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Background (1/5)
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An electric power network Is the equipment to transport electrical

energy from producers (generators) to consumers (loads).
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Electricity supply and demand must be balanced in real-time,
and a system operator achieves this using frequency regulation.
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[TEPCO “Where does excess electricity go?”]
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[ Distributed energy solutions for the 21st century grid. Solar City. ]
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A trend in demand response research investigates the use of a group
(or aggregation) of residential loads for frequency regulation.

“‘Demand response is a tariff or program established to motivate changes
In electric use by end-use customers in response to changes in the price
of electricity over time, or to give incentive payments designed to induce
lower electricity use at times of high market prices or when grid reliability

is jeopardized.”

[U.S. DOE 20086]
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A trend in demand response research investigates the use of a group
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(or aggregation) of residential loads for frequency regulation.

Power (MW)

“‘Demand response is a tariff or program established to motivate changes
In electric use by end-use customers in response to changes in the price
of electricity over time, or to give incentive payments designed to induce
lower electricity use at times of high market prices or when grid reliability

is jeopardized.”

[U.S. DOE 20086]
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[Callaway 2009]
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Background (4/5)

Increased renewable generation, increasing “smart”
Infrastructure, and recent regulations have created a favorable
environment for residential demand response.

[Ryan Kh 2015]
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[Solar Panel Permits] '
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Increased renewable generation, increasing “smart”
Infrastructure, and recent regulations have created a favorable
environment for residential demand response.
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Background (4/5)

Increased renewable generation, increasing “smart”
Infrastructure, and recent regulations have created a favorable
environment for residential demand response.

[Ryan Kh 2015] ,\(\
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Background (5/5)

Research objective:

Develop algorithms for providing frequency regulation
via automated, residential demand response that take
Into account practical limitations of the communication

and sensing infrastructure
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General Problem Framework (1/1)

This work focuses on an aggregator that provides frequency regula{tionr
using an aggregation of residential, demand-responsive loads.
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Overview of Research Projects (1/2)

The plant consisted of demand-responsive loads;
added noise to aggregate power measurements

The Plant
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Distribution
Substation

Distribution
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Building-Level
Loads
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1) Developed controllers and state estimators to account for and
mitigate the effects of communication network imperfections.
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Overview of Research Projects (2/2) N4
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2) Developed an algorithm to disaggregate feeder demand
measurements into components in real-time.

Frequency of communication was included;

measurement delays were not
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Does not include computation of inputs to manipulate the demand-
responsive loads
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3. Real-Time Feeder-Level Energy Disaggregation
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Energy Disaggregation (1/12)
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It is often assumed that aggregate demand-responsive load
measurements are available, but obtaining these is an open question.

* Previous works assumed that aggregate demand measurements were available
— For example, [Mathieu 2013] and [Soudjani 2015]

« Could use “bottom up” approach using sensors
x  Sub-metered devices needed
x  Fast communication required
x  Expensive

« Could use “top down” approach using energy disaggregation
— Building-level energy disaggregation is long-studied [Hart 1992]
v Work within capabilities of distribution network sensors
v Work within capabilities of smart meters
v' Less expensive




Energy Disaggregation (2/12)

Goal: separate measurements of the demand served by a
distribution feeder into components as the measurements arrive.
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Energy Disaggregation (3/12)
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Energy disaggregation is performed on real-time demand measurements
using Dynamic Fixed Share (DFS), an online learning algorithm.

Physical Plant |
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Load
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Energy Disaggregation (4/12)
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Dynamic Fixed Share incorporates predictions from models that
are generated from historical building- and device-level data.
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Dynamic Mirror Descent (DMD) iteratively updates an estimate based
on a new measurement, then advances the estimate in time.

Ht = argmin 7° { V/{( Ht r‘)> + D (HHHt)
0O

§t+1 :‘T}(gt)

DMD was developed in [Hall 2015]
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Dynamic Fixed Share combines estimates from separate Dynamic Mirror
Descent algorithms, each using separate models, into an overall estimate.
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Dynamic Fixed Share was developed in [Hall 2015] and uses the Fixed Share Algorithm [Herbster 1998]
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Energy Disaggregation (7/12)
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The models used are based on linear regression, linear tlme-
Invariant systems, and linear time-varying systems.
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Energy Disaggregation (8/12) N2
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The case study setup uses real-world data at the device level,
allowing the true AC and OL demand to be known.

Demand data sources
— Feeder model from GridLAB-D feeder taxonomy [Schneider 2009]
— Commercial building data from PG&E
— Residential building and device data from Pecan Street [Pecan Street 2017]

« 10 separate “testing” days

* One minute time-steps

* Three model sets
— MM :all model combinations
— M - model combinations excluding the LTI AC models
— MY - model combinations using all OL models and only the LTV AC models

« Benchmark Algorithms
— Best Kalman filter: best (ex post) filter from the set of models M"F
— Average Kalman filter: average of all filters from the set of models MXF
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Energy Disaggregation (9/12)

the AC demand in real-time.
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Energy Disaggregation (10/12)

RMS Error values across the case studies show that mode
selection is important in algorithm performance.

H A C Demand B OL Demand ZZZ7 Total Demand RMSE of the AC demand

Best Kalman Filter:
min = 148.4 kW
mean = 195.3 kW
max = 318.9 kW

. Average Kalman Filter:

757 ] min = 173.1 kW
% mean = 259.4 kW
max = 357.5 kW
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Energy Disaggregation (11/12)
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Time series of model weights indicating the most accurate
(available) model is a combination of two candidate models.
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/Michigan Power & Energy Laboratory

This work applies DFS to a feeder-level energy disaggregation
problem, separating the feeder demand into two components.

Conclusions

» DFS can effectively perform the disaggregation problem

* Models within DFS strongly influence performance

* DFS achieved lower AC demand RMSE than AKF on average
* DFS achieves higher AC demand RMSE than BKF on average

Additional Results

* Further parameter tuning may improve results
« DMD can be constructed to produce Kalman filter updates
« Estimation error covariances greatly influence the performance of DFS

Future Work

* Incorporate additional feeder measurements (e.g., reactive power, voltages, currents)
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Backup

Parameter tuning

TABLE 1
PARAMETER 1° USED IN THE DFS ScENARIOS IN SECTION VII-D

Model Set MFUll  AqFull o pqRed  pqRed  AqKRE AAKF
Update Method 1 2 1 2 1 2

0013  0.015 0.4 0.013 0.4 0.5

A=n"=1.0x10""
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TUNS

/Mig "li"gan Power & En

A parameter sweep of A indicates that tuning the parameter
based on similar, historical days may improve performance.
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Backup

Modifying the n°® and n” parameters influences the AC demand RMS
adjusting the model weight transitions and measurement-based adjustments.

RMSE (kW)
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Update Method 2

Riirq = argmin 1’ <T€t(§t}= 6") + D (0||k¢)
fcB

§t+l = {Htj

ﬁf-l—l :€t+1 + Et—l—l
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Total demand estimate time series
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OL demand estimate time series
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(b) OL Demand
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Additional results about update methods
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The models used are based on linear regression, linear time-
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invariant systems, and linear time-varying systems.
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The commercial regression model is based on [Mathieu 2010]
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The models used are based on linear regression, linear time-
Invariant systems, and linear time-varying systems.
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Each model based on [Kalsi 2012, Mathieu 2013] and set based on [Mathieu 2015]
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The models used are based on linear regression, linear tlme-
iInvariant systems, and linear time-varying systems.
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Dynamic Mirror Descent updates can be made identical to those of a Kalmanm
filter by appropriately choosing the loss and divergence functions.

Ht = argmin 7° { VI ( Ht F)> + D (HHHt)
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| I
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