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Abstract—This work develops and compares several networked
control and estimation algorithms to manipulate the power
consumption of a population of residential thermostatically
controlled loads (TCLs) to fulfill PJM frequency regulation re-
quests given an imperfect communication network and modeling
error. The algorithms rely on a model of the plant to reduce
the effects of communication delays, and include a stochastic,
predictive controller and two Kalman filter-based state estimation
techniques. The first estimator uses a set of independent Kalman
filters that run in parallel, and the second incorporates individual
TCL models that rely on identified thermal parameters.

We use simulations to examine 1) the algorithms’ ability to
adequately provide frequency regulation under a range of delay
severities, and 2) the effect of increased modeling error. We find
that both estimator-controller combinations provide acceptable
frequency regulation with average delays of 20 seconds and minor
modeling error. When we increase the modeling error by using a
higher-order model to represent the TCLs within the plant, the
first estimator provides acceptable frequency regulation while the
second estimator provides poor frequency regulation.

Index Terms—Demand response, frequency regulation, delays,
state estimation, optimal control, networked control

I. INTRODUCTION

NCORPORATING more fluctuating, renewable power gen-

eration into the electricity network will usually lead to addi-
tional power production variability. To maintain the frequency
within an acceptable range, generation resources must supply
more reserves, which may require them to operate at inefficient
operating points [1]. Alternatively, the manipulation of electric
power demand using demand response is also capable of
providing frequency regulation.

Common residential demand response methods include
price-based demand manipulation and direct control of loads
[2], e.g., residential thermostatically controlled loads (TCLs)
such as air conditioners, heat pumps, and water heaters. Under
normal operation, TCLs cycle on and off to maintain the
temperature of an internal medium, e.g., a house’s air temper-
ature, around a user-defined set-point. Direct control strategies
manipulate a TCL population’s total power demand generally
by adjusting either the user-defined temperature set-point, e.g.,
[3]-[5], or by requesting additional on/off switching, e.g., [6]—
[8]. Aggregations of TCLs can be used to provide ancillary
services such as frequency regulation to the power system
[5]. Recently, researchers have developed non-disruptive load
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control strategies [9], ensuring TCLs operate within or very
close to their normal temperature range [5].

TCLs are a spatially distributed resource, and coordinating
the demand of thousands of them to provide frequency regula-
tion requires sensing and communication infrastructure. This
infrastructure enables TCLs to receive control inputs and to
send information about their current operating state. However,
the cost of this infrastructure can be prohibitive [10]. Using
existing infrastructure, such as smart meters, is possible but
the frequency of information retrieval is limited [11], and load
control input delays can be significant [12]. Developing control
algorithms for demand response that are robust to delays and
respect the limitations of existing infrastructure may lower the
cost of demand response implementations.

Networked control theory addresses imperfect communica-
tion within control systems, see e.g., [13]. Ref. [14] investi-
gates the impact of delays in frequency regulation including
batteries and develops control algorithms to limit their effects.
Within the demand response literature, [6]-[8], [15], [16]
develop control strategies to address infrequent or unavailable
state measurements, [17] investigates lost messages in optimal
load scheduling, and [18] investigates the impact of, but does
not compensate for, communication latencies.

In this paper, we develop non-disruptive control and estima-
tion algorithms that enable aggregations of residential TCLs to
provide ancillary services such as frequency regulation (i.e.,
secondary frequency control) in the presence of significant
communication system limitations, including delays, as well
as substantial error within the model used by the algorithms.
In practice, we would expect large model mismatch since it
is difficult to develop a computationally-tractable and accurate
model of the aggregate dynamics of large number of spatially-
distributed, heterogeneous TCLs, especially given that many
useful TCL parameters and states are not easy to measure.

Our primary contribution is to adapt networked state esti-
mation and control approaches so to that they can be used
to solve key practical problems that will be encountered in
cost-effectively coordinating large numbers of heterogeneous
distributed TCLs for ancillary services. We propose two state
estimation strategies, one that synthesizes estimates obtained
from a bank of Kalman filters acting on non-synchronous
state measurements and another that uses individual TCL
state predictions obtained from identified TCL models as
pseudo-measurements within a single Kalman filter. We also
propose a model predictive control (MPC) algorithm that uses
a probabilistic estimate of the control input.

This work builds upon and extends our preliminary work in
[19]. The additional contributions of this paper are as follows:
1) we make modifications to one of the control algorithms first
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Fig. 1. An overview of the control framework.

proposed in [19]; 2) we track real PJM frequency regulation
signals (rather than simple sinusoidal signals as in [19]) to
evaluate the impact of delays on the adequacy of the frequency
regulation from demand response; 3) we evaluate the control
and estimation algorithms in tandem (rather than individually
as in [19]); 4) we evaluate the impact of modeling error by
testing the algorithms on a more realistic simulated plant,
and compare the results to those generated with the simpler
plant used in [19]; 5) we find that both estimator-controller
combinations can effectively mitigate communication delays;
and 6) we find that one estimator is sensitive to the specific
model used in the plant whereas the other is not.

The remainder of the paper is organized as follows: Sec-
tion II describes the problem framework. Section III presents
individual and aggregate TCL models. Section IV develops
two state estimation algorithms that we use in conjunction
with a control algorithm that Section V develops. Section VI
formulates a number of case studies and presents their results.
Finally, Section VII discusses the conclusions.

II. PROBLEM FRAMEWORK

As shown in Fig. 1, we assume a problem framework that
contains a plant, a communication network, and an aggregator.
The plant consists of a set of NTCL controllable TCLs, some
uncontrollable loads, and a distribution substation that serves
the total demand of the plant. We assume a smart meter acts
as an interface between each TCL and the communication
network, allowing two-way communication between the TCLs
and the aggregator through an imperfect communication net-
work as in [8].

We make several assumptions regarding the communication
network and smart meters. Due to the capabilities of digital
communication networks, we assume that multiple measure-
ments and inputs can be transmitted within one communication
packet, i.e., message. We also assume the messages are time-
stamped [13] and the clocks are synchronized across the com-
munication network nodes, allowing knowledge of previously
realized delays and their resulting statistics. We assume that
the communication network imposes independent and identi-
cally distributed (IID) delays on each message. We assume the

smart meter can use logic to select an applicable input from
a set of inputs, as explained in Section V. Finally, we assume
each smart meter can collect histories of the TCL’s internal
air temperature and on/off mode measurements, but the smart
meter can only transmit these state measurement histories
infrequently, e.g., every fifteen minutes, due to communication
limitations as in [8].

We assume the aggregator, which acts as a central controller,
uses a state estimator and controller, both of which include a
model of the plant. The aggregator induces TCL on/off switch-
ing by broadcasting inputs at each time-step (every two sec-
onds). The inputs are designed to produce a desired aggregate
TCL demand and are described in more detail in Section III-B.
IID delays cause the inputs to arrive asynchronously, and so
an estimated input is used by the aggregator. We assume that
the desired aggregate demand values are frequency regulation
signals, e.g., automatic generation control (AGC) or secondary
frequency control signals, provided by the system operator.

The aggregator’s state estimation algorithm produces an
estimate of the TCL aggregation’s state, which is described
in Section III-B. We assume that the aggregator has access
to measurements of the total substation demand and TCL
state measurement histories as in [8]. As in [8], substation
demand measurements are available at every time-step, and the
aggregate TCL demand is estimated from these measurements
by subtracting a prediction of the uncontrollable load. While
the substation demand measurements may be accurate, errors
in predicting the uncontrollable demand result in measurement
noise on the aggregate TCL demand. In this work, we add
normally-distributed, zero-mean noise to the aggregate TCL
demand to approximate the prediction error and any noise
in the substation demand measurements. As in [8] the TCL
measurement histories are available infrequently (every 15
minutes) due to smart meter limitations.

The infrequent availability of possibly delayed TCL state
measurements, means the aggregator relies on output feedback
(i.e., the aggregate TCL demand estimates, referred to as
“aggregate power measurements”) at most time-steps to form
the state estimate. The state estimate is then used by the
aggregator to generate the control inputs.

III. MODELING

We use three previously developed models and describe
them here for completeness and to establish the notation
used throughout the paper. Two hybrid, heat- transfer-based
models represent individual TCLs, and a Markov chain model
represents the TCL population.

The first individual TCL model, developed in [20], [21]
and referred to as the three-state model, models household
heating and cooling appliances using a mass temperature and
an air temperature. The second, simpler TCL model, developed
in [22], [23] and referred to as the two-state model, uses
only an air temperature and can model all TCLs. We use the
three-state model to represent the TCLs within the plant for
the case studies described in Section VI and we incorporate
identified two-state model into the state estimator developed
in Section IV-B2.
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TABLE I
TCL MODEL PARAMETERS

Parameter Description Three-State - Two-State
Value Value
A Temperature Set-Point [°C] [23, 25] 23, 25]
6% Temperature Deadband [°C] [0.85,1.15]  [0.85,1.15]
6° Outdoor Temperature [°C] 32 32
um Envelope Conductance [%] [4.35, 5.87] -
U2 Internal Conductance [%] [0.26, 0.35] [0.41, 0.56]
Am Mass Heat Capacitance [}32]  [1.93, 2.60] -
A2 Air Heat Capacitance [$52] [0.48, 0.64]  [0.51, 0.70]
Q™ TCL Mass Heat Gain [kW] 0 -
Q? TCL Air Heat Gain [kW] N(0,¢) N(0,¢)
€ Variance for Q* [kW?2] 2.5E-7 2.5E-7
Qh TCL Heat Transfer [kW] [-16, -12] [-16, -12]
n Coefficient of Performance [-] 3 3
At Time-Step Duration [s] 2 2

The hybrid nature of these models, i.e., their usage of
both discrete and continuous states, makes it computationally
challenging to incorporate thousands of the models within
optimization-based control algorithms. The Markov chain
model, developed in [6] and referred to as the aggregate model,
is a linear model of the TCL population’s power demand
dynamics, and it is easily incorporated into control algorithms.
The algorithms in Sections IV and V use this aggregate model.

The following section describes the individual TCL models,
and Section III-B describes the aggregate model. Note that we
assume model parameters are time-invariant throughout, but
the models can incorporate time-varying parameters. Time-
varying parameters within the individual TCL models would
result in a time-varying aggregate TCL population model.
Assuming that the time-varying aggregate model is known,
all of the algorithms are still applicable.

A. Individual TCL Models

We first present a generic discrete-time state update equation
for cooling TCLs below, then detail the difference between
the two individual models in the following sections. Table I
summarizes the model parameters where [«, /3] corresponds to
a uniform distribution and A (v, 8) corresponds to a normal
distribution with mean « and variance f.

Denote the set of TCLs J'™F = {1,2,..., N™}. Each
TCL j € J™L has continuous-time matrix parameters A7,
B¢, and E®J, and the discrete-time matrix parameters A7,
BJ, and E7 are formed using [24, p. 315]. The vector 67
denotes the continuous states, which are the TCL’s internal
temperature(s) at time-step ¢. The discrete state corresponds
to the scalar on/off mode m?, and d is a disturbance vector.
The discrete-time state-update equations are

0., = A0} + B'm] + E'd]

0 ifof, < o<ui — i /2
if 077, > 67 4 g7 /2
m’ otherwise,

jeJ™ (a)

mi =11 jeJ™ (ib)

where (1a) updates the internal temperatures, (1b) updates the

on/off mode, and 6’ is the element of & that corresponds to

the TCL’s air temperature, which is being regulated. The power

demand of TCL j is P/ = (|Q™| m])/n’ with Q™ < 0 for

cooling TCLs. The output of the TCL model, or the values
. . a.i T

that can be measured, is y7 = [0/ m]]

1) Three-State Individual TCL Model: We use this model
to represent individual TCLs within the plant during the case
studies presented in Section VI. In the three-state model

0] = [92’] 0,7 ] where ;"7 denotes the TCL’s mass tem-

perature. The disturbance vector is &= [9" Qi"j Q™I ] T,
where the heat injections Q;"j and Q™7 arise due to solar
irradiance and heat gain within the household due to occu-
pants and additional appliances. The model’s continuous-time
matrices are

Ad — | (Ua’j + Uln»j) /Aa,j Um’j/Aa*j
B g7 J A U™ A
Bc,j _ [Qh’j/Aa"j O]T
e _ |US/AS 1A 0
0 0 1/Am,j

Table I's “Three-State Value” column parameterizes a popula-
tion of residential air conditioners using nominal parameters
from [25]. However, we set the outdoor temperature 6° to
simulate a reasonably hot day, we assume @}’ is zero-mean
and normally-distributed to include random air temperature
disturbances as in [19], and we set Q™7 = 0. The results in
Section VI-B include a discussion of the algorithms’ ability
to accommodate positively biased heat injections.

2) Two-State Individual TCL Model: We use these mod-
els within the estimator described in Section IV-B2. In the
two-state model 6 = 6}’ and d] = [0° QﬂT. The
resulting continuous-time matrices are A% = —U»I/A®I,
B = QM /A% and B9 = [U™ /A% 1/A%7]. We set
the parameters in Table I's “Two-State Value” column equal
to the three-state model values where applicable, but we set
U®J and A*J such that the nominal cycle time is comparable
to that of the three-state model.

B. Aggregate TCL Population Model

The aggregate model, which is used by the controller and
estimator, assumes that the two-state model of Section III-A2
is the underlying individual TCL model. While an aggregate
model exists for the three-state TCL model [5], measurements
of 6,7 are not easy to obtain, and practical construction
of the state-transition matrix from available measurements
is an open question. In Section VI, we evaluate the impact
of this assumption on the control and estimation algorithms’
performance by simulating TCLs within the plant using the
three-state model.

The aggregate model uses an aggregate state z; € RN
where N* is the number of discrete states, and each element of
the state vector corresponds to the portion of TCLs within the
discrete state. The discrete states are formed by first defining
a normalized temperature deadband and then dividing it into
N* /2 temperature intervals. Each interval contains two states —
one for TCLs that are drawing power and one for TCLs that are
not. The state transition matrix A € RV *N" is a transposed
Markov Transition Matrix that describes the probability of
TCLs transitioning between states in a time-step.

The input u; € RY/2 is the portion of TCLs that we
want to force from the “on” bin of a temperature interval
into the corresponding “off” bin or vice versa. The matrix
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B € RY'/2XN" ensures the TCLs are forced into the oppo-
site on/off bin within the same temperature interval. Before
transmitting input vectors to the TCLs, this input is converted
into a switching probability by normalizing each input element
with the corresponding state element. To implement these
switching probabilities, each TCL first selects the probability
corresponding to its current state. Then, each TCL determines
whether it switches by drawing a random number. We assume
the local TCL controller disregards switching requests when
necessary to maintain the temperature within the normal
operating range.

The output of the aggregate model y; depends on whether
both aggregate state and aggregate power measurements are
available at time-step ¢. The set 75 denotes time-steps where
both aggregate state and aggregate power measurements are
available, and y; € RN 1 at these time-steps. Otherwise only
aggregate power measurements are available and y; € R. The
resulting linear system is

Ti41 = A.’Et + But + wy (321)
CPzy +vf t¢ TS

y =< |CS vy S (3b)
CP Ty + Uf te T 5

where w; € RV is process noise including modeling error,
vy € RY" is the aggregate state’s measurement noise, v} € R
is the aggregate power’s measurement noise, CS is an N* x N*
identity matrix, C* = P NTCL[0 ... 0|1 --- 1], and P™" is
an approximation for the average power draw of a TCL that is
on within the aggregation. We calculate P” using data from
a set Tt of VNSt historical time-steps when the TCLs cycled
without external forcing

> P

Fon _ 1 jegcL 4
T \hist T ] S
te T hist Z my
je jTCL

The quantity > . jegre Pt is the total power draw of TCLs
at time-step ¢, and ) jegre mt is the number of TCLs that
are on at time-step t. Finally, we assume that the aggregate
model is known to the aggregator a priori. It can be derived
or identified using the methods in [6].

IV. STATE ESTIMATION ALGORITHMS

Our state estimation algorithms use a networked, time-
varying Kalman filter from [26] that incorporates aggregate
state and power measurements. The networked Kalman filter
excludes measurements that have not arrived from the cal-
culations at each time-step using binary indicator variables.
As delayed measurements arrive, the networked Kalman filter
fully incorporates the new information by updating a history
of estimates. Measurement delays are treated deterministically
within the estimator since delays associated with measure-
ments that have arrived are known. Whereas [26] does not
include inputs within the estimator’s dynamic model, we use
estimated inputs that are described in Section V-B.

To incorporate delayed measurements, past estimator values
must be stored so that they can be updated. The memory

requirement can be reduced by excluding measurements with
delays longer than a preset threshold; for generality, we do not
set a delay threshold in this work. Setting a delay threshold
within the estimator implies that measurements are discarded
if they do not arrive by the deadline. As measurements take
longer to arrive, their information becomes outdated and they
are less useful. The threshold can be set given the known
delay statistics such that only a small number of measurements
are discarded due to late arrival and the impact on the state
estimate is small. Section IV-A presents the networked Kalman
filter, and Section IV-B presents two variations of it, which we
apply to our problem.

A. The Networked Kalman Filter

Within this section and Section V, we use the time indexing
notation v, where 1 is an arbitrary value, and ¢ denotes
the time of the calculation. In this section, k& < t indexes a
historical horizon of time-steps. The horizon length NX' is set
at each calculation time ¢ as the number of time-steps of the
newly-arrived measurements’ largest delay, and the set of time-
steps within the historical horizon is KX = {t NS ,t}.
The set KK includes past time-steps requiring an update to
incorporate the newly arrived measurements into the state
estimate, and the present time-step for which a new state
estimate must be generated.

The binary, scalar variables ’yi‘ , and ’y,l:,‘ , indicate whether
the aggregate state and aggregate power measurements sam-
pled at time-step k have arrived by time-step ¢. The indicators
are 0 if the corresponding measurement has not arrived by
time-step ¢, and 1 otherwise. The indicator vzl , 1s also set
to 0 when the aggregate state is not measured. The Kalman
filter observations incorporate the aggregate state measure-
ments y; and the aggregate power measurements y, using
Ykt = Crje + vi)r Where

S .S
Vit Yk

and vy = | p P
)
Vit Yk

Ykt =
The measurement noise vy, has covariance V};, which is a
block diagonal matrix composed of the aggregate state and
aggregate power measurement noise covariances 72‘ fVS and
Vil tVP These covariances are assumed to correspond to zero-
mean, normal distributions. The indicator values ensure that
measurements that have not arrived have no effect on the
state estimate, and the resulting zero components of yy;, Ci|¢,
Vg|¢» and Vi), can be removed to reduce the dimension of the
computations with no effect on the estimate. The quantities
Uk|t> Ck|t> Ukje> and Vi, correspond to the reduced matrices.

To perform state estimation, we initialize the recalculation
horizon using the state estimate and error covariance from
the calculation at time ¢ — 1: Zy_nw_1; = Zy_nw_14—1 and
Hy nw_yp = Hy g1 Previous state estimates are then
recalculated to incorporate newly arrived measurements, and

a new state estimate is generated for time-step k& = t. For
k € KX

f;;“ = A1) + Bug—1 (5a)

Hy, = AHy_y AT + W (5b)
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~ ~ ~ ~ AT
Ko = Hygo O (Cuge g, O + Vi) (5¢)
Tppe = f;;ﬁ + Ky (gk\t - 5k|t§/;‘t) (5d)
Hyjy = Hyj, — KiiCrpeHyy,- (5¢)

The aggregate model in (5a) generates an a priori state pre-
diction f,:‘ , and error covariance H k_l , in (5b), where W is the
process noise covariance of a zero-mean, normal distribution.
Section V explains the estimated input %, in more detail. The
Kalman gain Ky; is calculated in (5c) based on available
observation values with { denoting a pseudo-inverse, which
we use for numerical reasons. The a posteriori state estimate
Ty and error covariance My, are then calculated in (5d) and
(5e). The output of the algorithm is the new state estimate for
the current time-step ¢, i.e., ¥; = T, which fully incorporates
all measurements that have arrived. Note that the process noise
is not necessarily zero-mean and normally-distributed, which
results in a sub-optimal filter. We assume that the measurement
noise and process noise are independent from each other and
independent in time.

B. Variations of the Networked Kalman Filter

Because of IID transmission delays, the state measurement
histories from individual TCLs do not arrive synchronously at
the aggregator. We develop and investigate the performance
of two methods to form aggregate state estimates from asyn-
chronous TCL measurements for use within the networked
Kalman filter. The method in Section IV-B1 describes an
algorithm that runs NTCL filters from Section IV-A, one
for each TCL. The method in Section IV-B2 uses a single
networked Kalman filter that uses aggregate state predictions
obtained by applying identified individual TCL models to old
state measurements. Both methods use (delayed) aggregate
power measurements that are sampled at every time-step and
(delayed) TCL state measurements that sent to the aggregator
infrequently, e.g., every fifteen minutes.

1) Estimator 1: Parallel Kalman Filter Estimator: An ag-
gregate state measurement can be formed using each TCL’s
state measurement, i.e., its temperature and on/off mode
measurements, and used within a networked Kalman Filter.
However, this would require waiting until all TCL state mea-
surements have arrived at the aggregator, and so the aggregate
measurement delay would be equal to the worst-case TCL state
measurement delay. Instead, we construct a state estimator
that runs NTCL networked Kalman filters in parallel, one
for each TCL. When a TCL state measurement arrives, we
use it within the corresponding Kalman filter and combine
all filter estimates into a single aggregate state estimate. By
doing this, we can update the aggregate state estimates while
measurements are still arriving.

Each of the filters use the aggregate model, delayed ag-
gregate power measurements, and delayed TCL state mea-
surements from the corresponding TCL. While TCLs transmit
measurement histories, only the most recent measurement is
used in this method. We define the state vector of each filter
as ¥} € RN for j € JT; it is defined equivalently to
z¢ in Section III-B, however ;1:{ models a single TCL. To
form xi we convert TCL j’s most recent air temperature

and on/off value into its corresponding discrete bin value
within the aggregate state. We then set the element of z7
corresponding to the TCL’s discrete bin value to 1 and all
other elements to 0. We assume TCL state measurements
are accurate for convenience, and so we use a near-zero
aggregate state noise covariance, i.e., V5 ~ 0V j. We use the
the aggregate power measurement noise covariance defined
in Section IV-A, and we assume that the covariance of this
measurement noise is significantly greater than zero due to
errors in predicting the uncontrollable demand as described in
Section II. The estimates produced by each filter are combined
into an overz%yL aggregate state estimate at each time-step as
By = (Zjvzl 77) /NTCL. The main disadvantages of this
method are the large computational requirement of running
NTCL Kalman filters in parallel and the usage of only the
most recent TCL measurements.

2) Estimator 2: Single Kalman Filter Using State Predic-
tions: This state estimator consists of three components: an
individual TCL parameter identification algorithm, a bank of
NTCL identified two-state individual TCL models as described
in Section III-A2, and a single networked Kalman filter
as described in Section IV-A. The parameter identification
algorithm uses the TCL state measurement histories to identify
the thermal parameters for each TCL, which we assume are
initially unknown to the aggregator. We assume that measure-
ments of thermal mass temperature are unavailable, as they
would be difficult to obtain in practice. Therefore, we use the
two-state individual TCL models, as it would be difficult or
impossible to identify the three-state model parameters.

This estimator uses delayed aggregate power measurements
and delayed TCL state measurement histories sampled at
every time-step but transmitted infrequently, e.g., every fifteen
minutes. As each TCL’s measurement history arrives, it is
used within a nonlinear least squares algorithm to identify
the thermal parameters A®/ and U®J corresponding to the
two-state individual TCL model, assuming that the set-point,
deadband width, and outdoor temperature are known. We
use the identified models to predict the TCL states at each
time-step (assuming Q;’ = 0V j), and we use the individual
predictions to form an aggregate state prediction z}.

A single networked Kalman filter treats the predictions
x7 as measurements, allowing the individual TCL models to
influence the Kalman filter estimate. The measurement noise
associated with the aggregate state predictions v} is assumed
to be zero-mean and normally-distributed, and the aggregate
state measurement noise covariance VS is generated using the
historical errors. Note that the noise will not be normally-
distributed in general, which results in a sub-optimal filter.
As in Section IV-B1, the measurement noise associated with
the aggregate power measurements is significant, and so the
associated covariance is greater than zero.

The method has the disadvantage that it relies on the
accuracy of the two-state model; the implications are discussed
in Section VI. This estimator must keep track of and com-
pute the state of NTC two-state models and requires one
networked Kalman filter. Alternatively, the parallel Kalman
filter estimator requires NTC" networked Kalman filters. The
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amount of information, e.g., matrices and states, that must
be stored for each Kalman filter depends on the aggregate
model’s dimension N”. Qualitatively, the data requirements
and necessary computations, i.e., matrix multiplication, for
each estimator are similar.

This state estimator consists of three components: a param-
eter identification algorithm, a bank of NTCL identified two-
state individual TCL models, and a single networked Kalman
filter. As each TCL’s measurement history arrives, they are
used within a nonlinear least squares algorithm to identify the
thermal parameters A®/ and U%7 of the TCL, assuming a two-
state TCL model and that the set-point, deadband width, and
outdoor temperature are known. The set of identified TCL
models allow each TCL to be simulated where we assume

i) =0 for all j. Aggregate state predictions z} are formed
based on model predictions at each time-step.

A single networked Kalman filter treats the predictions
xy as measurements, allowing the individual TCL models
to influence the state estimator. The measurement noise as-
sociated with the aggregate state predictions v} is assumed
to be zero-mean and normally-distributed, and the aggregate
state measurement noise covariance V'S is generated using the
historical errors. Note that the noise will not be normally-
distributed in general, which results in a sub-optimal filter.
The method has the disadvantage that it relies on the accuracy
of the two-state model, which is discussed in Section VI-B.

V. CONTROL ALGORITHM

The aggregator uses the predictive control approach de-
scribed in [13] to counteract input delays. In this approach,
the control algorithm generates an open-loop input sequence
U, € RN'/2xN™ 4t each time-step based on the current state
estimate. IID delays cause asynchronous input arrival at the
TCLs. Using time-stamping, we assume that the smart meter
(or TCL) can select the most recently generated input sequence
that has arrived. The TCL then selects the input from that
sequence that applies to the current time-step, or it uses a zero
input. The controller does not know the implemented input at
each TCL, and an estimated input is generated from the known
delay statistics and is used within the aggregator’s algorithms.

We develop an MPC algorithm that considers a horizon of
N™P¢ time-steps ranging from the present time-step ¢ to future
time-step ¢ + N™° — 1 to generate U;. The MPC algorithm
uses the aggregate model to design inputs to track the desired
aggregate demand y, "',

Within this section, k is used to indicate the time-step
of the MPC horizon. Inputs corresponding to time-step k
are produced at time ¢t = k — N™° 4+ 1,... k, resulting
in a total of N™* inputs for each time-step. The matrix
U, = [ugp Up|—nmwes1] denotes the set of input
vectors that apply to time-step k.

As in [27], we form an input estimate @; based on previously
transmitted input sequences. Ref. [27] attempts to estimate the
single input within an actuator whereas we form the input
estimate u; as the weighted sum of possible inputs and their
probability of being implemented. Specifically, we send a finite
number of inputs that apply to time-step k to the TCLs.
The inputs are known because the controller designs them.

Using knowledge of the TCLs’ input selection logic and the
probability distribution of delays, which is assumed known
from historical data, we compute the probability that each
of the inputs that applies to time-step k is implemented by
the TCLs, where P is the vector of probabilities. The MPC
formulation uses the expected value of the input. This allows
us to reformulate the stochastic optimization problem as a
deterministic optimization problem [28]. Section V-B details
the construction of w;, Uy, and P. The following section
presents the MPC formulation, which is a finite-horizon, linear
quadratic output regulator with input and state constraints that
is implemented using [29].

A. MPC Formulation

To set N™°, we first fix a parameter p™®*. The value
1 — p™ is the probability that no valid input is available
at the TCL, and we explain this further in Section V-B. The
MPC algorithm is initialized using the current state estimate

~ P,ref

T+ = Ty, the current aggregate demand request y; *, and any
previously transmitted inputs that apply to time-steps within
the horizon. The full formulation is

t+Nmpc71

minJI;[SliZC Z [cy (e + (8, +6;)

’ k=t
k
+ Y E, uk|m)} ©6)
m=k—Nmp41

S.t. Tht1 = Az, + By 7
Up = U P (3
yi =y, — CPa ©
U < T i€{l,...,N*/2} (10)
—tpy,, <ap T ie{l,...,N*/2} (11)
0— 0 <z <146 (12)
0 <6, ,6; . (13)

The objective function (6) minimizes the total cost over the
horizon where the costs ¢¥, ¢*, and ¢? penalize the tracking
error y;", control effort, and soft constraint violations 6; and
d,, - The input Ug|m in (6) is a column of Uy. The dynamic
model in (7) corresponds to (3a) excluding the process noise
and using the estimated input from (8). The tracking error
is calculated in (9) using a persistent value of the current
aggregate demand request, i.e., y,f el — Pl for all k in
the MPC horizon. The input constraints (10) and (11) limit the
fraction of TCLs to switch from a particular bin to be less than
the fraction of TCLs within that bin. The soft state constraint
(12) is satisfied regardless of the initial value provided from
the unconstrained state estimator, and (13) restricts the soft
constraint violations to positive values.

B. Constructing Input Estimates

The vector P weights each of the inputs in U based
on their probability of being implemented. The probabilities
within P are fixed during an MPC calculation. However, the
probabilities could be recomputed between MPC calculations
if the delay distribution changes, e.g., due to different traffic
levels at various times of the day.
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The inputs in U), become “older” as we go from left to
right in the matrix, and we calculate the elements of P using
the corresponding input vector’s location in Uj. Due to its
input selection logic, a TCL uses the input corresponding to
the leftmost column of U, that has arrived. The probability of
using a column depends on two events: 1) the column must
have arrived, and 2) every column to its left within {;, must not
have arrived. We generate the elements of P based on these
two events, the necessary delays for these events to occur,
and the probability of realizing these delays. Note that while
assuming IID delays simplifies the following calculations, they
are still possible without independence.

To simplify the notation in the following discussion, denote
the ith element of P as p’, the ith column of U} as u’
(which was previously denoted ug;—;41), the delay in time-
steps associated with the arrival of column u' as 7°, and the
probability of the first and second necessary events as p' and
p?'. The delays take non-negative, integer values. Using the
assumption of IID delays, p’ = plip>*.

We say that the input u’ = Ug|k—i+1 arrives within time-step
k if its delay is less than ¢
phi=p(rt<i)  i=1,...,N™ (14)
For example, u! = uy|x arrives within time-step k if <1,
ie, 71 =0, and u? = Uk|k—1 arrives within time-step k if
2 <2 ie,m2=00r7%2=1.

The probability that u’ has not arrived by time-step k is
p(r® > i). Assuming IID delays, the probability that all
columns left of column ¢ have not arrived by time-step & is

i—1
=Tl =0 i=1 N 5
n=1

For example, u® = Ug|k—2 can only be used if u! and u? have
not arrived by time-step k, i.e., 71 >1and 72 > 2.

For an MPC calculation, columns within U/, whose right
time index is less than ¢ correspond to inputs that have already
been sent to the TCLs. The remaining columns are inputs that
the MPC algorithm chooses (i.e., decision variables within the
optimization problem (6)—(13)), but only a portion of these are
included in the input sequence U, sent to the TCLs after the
MPC calculation. Specifically, U, consists of the one column
from each Uy, k € {t,...,t + N™¢° — 1}, whose right-hand
time index corresponds to the current time ¢, i.e., every uqp
with b = t. The horizon length N™P° is set such that the sum
of elements in P is greater than p™** where N™° is the length

of P.

VI. CASE STUDIES

We summarize a series of simulations investigating 1) the
impact of compensating for delays, and 2) the ability of the
methods to provide frequency regulation despite communica-
tion delays and model error. Section VI-A details the simula-
tion parameters, algorithm combinations, delay distributions,
reference signal construction, and quantities used to evaluate
the simulations. Section VI-B presents the simulation results.

TABLE 11

SIMULATION PARAMETERS
Parameter ~ Description Value
N* Number of State Bins [-] 100
NTCL Number of TCLs [-] 10,000
RP Aggregate Power Noise Covariance [kW?] N (0, 4E6)
pae Average Steady-State TCL Demand [kW] 6E3
At Time-Step Duration [s] 2
AtSs TCL State Measurement Interval [s] 2
AtSt TCL State History Transmission Interval [s] 900
nSteps Time-Steps in Simulation [-] 1800
pmax MPC Delay Probability Threshold [-] 0.999
24 MPC Output Cost [-] 1
c* MPC Input Cost [-] 1
e’ MPC Soft Constraint Cost [-] 1.01

A. Case Study Setup

Table II details the simulation parameters. We simulate
a TCL population of 10,000 air conditioners. The average
steady-state TCL demand is slightly different between the
two- and three-state TCL model populations because of the
parameters used, and the value in the table is approximate. We
use a zero-mean, normal distribution to generate the aggregate
power measurement noise. Similar to [6], [19], we set the noise
variance assuming the average steady-state TCL demand is
15% of the demand served by the substation, and the standard
deviation of the power measurement noise is set to 5% of
the total substation load. We generate the aggregate model’s
process noise covariance using historical errors. The resulting
process noise is neither zero-mean nor normally-distributed.

We conduct a series of case studies, varying: 1) the average
delay, 2) the reference signal, 3) the model used to simulate
individual TCLs within the plant, and 4) the estimator. The
two reference signals, called the Reg-A and Reg-D reference,
correspond to segments of published PJM traditional and
dynamic frequency regulation signals from [30]. The reference
signals are from May 4, 2014. The signals are interpolated to
two second time-steps, and each signal is scaled so that the
maximum demand change request corresponds to +20% of
the average steady-state aggregate TCL demand. Three delay
distributions are used, referred to by their average delay: 0, 10,
and 20 seconds. With average delays of 0, we do not impose
any measurement or input delays. With average delays of 10
and 20 seconds, IID delays 7 are sampled from a discretized
log-normal distribution 7 = |exp(7*)| where |- | rounds down
and 7* is normally-distributed. In the cases with delays, the
variance of the log-normal distribution is 0.25 sec?. We use the
chosen distribution to model delays that do not take negative
values and are unbounded above. Recall that the estimator
treats the delays deterministically after each measurement has
arrived, and so the delay distribution does not impact the
estimator performance. The controller uses the statistics of
the delay distribution, and so alternative distributions would
change the entries in P, but these can be computed regardless
of the distribution.

We compare four control setups, which vary both the
complexity of delay compensation method and the estimator
used.

o Estimator 1-FC, where FC refers to “full compensation,”
pairs the controller from Section V with Estimator 1. This
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setup requires measurement and input time-stamping,
aggregator knowledge of the input delay statistics, and
that TCLs are capable of input selection.

o Estimator 2-FC, pairs the controller from Section V with
Estimator 2. This setup requires measurement and input
time-stamping, aggregator knowledge of the input delay
statistics, and that TCLs are capable of input selection.

o Estimator 1-TS, where TS refers to “time stamping,” pairs
Estimator 1 with a simplified controller that does not
require aggregator knowledge of the input delay statistics,
but still requires measurement and input time-stamping.
The controller assumes that there are no input delays and
sets the probability of the input arriving at the TCL within
the time-step to 1, i.e., P = 1. Additionally, it uses only
one time-step within the MPC algorithm, i.e., N™° = 1
because this is all that is necessary without delays [31]
and the reference signal is unknown in future time-steps.
Time-stamping enables measurement delay compensation
in the estimator and input selection at the TCLs.

o Estimator 1-NC, where NC refers to “no compensation,”
pairs Estimator 1 with a simplified controller that does not
require aggregator knowledge of the input delay statistics
and assumes measurements/inputs are not time-stamped.
As in Estimator 1-T'S, the controller does not account for
input delays. Since measurements are not time-stamped,
the estimator uses measurements based on their arrival
time rather than their sampling time. Since inputs are
not time-stamped, TCLs use whichever input arrives first
during a time-step or zero if no input has arrived.

We quantify the results using two values 1) the normalized
RMS tracking error (RMSE), and 2) the PJM score described
below. We run ten instances of each case with different
realizations of the random quantities and average the RMSE
and PJM score across the instances for each case. The RMSE
for a single case instance is

1 1 P,real P,ref 2
Pavg nsteps Z (yt Yt )
teT

where P*¢ is the average steady-state aggregate TCL demand
and y; ™ is the achieved aggregate demand. The PIM score
is a value between O and 1 that is calculated using PJM’s
standards [32, pp. 52-54]. The score uses the correlation, delay,
and difference in energy between the requested and actual
signals. A passing score is > 0.75, which could certify a
resource to provide frequency regulation when tracking the
PIM test signal. A score of > 0.50 would be satisfactory to
maintain certification for an arbitrary reference signal.

PRMSE — (1 6)

B. Simulation Results

Figure 2 summarizes the average RMSE for the four control
setups, Table III summarizes the average PJIM scores, and
Fig. 3 provides time series for Estimators 1-FC and 2-FC
assuming an average delay of 20 seconds. Note that Fig. 2
does not contain results for cases using Estimator 2-FC and
three-state models as the plant. As shown in Fig. 3¢ and 3d,
the resulting RMSE is high (~ 15 — 20%) in these cases, and
we explain the cause below.

6 Two-State Plant Three-State Plant
T T
I Estimator 1-NC [ Estimator 1-TS

I Estimator 1-FC [ Estimator 2-FC

Reg-A RMSE (%)

Reg-D RMSE (%)

0 10 20 0 10 20

Average Delay (sec.) Average Delay (sec.)

Fig. 2. The average RMSE across all simulation scenarios varying the plant
(two-state and three-state TCL models), control setup, average delay, and
reference (Reg-A and Reg-D). Error bars indicate the range of values achieved
across the ten instances of each scenario.
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Fig. 3. Time-series plots comparing the reference tracking of Estimator 1 and
Estimator 2 with average delays of 20 seconds.

Note that with no delay, the RMSE and PJM scores of
Estimators 1-NC, 1-TS, and 1-FC are all identical in Fig. 2
and Table III since all three methods are equivalent without
delay. However, with increasing average delays, the RMSE
increases significantly for Estimator 1-NC, increases slowly
for Estimator 1-TS, and is roughly constant for Estimator
1-FC. This indicates that i) delay compensation is needed
if delays are significant, ii) a simple compensation method
reduces the effects of delays, and iii) more complex methods
can further mitigate the effects of delays. Estimator 2-FC
generally performs worse than Estimator 1-TS, and we discuss
this below. Note that all methods produce average PJIM scores
over the 0.75 threshold, except Estimator 1-NC when used to
provide Reg-A with average delays of 10 and 20 seconds.

Focusing on Estimator 1-FC, PJM scores for the Reg-D
reference are slightly better than those for the Reg-A reference,
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TABLE III
AVERAGE PJM SCORES [-]

Two-State Plant Three-State Plant

Control Setup ~ Avg. Delay Reg-A Reg-D Reg-A  Reg-D
Estimator 1-NC 0 0.852 0.899 0.810 0.894

10 0.727 0.821 0.735 0.835

20 0.707 0.782 0.727 0.805

Estimator 1-TS 0 0.852 0.899 0.810 0.894

10 0.846 0.908 0.821 0.901

20 0.836 0.892 0.801 0.896

Estimator 1-FC 0 0.852 0.899 0.810 0.894

10 0.849 0.908 0.814 0.901

20 0.849 0.903 0.824 0.903

Estimator 2-FC 0 0.785 0.882 —— —
10 0.799 0892 —— o

20 0.807 0.887 —— —

T 400 T T T i T T a
3200 s —
g 0 - -
0 100 100

50 50
Bin Number (-) Bin Number (-)

(a) Two-State Plant (b) Three-State Plant

Fig. 4. Comparison of discrete state bin distributions in steady-state for
populations of TCLs represented by two-state and three-state models.

while the RMSE is slightly worse for the Reg-D signal.
Because the trends are different for each performance metric,
it is unclear whether the Reg-A or Reg-D cases are superior.
Using the three-state TCL models within the plant resulted
in slightly worse RMSE and PJM scores, but they are still
above PJM’s threshold, which is important since three-state
models capture the TCL dynamics more accurately. While
we used zero-mean heat injections to generate all of the
results shown in this paper, simulations results (not shown
here due to space limitations) indicate that Estimator 1-FC
can adequately handle more realistic, biased heat injections.
In contrast, Estimator 2-FC is unable to account for biased
heat injections.

Estimator 2-FC’s performance is dependent on the TCL
model used within the plant. When two-state models are used
within the plant, Estimator 2-FC’s PJM scores are acceptable
in all scenarios; however, it performs worse than Estimators
I-TS and 1-FC. Estimator 2-FC’s performance is dependent
on the number of discrete states /N*, and diminishes if N* is
reduced, e.g., to 40, for computational reasons. Improvements
to Estimator 2-FC may be achievable with more advanced
parameter estimation methods.

When the three-state models are used within the plant,
Estimator 2-FC is not able to provide effective frequency reg-
ulation because Estimator 2 uses two-state models to generate
aggregate state predictions, which are treated as measurements
within the state estimator. Figure 4 shows the steady-state
distribution of TCLs within 100 discrete state bins using
the two- and three-state plants. The distribution in the two-
state plant (left) is fairly flat across the first 50 bins, which
correspond to TCLs that are off. Alternatively, the distribution
in the three-state plant (right) has a large concentration of
TCLs around bin 50, which corresponds to the edge of the
deadband. This qualitative difference in their distributions
means that the two-state models used in Estimator 2 cannot
effectively predict the aggregate state when the plant consists

of three-state models. Because the thermal mass temperature
and environmental heat injections are difficult to measure,
identifying the three-state model is difficult.

VII. CONCLUSIONS

In this paper, we developed a predictive controller and two
estimators to mitigate the effects of communication delays
within a residential demand response scenario. In simulations,
we investigated the ability of the algorithms to control an
aggregation of TCLs to track frequency regulation signals.
Results show that both estimator-controller combinations are
able to effectively provide frequency regulation with average
delays of up to 20 seconds. The first estimator, which includes
only an aggregate model and relies on a number of Kalman
filters running in parallel is effective with both structural-
and parameter-based modeling error. The second estimator
assumes a specific TCL model and identifies parameters for
those models. It is effective if the assumed TCL model
structure matches the true model structure.

Future work should incorporate and address time-varying
outdoor temperatures and time-varying, biased heat injections
into the individual TCL models. Investigating a more effective
parameter identification algorithm may allow Estimator 2
to be used in a wider range of scenarios. Modifying the
controller to account for modeling error may improve tracking
performance. Finally, accounting for non-normally-distributed
measurement noise should be investigated.
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