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Abstract An electricity distribution network’s efficiency and reliability can be im-
proved using real-time knowledge of the total consumption/production of different
load/generator types (e.g., air conditioning loads, lighting loads, photovoltaic gen-
eration) within the network. This information could be gathered from additional
device-level sensors and communication infrastructure. Alternatively, this informa-
tion can be inferred using existing network measurements and some knowledge of
the underlying system. This work applies two online learning algorithms, Dynamic
Mirror Descent (DMD) and Dynamic Fixed Share (DFS), to separate (or disaggre-
gate), in real-time, feeder-level active demand measurements into two components:
1) the demand of a population of residential air conditioners and 2) the demand of
the remaining loads served by the feeder. The online learning algorithms include
models of the underlying load types, which are generated using historical building-
level or device-level data. We develop methods to incorporate model prediction error
statistics into the algorithms, develop connections between DMD and Kalman fil-
tering, adapt the algorithms for the energy disaggregation application, and present
case studies demonstrating that the algorithms perform disaggregation effectively.
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1 Introduction

Power system entities such as utilities and third-party companies can improve an
electricity distribution network’s reliability and efficiency using real-time knowl-
edge of the mix of load/generation within the distribution network. The mix of
load/generation refers to the aggregate consumption/production of different types of
load/generators, e.g., air conditioning loads, lighting loads, and photovoltaic gener-
ation. For example, a utility can better anticipate and plan for fault induced delayed
voltage recovery (FIDVR) caused by motor stalling if it knows the real-time power
consumption of small motor loads [2]. Companies that offer power system services
via demand response are interested in knowing the time-varying, total electric load
available for demand response. This knowledge can help them bid into ancillary ser-
vices markets, or it could be used as a feedback signal within a load coordination
algorithm [6, 12, 23, 26, 30, 32, 42, 43].

We define real-time feeder-level energy disaggregation as the problem of deter-
mining the mix of loads/generation connected to a distribution feeder as measure-
ments arrive sequentially in time. This type of energy disaggregation can be accom-
plished by either computing the mix of loads/generation directly from device-level
(i.e., submetering) data or by inferring the mix of loads/generation from distribu-
tion network and smart meter data. Acquiring real-time submetering data requires
the installation of additional meters for tens of thousands of devices and also re-
quires additional communication infrastructure to transmit the device-level data to
a central location for real-time processing. Estimates of the per household costs as-
sociated with submetering are $100 to over $1,000 [1], which limits its practicality.

Alternatively, the mix of loads/generation can be inferred using existing infras-
tructure: a small number of distribution network measurements (e.g., the power de-
mand served by each feeder) and historical data collected by smart meters. Smart
meters capable of measuring household demand at frequent intervals' have been
widely installed [29], but their communication limitations prevent their data from
being available in real-time [1]. However, historical data is available. Device-level
demand could be estimated by disaggregating the household-level demand [1].

Inferring the mix of loads/generation can be achieved using online learning algo-
rithms, a class of machine learning algorithms. In the single predictor setting, these
algorithms use sequential data (or measurements) to update parameters (referred to
here as states) within a predictor, which generates predictions about future data. In a
setting with multiple predictors, called prediction with expert advice, algorithms use
a defined set of predictors (referred to as experts), and they use the measurements to
learn the best expert or best combination of experts, e.g., see [17, 22]. Much of the
online learning literature assumes that the optimal state or the best expert does not
vary in time, e.g., see [3, 7, 11, 22, 33]. Several papers (e.g., see [17-19, 45, 47])
provide performance bounds on these algorithms when the optimal state or best

! While most meters are currently configured to measure/record average power demand over 15
minute or hourly intervals, they generally have the ability to measure/record average power over
much shorter intervals, for example, every minute.
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expert is allowed to be time-varying. However, in this case, the bounds are only
meaningful (i.e., they scale sublinearly with respect to time) when the system (i.e.,
the state or best expert) varies relatively slowly in time.

Online convex programming is a method to solve online learning problems [39],
and recent work [15, 38, 41] incorporates dynamic models into the online learning
framework. Online convex programming uses a convex objective function to quan-
tify the error between the predicted measurement computed by a predictor and the
actual measurement. After each measurement is revealed, the predictor is updated
as a function of the (possibly time-varying) convex objective function. Methods
to solve convex optimization problems have been adapted to solve online convex
programming, e.g., see [3, 11, 33]. Recently, [15, 38, 41] developed online convex
optimization algorithms that handle highly time-varying systems by incorporating
dynamic models of the systems. These algorithms establish performance bounds
that depend on the accuracy of the underlying dynamic models rather than the vari-
ability of the state, allowing the algorithms to be effective in situations with highly
time-varying states.

In this work, we apply two algorithms from [15], Dynamic Mirror Descent
(DMD) and Dynamic Fixed Share algorithms (DFES), to the feeder-level energy dis-
aggregation problem. In our setting, we disaggregate a distribution feeder’s demand
measurements into two components: 1) the total power demand of a population of
air conditioners, and 2) the total power demand of all remaining loads served by the
distribution feeder. The contributions of this work are as follows. 1) We summarize
the DMD and DFS algorithms and provide simple examples of DMD implementa-
tions to provide intuition; 2) we develop methods to include model prediction error
statistics into the DMD and DFS algorithms; 3) we establish connections between
DMD and a discrete-time Kalman filter; and 4) we present simulations that show the
effectiveness of the algorithms on the real-time feeder-level energy disaggregation
problem and also show the influence of model prediction error statistics on the per-
formance of the algorithms. We presented preliminary work in [27] and developed
the data-driven case studies expanded upon in this chapter in [28].

The remainder of the chapter is organized as follows: Section 2 summarizes the
problem framework that we consider for real-time feeder-level energy disaggrega-
tion and compares this problem framework to building-level energy disaggregation.
Section 3 summarizes the DMD and DFS algorithms, discusses the inclusion of
prediction error statistics into DMD, and makes comparisons between DMD and
Kalman filtering; an appendix presents two simple example implementations of
DMD. Section 4 describes the application of DFS to the feeder-level energy dis-
aggregation problem, including a summary of the models used within DFS, algo-
rithm implementation details, and discussion of a number of case studies. Finally,
Section 5 presents the conclusions.
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2 Framework for Real-Time Feeder-Level Energy Disaggregaion

In our framework for real-time feeder-level energy disaggregation, we assume that
a power system entity has access to real-time measurements of the active power de-
mand served by a distribution feeder, real-time outdoor temperature measurements,
and historical feeder, temperature, and load data. We assume that the feeder serves
both residential and commercial loads, and we also assume that the power system
entity’s objective is to determine the real-time demand of a population of residen-
tial air conditioners, referred to as the AC demand, from the feeder’s total demand
measurements. The other component of the feeder demand, consisting of the com-
mercial and remaining residential demand, is referred to as the other load (OL)
demand. The demand is measured at one minute intervals, and the measurements
are the time-averaged active power demand over the interval. The real-time out-
door temperature measurements correspond to that of the physical area containing
the underlying loads; note that we do not use weather data for individual loads.
The temperature measurements are used within some models in real-time where the
models are parameterized with historical data.

We assume that the power system entity has access to four sources of historical
data, which it uses to parameterize models that predict the two demand components
during the real-time disaggregation. The historical data includes past feeder demand
measurements, past outdoor temperature measurements, historical building-level
demand data for both the residences and commercial buildings, and device-level
demand data for the residential air conditioners constituting the AC demand. We
assume that building- and device-level meters collect demand data at one minute in-
tervals, but the data are not available in real-time due to communication limitations
[1].

The feeder-level energy disaggregation problem has similarities with building-
level energy disaggregation [1, 8, 9, 24, 25, 36, 44], also known as non-intrusive
load monitoring (NILM) [5, 10, 16, 46, 48], which separates the measured power
demand of a building into the demand of individual loads or groups of loads within
the building. Building-level energy disaggregation algorithms typically use an ag-
gregate signal that is sampled at high frequencies (e.g., 10 KHz to over 1 MHz)
and composed of 10-100 component loads. The algorithms generally leverage as-
sumptions stemming from the relatively small number of underlying loads (e.g., a
single device turns on or off per time-step [24] or that step changes can be seen in
the aggregate signal [9]). Furthermore, disaggregation is generally performed of-
fline. Building-level energy disaggregation algorithms include supervised and un-
supervised approaches. In supervised approaches, historical disaggregated signals
are available [4, 5, 8, 16, 25], and unsupervised approaches use only the aggregate
signal [13, 21, 24, 40].

In contrast to building-level energy disaggregation, feeder-level energy disaggre-
gation uses an aggregate signal composed of tens of thousands of underlying loads,
but we are only interested in disaggregating load by type. We assume that the aggre-
gate signal is sampled less frequently, i.e., on the order of seconds to minutes. The
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large number of loads and relatively slow measurement frequency renders many of
the building-level approaches inadequate.

3 Summary and Discussion of the DMD and DFS Algorithms

An online learning algorithm predicts a system state 6, € O where the domain of the
state ® C R” is a bounded, closed, convex feasible set. After a prediction, denoted
@ € 0, is formed for time-step ¢, the system produces a measurement y, € % C R?.
A convex loss function ¢; : @ — R measures the accuracy of the prediction §t with
respect to y,, and by computing its gradient/subgradient we can determine how to
change the prediction to improve its accuracy with respect to the measurement. The
loss function may also contain some known, possibly time-varying, function 7 :
© — % that computes a predicted measurement from the state prediction, i.e., ¥, =
ht(a,). We assume that we can choose the form of the loss function, e.g., &(6,) =
||C§, — /|5 where h,(8) = C@. The goal of the online learning algorithm is to
generate a sequence of predictions that result in low cumulative loss, which is the
total achieved loss up to the current time-step.

In this section, we first summarize two online learning algorithms, DMD and
DFS, which were originally developed in [15]. From a control systems perspec-
tive, DMD and DFS are similar to state estimation algorithms that consider a single
model and multiple models, respectively, in forming the estimate of 8. Following
the algorithm descriptions, we discuss the inclusion of prediction error statistics
into DMD. We present a number of simple simulations in the appendix to provide
intuition on several parameters and functions that can be chosen by the user within
DMD and DFS.

3.1 The DMD Algorithm

The DMD algorithm uses a convex optimization formulation and a model to predict
the system state at each time-step. The formulation has similarities to a discrete-
time Kalman filter in that the Kalman filter and DMD iteratively use a model to
advance the prediction to the next time-step, then adjust the prediction once the
new measurement is available. Section 3.3 further develops connections between a
Kalman filter and DMD.

The DMD algorithm formulation is

'6,:ar§£in n5<w,(§,), 9>+D(9H§t) (1)

0,11 =D(8,) )
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where (1) adjusts the prediction using the new measurement and (2) is the model-

based update that advances the adjusted prediction. In (1), 6, is the adjusted pre-
diction, and we minimize the right-hand side over the variable 8. The parameter

n® > 0 is a step-size parameter, (-,-) is the standard dot product, Vf,(@t) is a sub-
gradient of the convex loss function, and D(0 || 6;) is a Bregman divergence, which
penalizes the deviation between the optimizer 6 and the prediction §t. In (2), the
model @(-) advances the adjusted prediction 5t to the next time-step. The step-size

n°® influences how aggressively DMD adjusts 6, to match the measurements versus
trusting the model-based prediction; see the appendix for an illustrative example.

3.2 The DFS Algorithm

The DFS algorithm incorporates N™! experts where each expert contains one model
from a set of N™¥ models .#™ = {1, ... ,N™}. We use .#™ to denote both the
set of experts and their corresponding models. DFS assumes that DMD produces
each expert’s prediction, and then applies the Fixed Share algorithm [17] to form an
overall prediction of the system state. The Fixed Share algorithm formulation is

wi' exp (,nrg, (6:”))

m A mdl
Wi :le‘i’(lfl) ST = me . H (3)
N "l exp (<m0 (87))
0= Y w8 “)
me.a™dl

where (3) advances the weight of each expert and (4) forms the overall prediction as
a weighed combination of the individual experts’ estimates. In (3), 5;" is the predic-
tion of expert m at time-step ¢, w}" is the weight associated with expert m, A € (0,1)
is a user-defined parameter that influences the weight that is shared amongst experts,
and n* > 0 is a user-defined parameter that influences how rapidly the algorithm can
shift weight between the experts. DFS assumes that 6:” is the value computed in (2)
using model @"(-) for m € .#™Y. The weight w/" is based on each expert’s total loss
up until time ¢ and the weight that is shared amongst all of the experts. Parameter
A controls the extent to which a single model can dominate the prediction: with A
near zero a single model can dominate, and with A near one the overall prediction is
forced to be close to the average of the individual predictions. For a given sequence
of losses, the parameter )" controls how rapidly the weights adjust, with larger val-
ues leading to faster weight changes. Setting 1" too high may lead to over-fitting,
i.e., the weights may become erratic.
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3.3 Including Model Prediction Error Statistics into DMD

In this section, we describe how the user can construct the DMD updates to include
statistical information about the prediction errors. To support this claim, we design
the DMD updates to match those of a Kalman filter, which specifically accounts
for zero-mean and normally-distributed errors in its model-based update and mea-
surement predictions. Future work will develop methods to include error statistics
corresponding to other probability distributions within DMD.

The loss function and divergence used within DMD must be convex, but their
specific form can be chosen by the user. In choosing the convex loss and diver-
gence functions, the user implicitly makes assumptions about statistics describ-
ing the model prediction accuracy within the measurement-based update of (1).
For example, choosing the divergence function to be a squared ¢;-norm, i.e.,
D(0]| 6,) =|0—- o, |3, treats all errors equally and weights larger errors more. This
corresponds to the case where the error covariance matrix is equal to an identity
matrix. However, using a Mahalanobis distance, i.e., a weighted squared #,-norm,
such as (0 — 6,)T13;1 (60— @,) with some positive-definite matrix P, assumes that
the errors in the model-based update have a covariance of P.

A Kalman filter’s objective function is to minimize the mean-squared estima-
tion error of the state under assumptions that the system is linear and that state
and measurement prediction errors (often referred to as process and measurement
noise) are independent in time, zero-mean, normally distributed, and independent
from one another. The user must specify the error covariance matrices used within
the closed-form update equations. Alternatively, within DMD, the user has the flexi-
bility to select functions (rather than matrices). DMD can produce update equations
identical to those of a Kalman filter by making the same assumptions required by
a Kalman filter and then appropriately selecting the loss and divergence functions.
In the remainder of this section, we summarize the discrete-time Kalman filter and
show how to choose the model, divergence function, and loss function within DMD
to produce update equations equal to those of a Kalman filter.

A discrete-time Kalman filter assumes an underlying system is [14, p.190]

0, 1=A4,0,+w ()
y,=C 0,4+ (6)

where w; is the process noise (which includes modeling error) and v, is the measure-
ment noise. The formulation assumes that w; ~ .47 (0,0;), v; ~ .4 (0,R;), and that
A, Gy, Oy, and R; are known. The notation ¢ ~ .4 (&, f3) indicates that a random
variable ¢ is sampled from a normal distribution with mean & and a symmetric,
positive-definite covariance 3.

A Kalman filter uses the assumptions on the underlying system and the known
system parameters to estimate 0, at each time-step while minimizing the the mean-
squared estimation error. The resulting update equations are [14, p.190]
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~ ~ ~ ~ —1 ~

6, = 8,+AC! [GRCT+R]  (v.-C8)) ™

PN ~ L PN

h=PR-RcT[GRCT+R| P ®)
§t+1 = At 6, (9)
Poi=A R Al +0, (10)

where 6, is the a priori state estimate, 61 is an a posteriori state estimate, 13, is
the a priori estimation error covariance, and P is the a posteriori estimation error
covariance. If the matrices within the system model are time-invariant, P converges
to a steady-state value, denoted P. A steady-state Kalman filter uses P in (7).

We choose the model, divergence function, and loss function within DI\QD to
construct the DMD updates (1) and (2). We first set the DMD model to ¢(0,) =
A, 6,, which makes (2) the same as (9). Note that this corresponds to assuming the
model is linear with a state-update matrix A, as in a Kalman filter. We then set the
divergence and loss function to

D(8]18,) = ||B)H(6-8)|. ar
0(8) =5 (@) (co, ). (12)

where P, and 13/ are symmetric, positive definite, covariance matrices corresponding
to the model prediction errors and the measurement prediction errors, respectively.

The quantity G=U (Z’%) UT denotes a matrix square root of an arbitrary sym-

metric positive-definite matrix G, where U is orthonormal and X a diagonal matrix
with positive entries on the diagonal. The square roots of P, and ﬁ/ are also sym-
metric and positive definite [14]. Given the assumptions thus far, the matrices A;, [D;,
and 1"? can be treated as parameters that are known at each time-step within DMD.

Given our choice of model, divergence function, and loss function, we can use
(1) to derive a closed-form DMD update equation, which is the same as (7). We start
from (1), substitute the divergence function, and then solve the convex program by
finding the value of 0 that sets the gradient of the convex objective function equal to
0. Following this, we substitute the gradient of the loss function. These steps result
in

6, - argmin nS<V€,(§,), 9>+D(8H§t> (13)
= §,+nsé (_w,(é,)) (14)
=6, +n°Bc! (P?)f1 (yt—Caz) (15)

where P/ = (C,ECf -+ R,). Finally, setting 11° = 1 produces the same update as (7).
Note that £ and 19/ are the same covariances as used in the Kalman filter. Their
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values and updates are assumed known, which is the same assumption we make
when we use the Kalman filter.

4 Application of DFS to Real-Time Feeder-Level Energy
Disaggregation

In this section, we apply the DFS algorithm to the problem framework described
in Section 2. In the following, Section 4.1 details the construction of the under-
lying system (i.e., the plant), Section 4.2 describes the construction of the models
used within the algorithms, Section 4.3 describes the implementation of the online
learning algorithms and a Kalman filter, and Section 4.4 presents some case studies
investigating the algorithm’s performance. Note that we construct these case studies
to investigate the effectiveness of DFS within the problem formulation in compar-
ison to the effectiveness of a Kalman filter. Modifying the models developed and
used within DFS as well as the user-defined loss and divergence functions within
DMD may provide performance improvements.

4.1 Plant Construction

The plant, which is our representation of the underlying physical system, is com-
posed of the active power demand of a set of commercial and residential loads
connected to a distribution feeder. The time series consist of #*°P* one minute
time-steps over the course of one day, resulting in n°P® = 1440. We denote the
measured total demand of the feeder as y; € R, the AC demand as y{*c € R, the
residential component of the OL demand as y°™™ € R, and the commercial com-

ponent of the OL demand as y°““°™ € R. The total demand is y, = yAC 4 yOL where
y?L — ytOL,res + ytOL,com.
We construct the yAC, yOL™ and yO-™ time series using a feeder model,

household demand data, air conditioner demand data, and commercial building de-
mand data; additional details on the time series construction can be found in [28].
We assume the average daily active power demand of the commercial and residen-
tial loads is 5.8 MW and 2.1 MW, respectively, which is based on the feeder model
R5-25.00-1 from GridLAB-D’s feeder taxonomy [37]. The residential demand con-
sists of household demand data and air conditioner demand data from the Pecan
Street, Inc. Dataport [35], where the aggregate residential demand corresponds to
the summed daily demand of a set of 2,499 households. The AC demand y~€ cor-
responds to the summed demand of 2,269 primary air conditioner and blower units
within those households. The residential OL demand y?L’res consists of the remain-
der of the aggregate household demand not included within the AC demand. The
commercial OL demand y°?™*°™ is the scaled sum of the whole-building demand

from a big box retail store and a municipal building in the California Bay Area.
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We neglect losses in the power network, which, if included, would be part of the
OL demand. We determine the set of houses, the air conditioner population, and the
scaling factor for the commercial demand using data from August 3, as detailed in
[28].

We also construct time series of the outdoor temperature for the physical area
corresponding to the demand data, which is used in some models described in Sec-
tion 4.2. The residential data corresponds to Austin, TX, and we use outdoor tem-
perature data from [35]. The outdoor temperature for the commercial demand comes
from the Concord, CA National Weather Service station [34].

4.2 Model Construction

In this section, we describe the models used within the DFS algorithm, where [28]
provide more details. Section 4.2.1 details the linear regression models used to pre-
dict both the AC and OL demand while Section 4.2.2 details the linear dynamic
system models, specifically linear time-varying (LTV) system models used to pre-
dict the AC demand.

4.2.1 Linear Regression Models

The linear regression models of the AC and OL demand all have the same general
form

5)\; =a' ﬂz

where y; is the prediction of the AC or OL demand, B, is a vector of input features
at time ¢, and @ is a vector of coefficients. The input features are the explanatory
variables. The vector of coefficients forms a weighted combination of the input fea-
tures, and their values are determined by applying least-squares error minimization
to historical data including the input features and the demand signal. Examples of
input features used within the models below include calendar variables such as time-
of-week and weather variables such as outdoor temperature.

Below, we summarize the input features used in several regression models, in-
cluding a simple regression model that forms a lookup table based on the time of
day (TOD) and two multiple linear regression (MLR) models that use a vector of in-
put features. The TOD regression models were generated using data from the week
preceding August 3. We use residential data from June 24 to August 2, 2015 and
commercial data from June 24 to August 2, 2009 to generate the MLR models, and
we exclude anomalous data such as those corresponding to holidays.

TOD OL Demand Model The TOD OL demand model corresponds to a lookup
table of OL demand predictions based on the time of day, generated by smoothing
OL demand data from previous days. We construct TOD models for each weekday
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denoted, @OL-Mon  pOLTues ' gOLWed ' pOL.Thu ' pOLFri 5 their respective predic-

. ~OL,Mon ~OL,Tues ~OL,Wed ~OL,Thu -OL,Fri
tions are Vi > Vi > Vi > Vi > Vi .

MLR OL Demand Model The MLR OL demand model forms its predictions us-
ing two sets of input features and coefficient vectors, one for the residential OL
demand and one for the commercial OL demand, where both sets of input features
include calendar- and weather-based values. Two sets of input features are neces-
sary because the OL demand data corresponds to two different physical areas. The
input features for the residential OL demand are a time-of-week indicator vector,
the outdoor temperature for Austin, TX, and the measured total demand at the last
time-step, y,—1. The commercial component of the model corresponds to “Base-
line Method 1” from [31]. The input features for the commercial OL demand are a
time-of-week indicator vector and the outdoor temperature of Concord, CA at the
given time-of-week. Whereas the residential component of the model has a single
regression parameter for the outdoor temperature, the commercial component has
separate temperature-based coefficients for each time of week. We denote the MLR

OL demand model and its predictions as @OL-MLR and FOLMIR ' rechectively.

MLR AC Demand Model The input features of the MLR AC demand model
PACMLR " with predictions ﬁC’MLR, are a time-of-week indicator vector and the
lagged outdoor temperature for Austin, TX raised to the first through fourth pow-
ers, i.e., the model includes a fourth order polynomial in lagged temperature. The
lag was chosen to maximize the cross correlation between the temperature and AC

demand in the training data.

4.2.2 Linear Dynamic System Models

We also use two LTV dynamic system models to compute predictions of the AC
demand. The on/off cycling of air conditioners varies with the outdoor temperature,
and we generate LTV models from sets of linear time-invariant (LTI) models, origi-
nally developed in [20, 32], each corresponding to a different outdoor temperature.
The first LTV model, denoted ®@ACETV! generates predictions, denoted y--CLTV!
using a set of LTI models .#"™! and the lagged, outdoor temperature. The second
LTV model, denoted @ACLTV2 generates predictions j)\;\c’LTVZ, using a separate set
of LTI models .# ™2 and the time-averaged outdoor temperature over a window of
previous minutes. The lag and the window are chosen to maximize the performance

of the models on the training set. Both LTV models have the form

b}

o -
X =AT X
o

where superscript  is replaced by LTV for @AGLTVI or LTV2 for @ACLTV2 The
first element of the vector X, € RR? captures the portion of air conditioners that are
drawing power, i.e., those that are on, and the second element captures the por-
tion of air conditioners not drawing power, i.e., those that are off. The matrix A}
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includes the probabilities that a given air conditioner: 1) switches on during the
time-step, 2) switches off during the time-step, 3) remains on, or 4) remains off.
The matrix C; scales the portion of air conditioners that are drawing power by an
average power demand value to compute the prediction ?ﬁc’*. The LTI models in
A and _#/"™2 have the same form as the LTV models, with time-invariant ma-
trices identified from data corresponding to narrow ranges around specific outdoor
temperatures. The time-varying matrices A} and C; are computed by linearly inter-
polating the elements of the two closest LTI models (where “closest” is measured
in terms of lagged or average temperature). The LTI models are computed using air
conditioner demand data from May 2 to August 2, 2015.

4.3 Algorithm Implementation Details

In this section, we describe the implementation of three algorithms used for the
feeder-level energy disaggregation problem. First, we describe the implementation
of a Kalman filter, which we as the benchmark for the case studies presented in
Section 4.4. We then describe an algorithm, referred to as P-DFS, that includes a
modified version of DMD, referred to as P-DMD for pseudo-DMD. P-DMD in-
cludes measurement-based updates and model-based predictions but modifies the
DMD equations (1) and (2) allowing us to include models of various forms, e.g.,
both LTV and MLR models, within the Fixed Share algorithm. Following this, we
describe the DFS implementation. Within DFS, an expert applies DMD when the
AC demand is modeled using an LTV model and P-DMD when the AC demand is
modeled using an MLR model. Each of the methods detailed below incorporates
model prediction error statistics explicitly. Several methods for constructing the co-
variances are detailed and investigated in Section 4.4. Note that in all implementa-
tions, we construct the convex program within DMD to have a closed-form solution.
Given this, the computational complexity of the DFS implementation is similar to
that of a set of Kalman filters.

In all three algorithms, the model of the feeder consists of one AC demand
model ®A€(-) paired with one OL demand model ®°%(.), i.e., the model is ®(-) =
{@AC(.),®OL(.)}. P-DFS and DFS use a set of models .2 " that consists of ev-
ery pair of AC and OL demand models described in Section 4.2. The Kalman filter
implementation applies to a set of models .#XF that includes every possible pairing
of an LTV AC demand model with an OL demand model.

4.3.1 Kalman Filter

The Kalman filter uses an LTV model to describe the underlying system, estimates
the state of the AC demand model, i.e., 8; = x}, and uses a pseudo-measurement of
the AC demand y¢ = y, — 9 to adjust the model-based estimate where y° is the
predicted OL demand. A time-invariant process noise covariance Q is computed for
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each dynamic AC demand model using the historical AC demand measurements. In
computing Q, the true state at each time-step is calculated using the measured AC
demand and the AC demand model’s matrices. The pseudo-measurement € con-
tains noise due to prediction errors in yOT, and a separate time-invariant covariance
R is computed for each OL model. We compute Q and R using data for the week
preceding August 3. We implement one Kalman filter for each model combination
within .ZF.

4.3.2 P-DFS Method

The models developed for this work have a variety of forms and different underlying
parameters influencing the demand predictions. As a result, it is difficult to define a
0, that is common across all models. To overcome this, we modify the DMD algo-
rithm to decouple model-based updates and measurement-based updates, meaning
the measurement-based updates do not influence the model-based updates. This al-
lows the algorithm to be applied to the output of a given model, e.g., the demand
predictions, rather than some underlying parameter, while operating in the spirit of
DMD. We first proposed this idea in [28].

We modify the model-based and measurement-based updates in DMD, i.e., (1)
and (2), to formulate P-DMD, which is used within DFS to form the overall estimate.
The P-DMD formulation is

& :argminn8<w,(6§”), e>+p(eu§§") (16)
0cO

6,,, =2(6;") (17)

0,,, =6, +%", (18)

~ . . am
for m € .#PFS. The value k;' accumulates adjustments to the estimate @, for model

m based on the measurements, and we set 58’ = 0. The value é:ﬂ is an open-loop
state prediction, meaning that the measurements do not influence the prediction (in
contrast with DMD), and (17) is the model-based update. Finally, (18) incorporates
the accumulated measurement-based adjustment ?tm into the model-based predic-
tion. The AC and OL demand models generate their predictions independently from
one another, and so (18) can be rewritten as

0., =0(6,)+ %, (19)
DAC(0,))| | m
= (POL(éin) + K- (20)

The Fixed Share equations (3) and (4) are then applied to the predictions.
In P-DFS, 6, is the AC and OL demand, i.e., 8, = [y/\ yPL}T. We choose the
loss function to be (12) and divergence function to be (11) with ﬁ;" as the second
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argument rather than 5:” The resulting closed-form update (16) is
o o N -1 ~
R =R+ BCT (ﬁ?) (yt—CO,) @1)

where C = [1 1]. The estimation error covariance Q; € R?*? and the measure-
ment noise covariance R; € R! are used to compute 1’5[ and 13:/ . We set Q; =
diag(RAC, ROV), where diag(-) forms a diagonal matrix from the scalar arguments.
The values RAC € R and RO" € R correspond to the variances of the AC and OL de-
mand models’ prediction errors. We detail several sets of assumptions and methods
for computing the parameters R;, R{\C, R?L, IA’Z, and 1"? in Section 4.4.

4.3.3 DFS Method

This method also uses the set of models .#PFS. The formulation applies DMD to the
LTV AC demand models and P-DMD to all other models, including the OL demand
models. The individual model-based estimates are then used as expert predictions
within the Fixed Share algorithm. We set 8, = [(x;)T yPL] " € R3, where xis LTV1
or LTV2, allowing inclusion of the LTV model dynamics within (1). The model-

based update is
00|~
+ {0 1:| K;V-LH

where we update the AC demand predictions using DMD and the OL demand pre-
dictions using P-DMD. The closed-form measurement-based update of the AC de-
mand component is (15). The estimation error covariance Q; € R3*3, and the mea-
surement noise covariance R; € R are used to compute P, and ﬁt' . The process noise
matrix is Q; = blkdiag(Q/C, ROL) where blkdiag(-) constructs a block diagonal ma-
trix from the arguments. The matrix Q{*C € R>*2 corresponds to the process noise
of the AC demand model. We use A, = blkdiag(A*,0) € R? to update P, and P,
which assumes that errors in the AC demand model are decoupled from errors in
the OL demand model, and that the errors of the OL demand model are independent
at each time-step. We detail several methods for constructing QA€, ROV, P, and P’
in Section 4.4.

®A°(9,)
0L (8,")

~m

t+1 =

4.4 Case Studies

In this section, we describe the setup and summarize the results for a set of case
studies investigating the performance of DFS and P-DFS on the feeder-level energy
disaggregation problem. We simulate a set of days using data from August 3-5, 10-
14, 17, and 18 where we excluded weekends and days on which demand response
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Table 1 Parameters n° and n* Used in DFS and P-DFS

Method P-DFS P-DFS P-DFS DFS DFS DFS
Covariance Identity Historical ~ Real-Time Identity Historical ~ Real-Time
n® 0.4 0.5 0.5 0.013 0.5 1.0
7" 1.0x107° 10 1.0x1073  1.0x107° 10 1.0x 1073

actions were taken by the commercial buildings. The Kalman filters are used as
benchmarks. Specifically, we denote BKF as the “best” Kalman filter achieving the
lowest ex post root mean square estimation error (RMSEE), and we denote AKF as
the average RMSEE of the set of Kalman filters. For an arbitrary time series y; and
its estimate W, over n**°PS time-steps, the RMSEE is defined as

nsteps

eME = | Y (w— ) e, (22)

t=1

Table 1 lists the values of the parameters 1° and 1" used in each scenario; we
set A = 1.0 x 107> in all scenarios. We tuned " using the simulation for August
3, where the goal was to achieve fast weight transitions without over-fitting, i.e.,
without erratic weights. Qualitative tuning is appropriate as an optimal value for a
given simulated day is not necessarily the optimal value for other simulated days.
Parameter 1* was tuned similarly. In the next subsection, we detail three methods
for constructing the covariances, referred to as “Identity”, “Historical”, and “Real-
Time” in Table 1.

4.4.1 Covariances for DFS and P-DFS

In this section, we detail three methods for generating the covariance matrices used
within the DFS and P-DFS algorithms. The first method does not explicitly include
any model prediction error statistics into the measurement-based updates of DMD
and P-DMD. The second method uses historical data from the week preceding Au-
gust 3 to compute covariance matrices. The third method uses an unrealistic assump-
tion, i.e., that the total, AC, and OL demand are measured at each time-step and used
to compute the exact covariance at each time-step. The details of each method are
as follows.

1. Identity: we assume that 13, and I/’? are appropriately sized identity matrices for
both DFS and P-DFS.

2. Historical: DFS and P-DFS assume that the process noise covariance is time-
invariant, i.e., Q; = Q and that the measurement noise covariance is R; = 0 as the
total demand measurements are accurate. The covariances QAC, RAC, ROL used
within the two variations of Q are computed using historical estimation errors,
and QA€ is used within the Kalman filter. DFS updates P according to (8) and
(10), and P-DFS sets P, = Q. Both methods set P’ = (CE.CT +R,).
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3. Real-time: DFS and P-DFS assume that I/’; = Q; where the covariances are com-
puted at each time-step using measurements of the AC and OL demand. Variance
R; is computed at each time-step using measurements of the total demand. Both
algorithms set P = (CP,CT +R,).

4.4.2 Results

We next summarize the results for each scenario described above. Figure 1 presents
time series of the total demand, OL demand, AC demand, their respective estimates,
and the model weights from the August 4 simulation while running P-DFS with
covariances generated from historical data. In Fig. 1d, @Other i ysed to denote the
combined weight of all model combinations not explicitly specified. Table 2 sum-
marizes the mean, minimum, and maximum RMSEE for each demand component
across the simulated days and scenarios. Figure 2 presents time series of the AC
demand and various estimates across several scenarios from the August 11 simula-
tions.

From Fig. 1c, it is clear that, in this case, the P-DFS algorithm effectively es-
timates the AC demand in real-time. In this scenario, BKF achieves an RMSEE
of 148.4 kW for the AC demand, and the P-DFS algorithm performs similarly,
achieving an RMSEE of 155.0 kW for the AC demand. It should be noted that
the P-DFS algorithm is determining the model of the underlying system in real-
time, as can be seen in Fig. 1d. Alternatively, the BKF algorithm selects the most
accurate model after the simulation, which is not feasible in practice. For compari-
son, AKF achieves an RMSEE of 173.1 kW. The weights within P-DFS is initially
dominate by @°"°" which makes sense as the weight of each model combination
is initialized to the same value. As the simulation progresses, the weight shifts to
{@ACLTVI GOLMLRY \which is the most accurate model. At points of the simula-
tion, it loses accuracy, and the weight shifts to other model combinations during
those times. The total demand is estimated closely, which can be achieved based
on the parameter settings as discussed in Section 5. Finally, it should be noted that
while P-DFS did not achieve lower RMSEE than BKF in this case, in some cases it
does outperform BKF.

As Table 2 shows, P-DFS achieves AC demand RMSEEs that are worse than
BKF but generally better than the AKF when using realistic (i.e., historical) co-
variance data. DFS achieves AC demand RMSEE that is comparable to the AKF.
Figure 2a shows time series for AKF, BKF, and DFS using historical covariances.
When using unrealistic (i.e., real-time) covariance data, both DFS and P-DFS out-
perform BKF, which is still using historical data to compute the covariance matrices.
An example of this is shown in Fig. 2b.

Figure 2c provides example time series of the AC demand estimates for P-DFS
and DFS when using historical covariances, and Fig. 2d provides similar example
time series when using real-time covariance data. As can be seen in Fig. 2c, the
P-DFES algorithm generally achieves better RMSEE for the AC demand than the
DMD algorithm. However, as can be seen in Fig. 2d DFS achieves lower RMSEE
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Fig. 1 Time series of the total, OL, and AC demands versus their estimates as well as times series
of the weights from the August 4 simulation while running P-DFS with historical covariances

Table 2 Mean, Minimum (Min), and Maximum (Max) RMSEE in kW over 10 Simulated Days
for each Algorithm and Covariance Computation Method

Method Covariance Total Demand AC Demand OL Demand
Min Mean Max Min Mean Max Min Mean Max

P-DFS Identity 88.9 100.0 110.5 151.0 220.6 325.8 150.8 222.3 327.2

P-DFS  Historical 984 114.8 123.2 1550 2522 371.5 150.2 250.1 3725

P-DFS Real-Time 146.6 1543 168.4 120.2 1253 131.8 104.8 1145 1305
DFS Identity 1754 199.1 224.8 1942 2309 3145 1450 2162 312.7
DFS  Historical 100.5 119.5 126.1 192.0 259.8 311.5 190.6 265.5 320.2
DFS Real-Time 120.8 1252 129.1 104.0 116.5 140.1 96.6 1094 131.9
BKF  Historical - - - 148.4 1953 318.9 - - -
AKF  Historical - - - 173.1 2594 357.5 - - -

than P-DFS when real-time errors are used to generate the covariance matrices. Part
of the reasoning for this is that the LTV AC demand models only include two states,
and for a given outdoor temperature, the models rapidly converge to a steady-state
value. When running DFS, this means that the measurement-based adjustment at
a given time-step may not have an effect on the model’s predictions after several
time-steps. Alternatively, the P-DFS formulation continually adjusts the model pre-
dictions based on its accuracy, and by separating these adjustments from the model,
these adjustments persist.

Also, our method of computing the covariances with historical data degrades per-
formance. This implies that our assumptions regarding the errors are overly coarse.
However, the inclusion of unrealistically accurate covariance information, which is
done when using real-time covariance data, the DFS and P-DFS algorithms’ perfor-
mance improves dramatically.
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(c) AC demand estimates for P-DFS and DFS when using historical covariances
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(d) AC demand estimates for P-DFS and DFS when using real-time covariances

Fig. 2 Time series of the AC demand and various estimates from the August 11 simulations

5 Conclusions

In this chapter, we summarized the real-time feeder-level energy disaggregation
problem and an online learning algorithm, Dynamic Fixed Share (DFS), that we
adapted and applied to the problem. It was shown that the Dynamic Mirror De-
scent (DMD), which is used within the DFS algorithm, can be constructed to be
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equivalent to a discrete-time Kalman filter through proper choice of user-defined
functions and parameters. In addition, simple examples were constructed to illus-
trate aspects of the DMD algorithm. Two implementations of DFS-based algorithms
were described. The first modifies the DFS algorithm to incorporate combinations
of models with different model structures resulting in estimates of output, rather
than the state. The second implemented the original DFS algorithm. Finally, case
studies were presented that indicate the online learning algorithms are capable of
performing real-time feeder-level energy disaggregation and that model prediction
error statistics can be effectively incorporated into these algorithms.

Future work will further explore will further explore connections between Kalman
filtering and online learning methods, enabling application of results across both
well-studied fields. Another topic of future work is addressing the simultaneous
problems of active manipulation and online estimation of the AC demand, e.g., in a
demand response program.

Appendix

In this appendix, we present two examples that demonstrate the influence of several
of the user-defined functions and parameters within DMD. The first example shows
how the choice of 1° impacts the estimate in the presence of measurement noise.
The second example illustrates how the choice of divergence and loss functions
impact the estimates generated by (1). These examples are constructed to isolate
impact of the component of interest. In reality, the various parameters and function
choices influence each other in nontrivial ways, which generally cannot be known a
priori.

In the examples below, the plant model, whose state we are trying to estimate,
consists of (5) and (6), where C = [O 1] and

_ |cos(m/500) —sin(7/500) 23)
" | sin(x/500) cos(z/500) |-

The the state is 8, € R, its initial value is 89 = [0 I}T, w, € RZ, and v, € R. We as-
sume that w; and v; satisfy the assumptions of a Kalman filter, and their covariances
are Q € R?*% and R € R, respectively, where we detail their values in each example.

Varying the Gradient Descent Step Size 1° The parameter n° influences how
closely DMD adjusts the state estimate 5, to match the (possibly noisy) measure-
ment versus trusting the predictions of the system model @(-). In this example, we
assume the plant model contains no process noise, i.e., Q = 0, and the measure-
ment noise covariance is R = 1. The DMD model <1>(§t) is set to the plant model
(5) and (6) excluding w; and v,. The divergence is set to D(6||6,) =360 — @,H%
and the loss function is set to e,(ét) = %HC/B} — |3 The resulting closed-form
measurement-based update (1) is
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0,=6,+nC'(y,—C8,). (24)

We apply DMD for two different values of n°® (i.e., 77r0 =0.0 and n,l = 1.0, where

. . -0 ~1 .
the resulting estimates are denoted 8, and 0, , respectively) and compare the results.
All estimates are initialized at the true state. 0
Figure 3 presents the resulting time series of the second elements of 8;, 6, , and

~1
0, ; we exclude time series of the first elements as they exhibit similar characteris-
~0
tics. The second term of (24) is 0 for 0, , and so there is no adjustment to the state
~0
estimate based on the measurement. As a result, 8, matches 0, exactly because the

~1
model within DMD exactly matches the plant model. Alternatively, for 0, , the con-
vex program adjusts the state estimate to match the noisy measurements rather than
trusting DMD’s model, resulting in significant estimation error.

6, Amplitude [-]

| | | |
0 250 500 750 1,000

Time-Step [-]

~0 ~1
Fig. 3 Time series of the second element of 6;, 8, , and 6, for the example in Section 5

Varying the Choice of Divergence and Loss Functions The choice of the di-
vergence and loss functions within DMD influences the algorithm’s measurement-
based adjustments. In this example, we vary DMD’s measure-ment-based update by
using two choices for the divergence and loss functions — one that includes covari-
ance matrices explicitly and one that does not. We also simulate a Kalman filter to
empirically show that the DMD estimates match those of a Kalman filter when the
divergence and loss functions are constructed as described in Section 3.3.

In this example, we assume the measurement noise covariance is R = 2, and the

process noise covariance is
0.25 0.1
0= {0.1 0.25} '

We construct a steady-state discrete-time Kalman filter, whose estimates are denoted
~KF
0, . using the underling system model and covariances. Both DMD formulations

Q . . ~a
use n° = 1. The first DMD formulation, whose estimates are denoted ,, uses the
same loss function, divergence function, and resulting measurement-based update
equation as in the previous example. The second DMD formulation, whose esti-
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mates are denoted §f’ uses the divergence and loss functions needed to produce
measurement-based updates that are equivalent to those of the Kalman filter, i.e.,
(15), and we set P, = P and P’ = [CPCT +R]. Note that the second formulation
explicitly includes accurate model prediction error statistics via the covariances,
whereas the first estimate implicitly assumes the covariances are identity matrices.

~a ~b ~KF
Figure 4 presents the time series of 8, 6,, 6, and 8, . Note that the estimates

~b ~KF

0, and 0, coincide exactly, empirically supporting our claim that we can choose
the DMD model, divergence function, and loss function to achieve a measurement-
based update equivalent to that of Kalman filter. In estimating the second element of

~a ~b
0., we first note that both 6, and 6, follow the general trajectory of the true state,
~b ~a
but 0, is noticeably smoother than 6,. By including the covariance matrices into
~b
the measurement-based update, 0, is better able to account for the measurement

—~a
noise resulting in a less erratic estimate and reduced estimation error versus 6, . In
estimating the first element of 8, both methods have significant deviations from the

. . . b,
true state value; however, the root mean square estimation error in 8, is smaller that

A ~b. . . . .
of 0,, indicating that @, is more accurate over the duration of the simulation. Again,
the inclusion of accurate statistical information into the measurement-based update
has led to a more accurate estimate.

3
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Fig. 4 Time series of 0;, 0,1, 6,.,and 6, for the example in Section 5

It should be noted that this example was constructed such that the Kalman filter
is the optimal estimator. In reality, the assumptions of the Kalman filter rarely hold,
as in the case studies presented in Section 4.4. A Kalman filter can still be applied
with varying degrees of success, but it may not be the optimal estimator. The DMD
algorithm relaxes some of the underlying assumptions, which allows greater flexi-
bility in designing the updates, but the theoretical guarantees of the Kalman filter do
not apply. Additionally, it should be noted that in this example we assume we have
a perfect estimate of the covariance matrices. In Section 4.4, we show that including
inaccurate model prediction error statistics into the DMD algorithms within DFS
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can degrade the performance of DFS, while including accurate statistics (which can
be hard to obtain in practice) can substantially improve the estimation accuracy of
DFS.
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