
Motivation

• Introduction: Aggregate models of residential loads aim to capture 
the dynamics of residential demand-responsive loads in an accurate 
and computationally-tractable way. This allows the models to be 
incorporated into controllers and observers used by demand 
response providers. A variety of aggregate models have been 
developed; however, their accuracy has not been benchmarked 
against one another in comparable scenarios. 

• Contribution 1: We extend two existing models to cope with a time-
varying outdoor air temperature.

• Contribution 2: We compare the accuracy of two Markov-based and 
one transfer function-based aggregate air conditioner (AC) models 
against a common, detailed simulation model. 
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• Results: 
1. The three-state Markov model is the most accurate of the three 

aggregate models
2. Updating the Markov transitions using the outdoor temperature 

trend decreases prediction error in both Markov models
3. The transfer function model performs worst, likely because the 

simulation scenario differs significantly from the assumptions 
used to develop the model

• Future Work: 
1. Develop a variation of the Markov-based models that accounts 

for times where the temperature is relatively constant 
2. Derive transfer function parameters for an AC aggregation 

undergoing a sinusoidal input rather than a step input, which 
better approximates realistic temperature changes

3. Evaluate prediction performance under aggregator control
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Results

Conclusions

• Overview: We use several aggregate models, detailed below, to predict the 
power consumption of 10,000 ACs over a 24 hour period with a time-varying 
outdoor temperature. Simulations evaluate the aggregate models’ prediction 
accuracy using a hybrid model, detailed below, to represent individual ACs. 
We assume that the ACs are not coordinated by a load aggregator.

• Individual TCL Model:
• The hybrid model representing individual ACs contains two continuous 

states representing the internal air and mass temperatures of the house 
and one discrete state representing the on/off mode of the AC

• The cooling capacity, coefficient of performance, and power draw for each 
AC is time-varying and depends on the outdoor temperature

• Aggregate Models:
1. Two-State Markov Model [1]: Defines discrete state bins based on the air 

temperature and on/off mode of each AC, constructs an aggregate state as 
the portion of ACs in each bin, and uses a Markov transition matrix to 
update the aggregate state 

2. Three-State Markov Model [2]: Similar to the two-state Markov model, but 
bins are based on the air temperature, mass temperature, and on/off mode

3. Transfer Function Model [3]: Maps a change in the ambient temperature to 
a change in the steady state aggregate demand

Method

Figure 1):The aggregate 

demand of the simulated 

ACs and the outdoor

temperature for the case 

study setup

Abbreviation Base Model Model Details

MM2-C Two-State 
Markov Model

Linearly interpolates between a set of models identified at different outdoor 
temperatures; data for model ID generated using a constant outdoor temperature

MM2-V Two-State 
Markov Model

Linearly interpolates between a set of models identified at different outdoor 
temperatures; data for model ID generated using a varying outdoor temperature

MM2-S Two-State 
Markov Model

Linearly interpolates between a set of models identified at different outdoor 
temperatures and for different trends in outdoor temperature; data for model ID 
generated using a varying outdoor temperature

MM3-C Three-State 
Markov Model

Linearly interpolates between a set of models identified at different outdoor 
temperatures; data for model ID generated using a constant outdoor temperature

MM3-V Three-State 
Markov Model

Linearly interpolates between a set of models identified at different outdoor 
temperatures; data for model ID generated using a varying outdoor temperature

MM3-S Three-State 
Markov Model

Linearly interpolates between a set of models identified at different outdoor 
temperatures and for different trends in outdoor temperature; data for model ID 
generated using a varying outdoor temperature

TF-O Transfer 
Function Model

Single model; assumed transfer function structure of two poles and one zero; 
parameters computed using [3]

TF-ID Transfer 
Function Model

Single model; transfer function structure of two poles and two zeros identified from
historical model accuracy; parameters identified with historical input-output data

Table 1):Variations of the base aggregate models used within this work. 

Abbreviation MM2-C MM2-V MM2-S MM3-C MM3-V MM3-S TF-O TF-ID

RMSE (kW) 436.7 437.1 226.2 320.9 322.9 213.4 504.4 447.0

Table 2):Root mean square error (RMSE) in predicting the aggregate AC demand

Figure 2a): Time series of 
the aggregate AC demand, 
the MM2-C predictions, and 
the MM2-S predictions over 
12 hours

Figure 2b): Time series of 
the aggregate AC demand, 
the TF-O predictions, and 
the TF-ID predictions over 
12 hours

Figure 3a): Prediction error 
of the MM2-C and MM2-S 
models over the course of 
12 hours

Figure 3b): Prediction error 
of the MM3-C and MM3-S 
models over the course of 
12 hours

Figure 3c): Prediction error 
of the TF-O and TF-ID 
models over the course of 
12 hours
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