Paper No: 18PESGM1866

Benchmarking of Aggregate Residential Load Models Used for Demand Response

Greg Ledva
University of Michigan
gsledv@umich.edu

Co-authors: Sarah Peterson and Johanna L. Mathieu

IEEE

Background (I/II)

- The power consumption of thermostatically controlled loads (TCLs) can be coordinated to help the electric power grid balance supply and demand
 - Large populations
 - Often residential air conditioners (ACs)
 - Can provide frequency regulation
- Often assume an aggregator receives a desired power signal and controls an aggregation of loads to match that signal
 - Often rely on control and estimation algorithms

- Examples include [Mathieu 2013], [Zhang 2013], [Perfumo 2012], [Mahdavi 2016]
- Capture the aggregation's total power consumption dynamics
- Used in state estimation and control algorithms
- Can improve control performance

Background (II/II)

- We only have a partial understanding of which models work best under which conditions
 - Developed under different assumptions
 - Validated in simulation studies that use simplifying assumptions
- Research Goal: seek a better understanding of the advantages and disadvantages of three aggregate load models representing a heterogeneous AC population.
 - Two models use Markov chains
 - J. L. Mathieu, S. Koch, and D. S. Callaway, "State estimation and control of electric loads to manage real-time energy imbalance," IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 430–440, 2013.
 - W. Zhang, J. Lian, C.-Y. Chang, and K. Kalsi, "Aggregated modeling and control of air conditioning loads for demand response," IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4655–4664, 2013.
 - One model uses a transfer function
 - N. Mahdavi, J. H. Braslavsky, and C. Perfumo, "Mapping the effect of ambient temperature on the power demand of populations of air conditioners," IEEE Transactions on Smart Grid, 2016.
- Simulations include a time-varying outdoor temperature and a hybrid model representation of individual ACs with weather-dependent AC cooling capacity, coefficient of performance, and power draw

Results (I/II)

Abbreviation	Base Model	Model Details	RMSE (kW)
MM2-C	Two-State Markov Model	Uses outdoor temperature; data for model ID generated using <u>constant outdoor</u> <u>temperatures</u>	436.7
MM2-V	Two-State Markov Model	Uses outdoor temperature; data for model ID generated using a <u>varying outdoor temperature</u>	437.1
MM2-S	Two-State Markov Model	Uses outdoor temperature <u>and its trend</u> ; data for model ID generated using a <u>varying outdoor</u> <u>temperature</u>	226.2
MM3-C	Three-State Markov Model	Uses outdoor temperature; data for model ID generated using <u>constant outdoor</u> <u>temperatures</u>	320.9
MM3-V	Three-State Markov Model	Uses outdoor temperature; data for model ID generated using a <u>varying outdoor temperature</u>	322.9
MM3-S	Three-State Markov Model	Uses outdoor temperature <u>and its trends</u> ; data for model ID generated using a <u>varying</u> <u>outdoor temperature</u>	213.4
TF-O	Transfer Function Model	Assumed transfer function structure of <u>two poles and one zero</u> ; parameters identified from <u>TCL population parameters</u>	504.4
TF-ID	Transfer Function Model	Transfer function structure of <u>two poles and two zeros</u> ; parameters identified from <u>historical</u> <u>data</u>	447.0

Results (II/II)

(a) Two-state Markov models

(b) Transfer function models

Conclusions/Recommendations

- The three-state aggregate model outperforms the other aggregate models
- Incorporating the temperature trend improves both Markov-based models
 - Reduces the gap in prediction accuracy between the two.
- The transfer function model is the least accurate of the three aggregate models
 - The identified transfer function resulted in reduced prediction error.
- The simpler two-state aggregate model offers a good tradeoff in complexity versus accuracy when including temperature trends into the model

