKF The standard MMKF algorithm without any heuristics 104.5
MMKF-S A MMKF with scaling performed according to Section V-B 104.5
MMKF-M A MMKF using a minimum weight for each model, i.e., using an equation similar to (11) as the weight update 63.4
MMKF-W A MMKF using an exponential decay weight update and a minimum weight for each model -
MMKF-E A MMKF using a sliding window weight update and a minimum weight for each model 61.1
DFS-S DFS with scaling performed according to Section V-B 104.5
DFS-M DFS with the standard weight update (11), which includes a minimum weight for each model 61.9
DFS-W DFS using the sliding window weight update (23), which includes a minimum weight for each model 61.4
DFS-E DFS using the exponential decay weight update (22), which includes a minimum weight for each model 60.9

We choose the functions within DFS such that the updates
resemble the updates of a MMKF. However, for DFS-
M, DFS-W, and DFS-E, we do not use the scaling from
Section V-B and we tune ηr (which does not appear in the
MMKF weight update) resulting in different performance
between the comparable DFS and MMKF algorithms. By
comparing MMKF and MMKF-S we see that the MMKF
scaling in Section V-B achieves approximately the same
performance in this case, and by comparing MMKF-S and
DFS-S we can verify that the algorithms produce identical
updates. We set λ = 1e − 5 in DFS-M, DFS-W, DFS-
E, and MMKF-M (which uses a weight update similar to
(11)), which allows a single model to dominate the overall
estimate if one proves to be the most accurate. We set ηr

to 0.8 in DFS-M, 0.5 in DFS-W, and 1.2 in DFS-E. We
set the window duration to N ` = 250 time-steps in DFS-
W and MMKF-W. We set the exponential decay parameter
to γ = 0.995 in DFS-E and MMKF-E. The values of ηr,
N `, and γ were tuned qualitatively in the given simulation
scenario to provide weights that are responsive but not overly
erratic, e.g., from measurement noise.

In order to compare the performance of the weight updates
we need to ensure that the estimates x̂ik for i ∈ Mmdl are
the same within each implementation. Since DMD can be
constructed to produce identical updates to a Kalman filter,
we implement an identical set of Kalman filters within each
DFS/MMKF implementation. In each Kalman filter, we set
the measurement noise covariance to R and compute the
process noise covariance based on the estimation error of
the model. Note that the Kalman filters are sub-optimal
estimators since the process noise is not normally distributed.

B. Results

Figure 2 presents time series for the MMKF-S and DFS-S.
Figure 3 presents time series of the MMKF and DFS-M
estimates along with the total AC demand; we exclude time
series of the other algorithm implementations as they are
difficult to distinguish from one another. Figure 4 presents
time series of the Kalman filter estimates obtained using
each model along with the aggregate AC demand. Table I
summarizes the RMS error in kW of the aggregate AC
demand estimates for each algorithm implementation, and
Fig. 5 presents time series of the weights for various algo-
rithm implementations. Note that in Fig. 5 we exclude weight
time series for MMKF-W as results could not be computed
due to numerical issues, and we exclude weight time series
for MMKF-E as they are similar to those of DFS-E. The
numerical issues with MMKF-W arise due to the coefficient
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Fig. 2. Time series of the aggregate AC demand, denoted y
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k , versus the

MMKF-S and DFS-S estimates, denoted yMMKF-S
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Fig. 3. Time series of the aggregate AC demand, denoted y
Agg
k , versus the

MMKF and DFS-M estimates, denoted ŷMMKF
k and ŷDFS-M

k , respectively.

in front of the exponential in (6), which results in values that
are approximately zero when computing a windowed weight,
i.e., using an update that is similar to (23).

From Fig. 2, we can see that the estimates for MMKF-
S and DFS-S are the same. From Table I, we can see that
the RMS estimation errors of MMKF, MMKF-S, and DFS-
S are the same, which empirically validates the equivalence
established via scaling the output equations in Section V-
B and demonstrates that, in this case, the MMKF scaling
achieves approximately the same result as without scaling.

From Table I, we can see that the MMKF performance can
be improved with heuristics. In general, the DFS implemen-
tations slightly outperform the comparable MMKF imple-
mentations. It is unsurprising that the results are similar due
to the similarities in the MMKF and DFS algorithms. Tuning
the covariance matrices within the underlying Kalman filters
may improve the performance of all implementations, but
this improvement would be identical across all implemen-

0 2 4 6

1.5

2

2.5

3

Time [hr]

A
ct

iv
e

Po
w

er
[M

W
] yAgg

k
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for models m28, m31, and m34, respectively.
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and m34, respectively

tations as they all use the same underlying estimates. The
improvement in DFS is due to the parameter ηr, which allows
the algorithm to generate more dynamic weights by setting
ηr to larger values. This is not possible in a MMKF.

Comparing the various time series of the weights to the
accuracy of the underlying Kalman filter estimates illuminate
the differences in algorithm performance. Specifically, the
MMKF weights presented in Fig. 5a show that the MMKF
does not ever weight m28 heavily, even though the model
is accurate over the final two hours of the simulation. This
is because m28 was inaccurate over the early portion of the
simulation, resulting in a low likelihood and a low weight,
and it was unable to regain weight once it became accurate.
Including a minimum weight into the MMKF overcomes this
issue, as can be seen in Fig. 5b, which shows the weight time
series for MMKF-M. In contrast, the DFS algorithm weights
m28 heavily in the final two hours of the simulation, as can
be see in Fig. 5c.

Another characteristic of the DFS-M, MMKF, and
MMKF-M weights are that they become smoother as the
simulation progresses. This is because the weights sum the

losses (related to the output estimation errors) as the simu-
lation progresses, and the weights become more stagnant as
the losses accrue. Alternatively, the behavior of the DFS-W
and DFS-E weights in Fig. 5d and Fig. 5e, respectively, are
more consistent throughout the simulation. The MMKF-E
weights behave similar to those of DFS-E. This is because
the recent losses have larger influence on the weights. As
a result, the weights are able to react to the models’ recent
performance. Incorporating a sliding window or exponential
decay into the weight function performs a similar function,
which results in similar weights. This can be seen in that
DFS-W and DFS-E weights are almost identical and result
in very similar RMS error values.

VII. CONCLUSIONS
In this paper, we show that DFS can produce updates

that are identical to that of a MMKF. We also showed
that DFS can be modified to incorporate heuristics that
are commonly used within a MMKF. We applied various
implementations of DFS and a MMKF to a demand response
simulation. This simulation scenario empirically validated
the scaling that is used to produce identical updates between
DFS and a MMKF. We showed that including a minimum
weight threshold improves the performance of DFS and a
MMKF. We also showed that including exponential decay
or a sliding window in the DFS or MMKF weight update
allows more consistent, responsive behavior in the weights.
In addition, the minimum weight, exponential decay, and
sliding window versions of the DFS and MMKF algorithms
effectively estimate the aggregate AC demand within the
demand response simulation.
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