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Abstract—Residential loads can provide ancillary services such
as frequency regulation to an electric power system. Aggregate
load models aim to capture the dynamics of the demand-
responsive loads in an accurate and computationally-tractable
way, which allows the models to be incorporated into controllers
and observers used by demand response providers. A variety of
aggregate models have been developed; however, their accuracy
has not been benchmarked against one another in comparable
scenarios. This paper compares the accuracy of two Markov-
based and one transfer function-based aggregate air conditioner
(AC) models against a realistic simulation model with time-
varying outdoor air temperature and temperature-dependent AC
parameters. We also extend the existing models to cope with
the time-varying outdoor air temperature. We find that 1) the
more detailed Markov model is more accurate, 2) updating the
Markov transitions as a function of the outdoor temperature
trend decreases prediction error in both Markov models, 3)
the transfer function model performs worst, likely because the
simulation scenario differs significantly from the assumptions
used to develop the model.

Index Terms—Aggregate load model, demand response, electric
power systems, frequency regulation, residential demand

I. INTRODUCTION

The power consumption of large numbers of thermostati-
cally controlled loads (TCLs), such as residential air condi-
tioners (ACs), can be coordinated to help the electric power
grid balance supply and demand [1], [2]. In addition to par-
ticipating in traditional demand response programs, loads can
be controlled to provide ancillary services, such as frequency
regulation, by decreasing/increasing consumption with respect
to their baseline. Much of the work on load control for
ancillary services assumes a load aggregator receives a signal
from the system operator and controls an aggregation of loads
to match that signal. A significant body of recent work has
sought to develop aggregate residential load models, e.g.,
[3]–[6], which the aggregator could use in state estimation
and control algorithms. These models capture the dynamics
of the total power consumption of the demand-responsive
loads. Use of dynamic models generally improves control
performance as compared to model-free control approaches.
However, modeling aggregations of loads by representing each
load individually leads to large and often complex models.
For example, TCLs are best modeled as hybrid systems since
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they cycle on/off within a temperature hysteresis band. A good
aggregate model balances simplicity and performance.

Despite significant recent efforts to develop aggregate load
models, we only have a partial understanding of which models
work best under which conditions. Each model was developed
under a different set of assumptions (e.g., homogeneous vs.
heterogeneous loads, static vs. dynamic ambient conditions
such as outdoor temperature) and assuming a specific type of
control (e.g., on/off switching, temperature setpoint control).
Models are generally validated in simulation studies, and,
often, the same unrealistic assumptions used to build the model
are used to validate it.

In this paper, we seek a better understanding of the ad-
vantages and disadvantages of three aggregate load models
that represent the dynamics of a heterogeneous AC population.
Two of the models use Markov chains [3], [4] and one uses
a transfer function [5], [6]. We identify each model and then
use it to predict the aggregate power consumption of 10,000
air conditioners over a 24 hour period with a time-varying
outdoor temperature. Prediction accuracy is computed against
a realistic simulation model in which individual air condi-
tioners are represented with hybrid system models including
three states: indoor air temperature, indoor mass temperature,
and on/off mode. We assume each AC has a time-varying
cooling capacity, a time-varying coefficient of performance
(COP), and a time-varying power draw (when the AC is
on) that all depend on the outdoor temperature, making our
plant more accurate than that typically used in the aggregate
load modeling literature. In this preliminary work, we assume
that the loads are not coordinated by a load aggregator;
investigating model performance under aggregator control is
a subject for future work.

Beyond the simulation-based benchmarking of three aggre-
gate load models, this paper also includes several method-
ological contributions required to enable a fair comparison in
a realistic setting with a time-varying outdoor air temperature.
In particular, we extend the Markov models [3], [4] to update
the Markov transition matrix parameters as a function of
the temperature trend, and we discuss other ways in which
the model could be improved. We also determine a transfer
function structure that may lead to improved model accuracy
as compared to the model in [5], [6] and provide suggestions
on better ways to identify its parameters.



TABLE I
AIR CONDITIONER MODEL PARAMETERS

Parameter Description Value
θset Temperature Setpoint [◦C] U{20, 24}
θdb Temperature Deadband [◦C] U{1, 2}
θo
t Outdoor Temperature [◦C] Varies from 25.2 to 35.0

Um Mass Conductance [ kW
◦C ] U{4.4, 5.4}

U a Air Conductance [ kW
◦C ] U{0.25, 0.3}

Λm Mass Heat Capacitance [ kWh
◦C ] U{2.0, 2.5}

Λa Air Heat Capacitance [ kWh
◦C ] U{0.5, 0.6}

QAC
t Cooling Capacity [kW] Qrate (1.32−0.01 θo

t)

1+f latent

Qrate Rated Cooling Capacity [kW] U{11.1, 13.5}
f latent Fraction of Latent Cooling [-] 0.35
PAC
t Power Draw [kW] QAC

t /ηt
ηt Coefficient of Performance [-] ηstd(0.33 + 0.02 θo

t)
−1

ηstd COP at Standard Conditions [-] 3.5

The rest of this paper is organized as follows: Section II
details the individual TCL model used in the plant and Section
III describes each aggregate load model and our extensions.
Section IV describes the simulation setting and results. Section
V concludes.

II. INDIVIDUAL TCL MODEL

We use the hybrid model from the residential module of
GridLAB-D [7] to model an individual AC within the plant.
The hybrid model contains continuous states corresponding to
the internal air temperature and mass temperature θat , θ

m
t ∈ R

and a discrete state corresponding to the on/off mode mt ∈
{0, 1}, where the AC is drawing power if mt = 1. Table I
summarizes other parameters used within the model where
U{a, b} indicates a uniform distribution between a and b.
Table I includes time-varying values for the cooling capacity
QAC

t , COP ηt, and power draw PAC
t , which are all functions

of the time-varying outdoor temperature θo
t . Note that we

have neglected several aspects that are included within the
GridLAB-D model: minimum cycling times, the power draw
and heat injection from the circulation fan, and heating from
solar irradiance and internal heat gains; including these are a
subject for future work.

The update equations for the hybrid model are

θt+1 = A θt +B (QAC
t mt) + E θo

t , (1a)

mt+1 =


0 if θat+1 < θset − θdb/2

1 if θat+1 > θset − θdb/2

mt otherwise,
(1b)

where (1a) updates the temperatures with θt =
[
θat θmt

]T
,

and (1b) updates the on/off mode if the air temperature reaches
the edge of the allowable temperature range. Matrices A, B,
and E are computed by first constructing continuous-time
matrices using the thermal parameters Um, U a, Λm, and Λa,
and then discretizing the continuous-time matrices using the
time-step ∆t = 2 seconds. To simulate a set of nAC ACs, we
parameterize the set of ACs by independently selecting the
relevant parameters from the distributions in Table I, where
U{·, ·} refers to a uniform distribution. We update each AC’s
temperatures and on/off mode by applying (1a) and (1b) with
the AC’s parameters.

III. AGGREGATE TCL MODELS

If nAC is large (e.g., on the order of thousands), then incor-
porating the nAC hybrid models into control and estimation
algorithms can be computationally prohibitive. As a result,
these algorithms often employ aggregate models, which model
the behavior of the nAC ACs using a single, simpler model.
Here, we compare three aggregate models. The first model,
developed in [3] and referred to as the two-state Markov
model, defines a set of discrete bins based on θat and mt,
constructs an aggregate state as the portion of air conditioners
in each bin, and it uses a Markov transition matrix to update
the aggregate state of the model. The second model, developed
in [4] and referred to as the three-state Markov model, is
similar but defines a set of discrete state bins based on θat ,
θmt , and mt. The third model, developed in [5], [6], referred
to as the transfer function model, maps changes in the outdoor
temperature to changes in the steady state aggregate demand.

A. Two-State Markov Model

The two-state Markov model [3] uses an aggregate state
xt ∈ R2na

, which is the portion of air conditioners in
each of 2na discrete state bins. The discrete state bins are
formed by dividing a normalized temperature deadband into
na temperature intervals, and then creating two discrete states
in each interval, one for air conditioners that are on and one
for those that are off. An AC maps to a bin based on its
air temperature and on/off mode. The two-state autonomous
Markov model is

xt+1 = At xt, (2)
yt = Ct xt, (3)

where yt ∈ R1 is the aggregate demand, At is a transposed
Markov transition matrix where the entries correspond to the
probability of bin transitions within the time-step, and Ct =
nAC P

on
t

[
0 . . . 0 1 . . . 1

]
where the scalar P

on
t is the

average power draw of air conditioners that are on. In [3]
At = A, corresponding to a constant outdoor temperature. In
[8], At is a function of the time-varying outdoor temperature.

Here, to compute At and P
on
t , we first compute a set of time-

invariant matrices A and average power draws Pon at different
outdoor temperatures T o. Each element of A is computed
by counting the bin transitions at the corresponding outdoor
temperature from T o, and then normalizing the columns to
sum to one. We then compute At by linearly interpolating the
elements of the two time-invariant matrices corresponding to
the temperature above and below θo

t . Each element of Pon is
computed by calculating the average power draw of ACs that
are on when θo

t is at the temperature from T o. We interpolate
P

on
t in a similar manner.
We use three approaches to identify A and Pon.
• MM2-C: We simulate the nAC ACs for each integer

temperature within T o, holding the temperature constant
during each simulation. Each entry of A and Pon is
computed with data from one simulation.

• MM2-V: We simulate the ACs with a time-varying out-
door temperature using historical temperature data. Each



entry of A and Pon is computed with data corresponding
to outdoor temperatures nearest to the entry’s associated
temperature.

• MM2-S: In addition to simulating the ACs with a time-
varying outdoor temperature, we create two sets A and
Pon, one for when θo

t is increasing and one for when
θo
t is decreasing. This is justified because the interaction

between θa
t and θm

t is different for an increasing versus
decreasing θo

t .

B. Three-State Markov Model

The three-state Markov model [4] creates discrete bins,
similar to those of the two-state Markov model, but based on
both the air and mass temperatures. The deadband is divided
into na temperature intervals for the air temperature, as in the
two-state Markov model, and the deadband is divided into nm

mass intervals for the mass temperature. The aggregate state
is then xt ∈ R2nanm

, which is the portion of ACs in each of
the 2(nanm) discrete state bins. The three-state autonomous
Markov model is (2) and (3). As with the two-state Markov
model, we define three methods of constructing At and P

on
t :

MM3-C, MM3-V, and MM3-S. They each construct the sets
A and Pon using the same methodology as with the two-state
Markov model. Note that this model is constructed assuming
that measurements of the thermal mass are available within
each residence, which are not available in practice.

Also, note that the structure (i.e., the location of zero and
non-zero entries) of each time-invariant matrix withinA can be
different for this model, depending on the outdoor temperature
used to construct the model. As At is computed by linearly
interpolating between different time-invariant matrices with
different structures, the structure of At changes over time.
Non-zero elements of xt can then be set to zero due to the
changing structure, reducing the probability mass within xt
to less than one. We heuristically ensure that each column
in the time-invariant matrices sum to one, ensuring that the
probability mass within xt is not reduced.

C. Transfer Function Model

The transfer function model, developed in developed in [5],
[6], maps a change in the ambient temperature to a change in
the steady state aggregate demand, and it has the form

y(t) =
( nAC∑

i=1

PAC,i
t

)
L{G(s)}−1

(θo
t − θinit) (4)

G(s) =
b1s+ b2

s2 + ζωn s+ ω2
n

(5)

where L{·}−1 is the inverse Laplace transform, θinit is the
initial outdoor temperature, s is the variable in the Laplace
domain, ζ is the damping coefficient of an under-damped
system, ωn is the natural frequency of an under-damped
system, b1 and b2 are coefficients, and

∑nAC

i=1 P
AC,i
t is the total

power draw if all ACs were on at time t. The coefficients
and parameters in (5) are computed based on an assumed
response to a step change in the outdoor temperature from
θinit to θfinal, where these temperatures must be assumed a

priori to compute the model. The details about the calculation
of (5) can be found in [5], [6], but some general aspects of the
calculations include the following: 1) the assumed, individual
AC model is a simplified version of that in Section II, which
only contains one continuous state for the air temperature;
2) many of the parameters characterizing the individual AC
model are assumed to be identical across the AC population;
3) estimates for the steady state portion of ACs that are on
must be computed for both θinit and θfinal; and 4) an estimate
for the the period of the oscillations resulting from the step
change is computed using the parameter distributions of the
population, which are assumed to be known.

The AC models in Section II differ substantially from the
assumptions within [6]. As a result, we define two approaches
to generate models based on transfer functions.

• TF-O: We implement (4) and (5) according to [6]. Ther-
mal parameters for the AC model with one continuous
state are identified from historical data of θa

t , mt, and
θo
t data for each AC. Parameters that are assumed to be

identical across the AC population in [6] are taken as
their average value.

• TF-ID: We use a data-driven approach to identify a
transfer function structure as well as the transfer function
parameters from historical θo

t and aggregate demand data.
We identify the transfer function parameters using the
tfest(·) function in Matlab, where we subtract the initial
values of the aggregate demand data and θo

t data. We
then select the transfer function structure that achieves
the lowest error based on historical data. The resulting
model has the following structure:

y(t) =L
{
b3s

2 + b4s+ b5
s2 + a1 s+ a2

}−1

(θo
t − θinit) + yinit (6)

where yinit is the initial demand and the parameters to be
identified are b3, b4, b5, a1, and a2.

To implement each of the transfer functions within a discrete-
time simulation, we convert each transfer function to a separate
continuous-time, state-space model and then discretize each
state-space model.

IV. SIMULATION-BASED CASE STUDIES

In this section, we use a number of simulation-based
case studies to investigate the prediction accuracy of the
three aggregate models and their variations. Section IV-A
summarizes the simulation settings for the case studies, and
Section IV-B presents the results. In general, more accurate
aggregate models lead to more accurate control and state
estimation algorithms that could be used to provide frequency
regulation with ACs throughout the day. As a result, we
evaluate the models using the RMS error (RMSE) of the
model’s predicted aggregate demand versus the true aggregate
demand over the day.

A. Parameterization
The case studies each use a plant of 10,000 simulated ACs,

modeled and parameterized according to Section II, over 24
hours using a time-varying outdoor temperature. The outdoor



TABLE II
SIMULATION SETTINGS

Parameter Description Value
∆t Time-step duration [s] 2

nsteps Number of time-steps [-] 43,200
nAC Number of air conditioners [-] 10,000
na Number of air temperature bins [-] 20
nm Number of mass temperature bins [-] 20
T o Set of temperatures used to compute

the various Markov models
{24, 25, . . . , 36}

θinit Initial outdoor temperature used to
compute the transfer function [◦C]

28.8

θfinal Final outdoor temperature used when
computing the transfer function [◦C]

35.0
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Fig. 1. The aggregate demand of the simulated ACs and the outdoor
temperature for the case study setup

temperature, available through the Pecan Street Dataport [9],
corresponds to that of Austin, TX on July 10, 2016, where we
linearly interpolate the data from one-hour to two-second time-
steps. Figure 1 depicts the aggregate demand of the simulated
ACs, which is the ground-truth demand in our simulations,
along with θo

t . Table II contains additional simulation param-
eters. We use the RMSE to evaluate the prediction accuracy
of each aggregate model versus the aggregate demand of the
simulated ACs.

To compute the Markov models, we generate the necessary
data by simulating the plant models using outdoor temperature
data from July 1-9, 2016. We initialize the Markov model at
the true aggregate state value. To generate the parameters for
the transfer function models, we simulate the plant models
using the outdoor temperature for July 9, 2016. For TF-O, the
transfer function was computed using θinit as the actual initial
temperature of the simulation and θfinal as the maximum tem-
perature of the simulation. The initial state of the discreteized
TF-O model is set to a vector of zeros. For TF-ID, yinit is
set to the initial aggregate demand, θinit is set to the actual
initial temperature, and the initial state of the discretized TF-
ID model is set to zeros.

B. Results

Table III summarizes the aggregate model variations and
their RMSE values. Figure 2 presents time series of the ag-
gregate demand and the predictions of a number of aggregate
models over a portion of the simulated day. Figure 2a presents
time series for MM2-C and MM2-S where we exclude MM2-
V for clarity, and Fig. 2b presents time series for TF-O and TF-
ID. We do not present time series for the three-state Markov
model predictions as they are similar to those of the two-state
Markov model. Figure 3 presents errors of various aggregate
model’s predictions versus the aggregate demand over the
entire simulated day. Figure 3a presents the errors of MM2-
C and MM2-S, and Fig. 3b presents the prediction error for
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Fig. 2. Time series of the aggregate demand and various model predictions
over a portion of the simulated day

MM3-C and MM3-S, where we exclude MM2-V and MM3-
V for clarity. Figure 3c presents the prediction error for TF-O
and TF-ID.

As can be seen in Table III, the increased modeling detail
of the three-state aggregate model reduces the RMSE errors
versus the two-state aggregate model across all variations.
Accounting for the trend in θo

t in MM2-S and MM3-S reduces
the RMSE versus the other Markov-based model varieties
substantially. Furthermore, both MM2-S and MM3-S achieve
similar RMSE, indicating that accounting for the θo

t reduces
the gap in modeling accuracy between the two Markov-based
aggregate models. The reduced RMSE when using MM2-S or
MM3-S can be see in Fig. 2a (which shows MM2-S but is
true for MM3-S as well). Whereas the prediction of MM2-
C lags the aggregate demand, this is corrected in MM2-S by
accounting for differences in the AC model behavior when
θo
t is increasing versus decreasing. Also, note that from 4:00

AM to 8:00 AM, θo
t is relatively flat and switches between

increasing and decreasing several times, and the resulting
prediction of MM2-S undergoes several jumps. This results in
significant prediction error in MM2-S and MM3-S, as can be
seen in Fig. 3a and Fig. 3b. Further differentiating between an
increasing, decreasing, or flat trend in θo

t may improve model
performance. The time series for MM3-C and MM3-S, which
are not included, show similar trends.

The predictions of TF-O and TF-ID have higher RMSE than
either Markov-based aggregate model. This makes sense as the
transfer function models are simpler models than the Markov-
based models; whereas TF-O and TF-ID have two states and
a steady-state demand term, the Markov-based models have
40 and 800 bins, respectively. Figure 2b shows that the TF-O
prediction generally lags the aggregate demand and the TF-ID
prediction does not. The errors in Fig. 3c also show that TF-O
under-predicts the demand as it increases from 12:00 PM to
6:00 PM.

V. CONCLUSIONS

In this work, we benchmarked the prediction accuracy of
three existing aggregate models and several variations of them



TABLE III
SUMMARY OF MODELS AND RMSE (KW) VALUES

Abbreviation Base Aggregate Model Details RMSE (kW)
MM2-C Two-State Markov Model Set of models for different θo

t values; data for model computation generated using constant
θo
t values

436.7

MM2-V Two-State Markov Model Set of models for different θo
t values; data for model computation generated using time-

varying θo
t values

437.1

MM2-S Two-State Markov Model Set of models for different θo
t values and different θo

t trends; data for model computation
generated using time-varying θo

t

226.2

MM3-C Three-State Markov Model Set of models for different θo
t values; data for model computation generated using constant

θo
t values

320.9

MM3-V Three-State Markov Model Set of models for different θo
t values; data for model computation generated using time-

varying θo
t values

322.9

MM3-S Three-State Markov Model Set of models for different θo
t values and different θo

t trends; data for model computation
generated using time-varying θo

t

213.4

TF-O Transfer Function Model Single model; assumed transfer function structure of two poles and one zero; parameters
computed using [6]

504.4

TF-ID Transfer Function Model Single model; transfer function structure of two poles and two zeros identified from
historical model accuracy; parameters identified with historical input-output data

447.0
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Fig. 3. Prediction error of various models versus the aggregate demand

within a common, detailed simulation scenario. The simu-
lation scenario includes a time-varying outdoor temperature
and detailed AC models that include a time-varying cooling
capacity, COP, and power draw (when the AC is on) that all
depend on the outdoor temperature. Results indicate that the
three-state aggregate model generally performs better than the
other aggregate models. Incorporating the temperature trend
improves both Markov-based models and reduces the gap in
prediction accuracy between the two. The transfer function
model is the least accurate of the three aggregate models,
most likely due to its simplicity and due to the fact that the
simulation scenario differs substantially from the assumptions
used to develop the model in [6]. The transfer function using
input-output data to identify the parameters resulted in reduced

prediction error. While the three-state aggregate model is the
most accurate, it is more computationally complex than the
other two models. The simpler two-state aggregate model
offers similar performance, when including temperature trends
into the model, at lower computational complexity.

Avenues of future work include the following: 1) developing
a variation of the Markov-based models that accounts for times
of little change in outdoor temperature; 2) deriving transfer
function parameters for an AC aggregation undergoing a sinu-
soidal input rather than a step input, which better approximates
realistic temperature changes; 3) investigating the identified
transfer function structure and whether its parameters can be
derived from the individual AC population; 4) including time-
varying solar irradiance and internal heat gains within the
AC models; and 5) prediction performance under aggregator
control.
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