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Background

Access to electricity is central to daily life, and it is expected to be reliable, 

inexpensive, and (increasingly) environmentally friendly.

https://news.nationalgeographic.com/energy/2015/08/

150817-power-plant-pollution-depends-on-the-weather/

https://earthobservatory.nasa.gov/images/3719/

blackout-leaves-american-cities-in-the-dark

https://news.nationalgeographic.com/energy/2015/08/
https://earthobservatory.nasa.gov/images/3719/
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Background

Electricity generation from renewable energy sources is increasing due to 

concerns over climate change and falling costs of renewable installations.

http://www.ncsl.org/research/energy/renewable-portfolio-standards.aspx
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Background

The supply and demand of electrical energy must be balanced in real-time, 

and frequency regulation is the fastest dispatchable resource. 

[NERC, “Balancing and Frequency Control,” 2011]
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Background

The supply and demand of electrical energy must be balanced in real-time, 

and frequency regulation is the fastest dispatchable resource. 

[NERC, “Balancing and Frequency Control,” 2011]
http://universityofindependence.com/distributed-energy-solutions/
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Background

Additional generation from renewable energy sources increases the need 

for real-time energy balancing, which can increase costs. 

[Bhat "Effects of PV on conventional generation,“ 2014.]
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Background

A modern trend in demand response research coordinates the demand of 

residential loads to follow a desired power trajectory.

“Demand response is a tariff or program established to motivate changes

in electric use by end-use customers in response to changes in the price

of electricity over time, or to give incentive payments designed to induce

lower electricity use at times of high market prices or when grid reliability

is jeopardized.“

[U.S. DOE, “Benefits of Demand Response and Recommendations …,” 2006]
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Background

A modern trend in demand response research coordinates the demand of 

residential loads to follow a desired power trajectory.
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“Demand response is a tariff or program established to motivate changes

in electric use by end-use customers in response to changes in the price

of electricity over time, or to give incentive payments designed to induce

lower electricity use at times of high market prices or when grid reliability

is jeopardized.“

[U.S. DOE, “Benefits of Demand Response and Recommendations …,” 2006]

[Callaway, "Tapping the energy storage potential in electric loads to deliver load following …," 2009.]
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https://www.delmarva.com/SafetyCommunity/Education/Pages/EnergyBasics/Infrastructure101.aspx

Chapter I - Introduction

An electric power system contains several sub-systems, and the work in this 

dissertation focuses on the distribution system. 
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Chapter I - Introduction

The framework of this work consists of an aggregator that controls a set of 

loads connected to a distribution feeder using a variety of measurements.

Aggregator

Substation

Measurements

Feeder

Measurements Smart Meter

Measurements

Control 

Inputs
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Chapter I - Introduction

The framework of this work consists of an aggregator that controls a set of 

loads connected to a distribution feeder using a variety of measurements.
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Chapter I - Introduction

An aggregator seeks to control the demand-responsive loads to follow a 

frequency regulation signal determined from a capacity bid into the market.
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Chapter I - Introduction

An aggregator seeks to control the demand-responsive loads to follow a 

frequency regulation signal determined from a capacity bid into the market.
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Chapter I - Introduction

Research objective: to show that advanced algorithms 

can leverage existing infrastructure to make energy 

balancing with loads feasible in the near-term, which 

improves the reliability, economics, and environmental 

impact of the power grid. 
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Chapter II

Chapter II develops control and estimation algorithms that address 

measurement and input delays while respecting smart meter limits.

Substation

Measurements

Feeder

Measurements
Smart Meter

Measurements

Control 

Inputs

Aggregator
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Chapter II

Within demand response literature, several works investigate unavailable or 

intermittent load measurements, but addressing delays is an open question.

• Communication infrastructure may exist and have significant delays (e.g., 70 seconds)
• [Eto, “The Demand Response Spinning Reserve Demonstration …,” 2012]

• Smart meters have significant communication limitations 
• [Armel, “Is disaggregation the holy grail …,” 2013] 

• Existing work investigates unavailable demand-responsive load measurements:
• [Mathieu, “State estimation and control…,” 2013]

• [Borsche, “Minimizing communication cost …,” 2013]

• [Vrettos, “Control of thermostatic loads…,” 2014]

• [Ghaffari, “PDE-based modeling …,” 2015]

• Existing work also investigates the impact of delays but does not compensate for them
• [Hao, “Frequency Regulation from Flexible Loads …,” 2014]
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Chapter II

The main contribution is to adapt networked control and estimation 

algorithms, which address delays, for residential demand response

• Networked control algorithms: 
• Address communication imperfections

• Usually apply to a centralized (i.e., not distributed) system.

• The adaptations: 
• Address state measurements that consist of thousands of load measurements

• Address intermittently available smart meter measurements

• Address inputs actuated at loads that depend on the realized delays
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Chapter II

At each time-step, the controller transmits an input sequence and allow 

demand-responsive loads to select an input based on the realized delays.
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Chapter II

The controller is formulated as a quadratic program similar to a finite-

horizon, tracking LQR with state and input constraints. 
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Chapter II

The controller computes an expected input using knowledge of the input 

delay distribution and using the previously transmitted inputs.
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Chapter II

Results indicate that allowing input selection logic at loads and including the 

input delay distribution in input computation reduces the effects of delays.

• A controller was developed that accounts for input delays in a distributed plant

• Two estimators were developed that address intermittent smart meter measurement 

availability and measurement delays

• It is possible to accurately follow a frequency regulation signal while experiencing 

substantial delays
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Chapters III, IV, and V

Chapters III, IV, and V develop controllers, models, and estimators for 

demand response scenarios. 

Chapter III: Simplifies the controller in Chapter II to a linear feedback law that mitigates 

the effects of input delays at reduced computational complexity.  

Chapter IV: Adapts existing aggregate models to a more realistic scenario, uses aspects 

of this scenario to modify the models and improve the models’ prediction accuracy, and 

benchmarks their performance against one another. 

Chapter V: Establishes connections and similarities between Kalman filter and online 

learning methods, which can both be used in demand response estimators.
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Chapters III, IV, and V

An open question in Chapters II-V is how to determine the real-time 

aggregate demand-responsive load within existing sensing capabilities.

Substation

Measurements

Feeder

Measurements
Smart Meter

Measurements

Control 

Inputs

Aggregator

• It is common in literature to assume a feedback signal is known:
• E.g., [Mathieu, “State estimation and control…,” 2013], [Vrettos, “Control of thermostatic loads…,” 2014], [Ghaffari, “PDE-based modeling …,” 2015]
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Chapter VI

Chapter VI seeks to determine the real-time aggregate air conditioning demand using 

historical smart meter measurements and real-time active power measurements.

Substation

Measurements

Feeder

Measurements
Smart Meter

Measurements

Control 

Inputs

Aggregator

Aggregate active power demand 

available in real-time

Smart meter measurements 

available for days prior to the day 

of operation
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Chapter VI

A disaggregation algorithm takes measurements of the total active power on a 

distribution feeder and seeks to separate it into two demand components.
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Chapter VI

The main contributions of Chapter VI are to frame the feeder-level energy disaggregation 

problem and to adapt Dynamic Fixed Share to perform disaggregation.

• Frame the feeder-level energy disaggregation problem
• Draws on aspects of building-level energy disaggregation

• Draws on aspects of load forecasting

• Adapt Dynamic Mirror Descent (DMD) and Dynamic Fixed Share (DFS) for 

feeder-level energy disaggregation
• DMD and DFS are online learning algorithms

• Previously developed in [Hall, "Online convex optimization in dynamic environments," 2015] 

• Adapt DFS to use models with a variety of structures simultaneously
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Chapter VI

Feeder-level energy disaggregation differs from building-level disaggregation in the scale 

of the problem, and it differs from load forecasting in the timescale of the predictions.

• Building-level energy disaggregation
• Separates the measured demand of a building into the demand of component loads 

• [Hart, “Nonintrusive appliance load monitoring,” 1992]

• Disaggregate into 10-100 loads
• [Armel, “Is disaggregation the holy grail …,” 2013]

• Data sampling rates range from 1 hour intervals to over 1 MHz 
• [Armel, “Is disaggregation the holy grail …,” 2013] 

• Usually solved offline
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Chapter VI

Feeder-level energy disaggregation differs from building-level disaggregation in the scale 

of the problem, and it differs from load forecasting in the timescale of the predictions.

• Building-level energy disaggregation
• Separates the measured demand of a building into the demand of component loads 

• [Hart, “Nonintrusive appliance load monitoring,” 1992]

• Disaggregate into 10-100 loads
• [Armel, “Is disaggregation the holy grail …,” 2013]

• Data sampling rates range from 1 hour intervals to over 1 MHz 
• [Armel, “Is disaggregation the holy grail …,” 2013] 

• Usually solved offline

• Load forecasting
• Predicts the expected aggregate demand for a given area 

• Deals with aggregations of thousands to millions of loads
• [Hong, "Probabilistic electric load forecasting…," 2016]

• Intraday forecasts use data rates of 15-60 min
• [Hong, "Short Term Electric Load Forecasting," 2010]

• Timescales range from sub-hourly to years
• [Hong, "Short Term Electric Load Forecasting," 2010]
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Chapter VI

The distribution network is not modeled, and the network consists of air conditioning 

demand and the other load demand connected to a measured point.

Measurement Point
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Chapter VI

Historical feeder, smart meter, and weather measurements are available to compute 

model parameters, where the models are used within an online learning algorithm. 
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Chapter VI

In real-time operation, the model parameters are used to predict the AC and OL demand 

at the next time-step, and feeder demand measurements adjust these predictions.
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Chapter VI

DMD computes a state estimate at each time-step using a measurement-based update 

and a model-based update that predicts the state value at the next time-step.

[Hall, "Online convex optimization in dynamic environments," 2015]
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Chapter VI

DMD computes a state estimate at each time-step using a measurement-based update 

and a model-based update that predicts the state value at the next time-step.

[Hall, "Online convex optimization in dynamic environments," 2015]
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Chapter VI

DMD computes a state estimate at each time-step using a measurement-based update 

and a model-based update that predicts the state value at the next time-step.

[Hall, "Online convex optimization in dynamic environments," 2015]
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Chapter VI

DMD is modified to decouple the measurement-based adjustment from the model-based 

update, allowing a variety of model types to be used simultaneously.
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Chapter VI

DMD is modified to decouple the measurement-based adjustment from the model-based 

update, allowing a variety of model types to be used simultaneously.
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Chapter VI

DFS combines estimates/predictions from a number of “experts”, DMD implementations 

in this case, into an overall estimate/prediction using the expert’s historical accuracy.
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Chapter VI

Results indicate that we can disaggregate the AC demand in real-time using 

measurements of the total load connected to a distribution feeder.



11/14/2018 Dissertation Defense 45

Chapter VI

The accuracy of disaggregation depends on the models used within DFS, the update 

method used within the algorithm, and on the covariance data used (not shown).
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Chapter VI

Chapter VI framed the feeder-level energy disaggregation problem and modified existing 

online learning algorithms DMD/DFS to be applicable to the problem.

• A modified version of DMD was developed that allows regression models and dynamic 

models to be used in DFS simultaneously. 

• Results investigated:
• The impact of model accuracy on DFS

• The impact of the update method on disaggregation accuracy

• The impact of covariance accuracy on disaggregation accuracy (not shown)

• Future work
• Disaggregation while transmitting inputs

• Disaggregation with additional sensing capabilities
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Chapter VII

Chapter VII extends the work in the prior chapter to investigate the added value of 

additional sensing capabilities while explicitly modeling the distribution feeder.

Substation

Measurements

Feeder

Measurements
Smart Meter

Measurements

Control 

Inputs

Aggregator
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Chapter VII

The main contributions of Chapter VII are to formulate a more general feeder-level 

disaggregation algorithm and to develop models of three demand components.

• The disaggregation algorithm is modified to use active power, reactive power, 

complex voltage, and smart meter measurements.

• Models of the AC, OL, and network (NW) load are developed that use complex 

current measurements to compute predictions.

• The value of additional measurements is assessed based on the improved 

accuracy of the disaggregation algorithm. 
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Chapter VII

Chapter VII models the distribution network explicitly, and it uses a variety of

measurements that are available on different timescales.

Aggregator

Substation

Measurements

Feeder

Measurements Smart Meter

Measurements

Control 

Inputs

Active power, 

reactive power, 

and complex current

Voltage magnitude 

and voltage angle

Active and reactive 

demand of households
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Chapter VII

Including complex current measurements within the input features of the regression 

models significantly improves prediction accuracy.
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Chapter VII

Additional measurements are included in the measurement-based update of (modified) 

DMD by changing the output matrix and the output error covariance. 
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Chapter VII

Results indicate that including additional substation measurements improves 

disaggregation accuracy, as does smart meter measurements at increasing frequency.
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Chapter VII

Chapter VII successfully developed methods to incorporate additional measurements 

into the feeder-level energy disaggregation problem. 

• The output equation of a variant of DMD was modified to incorporate a variety of 

measurements

• Models were developed that incorporate real-time measurements from the 

distribution feeder

• Results indicate that 

• Substation measurements can improve model accuracy

• Reactive power and smart meter measurements can improve disaggregation 

accuracy

• Future work should

• Incorporate coupling between phases in the distribution system

• Incorporate control inputs into the problem framework

• Investigate methods to determine network parameters 
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Questions?


