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Abstract—Though distribution system operators have been
adding more sensors to their networks, they still often lack
an accurate real-time picture of the behavior of distributed
energy resources such as demand responsive electric loads and
residential solar generation. Such information could improve
system reliability, economic efficiency, and environmental impact.
Rather than installing additional, costly sensing and communica-
tion infrastructure to obtain additional real-time information, it
may be possible to use existing sensing capabilities and leverage
knowledge about the system to reduce the need for new infras-
tructure. In this paper, we disaggregate a distribution feeder’s
demand measurements into: 1) the demand of a population of
air conditioners, and 2) the demand of the remaining loads
connected to the feeder. We use an online learning algorithm,
Dynamic Fixed Share (DFS), that uses the real-time distribution
feeder measurements as well as models generated from historical
building- and device-level data. We develop two implementations
of the algorithm and conduct case studies using real demand
data from households and commercial buildings to investigate the
effectiveness of the algorithm. The case studies demonstrate that
DFS can effectively perform online disaggregation and the choice
and construction of models included in the algorithm affects its
accuracy, which is comparable to that of a set of Kalman filters.

Index Terms—Online learning, machine learning, energy dis-
aggregation, output feedback, real-time filtering

I. INTRODUCTION

D ISTRIBUTED energy resources (DERs) such as demand
responsive electric loads and residential solar generation

are becoming more common within electricity distribution
networks [1], [2]. Sensing infrastructure, such as household
smart meters, are also becoming more common [3]. However,
distribution system operators still often lack an accurate real-
time picture of overall DER characteristics such as i) the total
power consumption of the air conditioners connected to a
distribution feeder, or ii) the total power production of all solar
panels installed on a distribution feeder.

Perfect real-time knowledge of DER characteristics requires
a sensor at each of the large number (e.g., thousands) of spatially
distributed devices and a communication infrastructure capable
of reliably transmitting the data at the necessary frequency (e.g.,
every few seconds). Rather than installing additional, costly
metering and communication infrastructure, in this paper, we
show that it is possible to estimate real-time DER characteristics
using existing sensing capabilities and some knowledge of the
underlying system. Specifically, we show how to separate mea-
surements of the net demand served by a distribution feeder into
its components in real-time, using knowledge of the physical
processes driving load/generation. We refer to this task as feeder-
level energy disaggregation.

The authors are with the Department of Electrical Engineering & Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
gsledv@umich.edu; girasole@umich.edu; jlmath@umich.edu). This research
was funded by NSF Grant #ECCS-1508943.

Real-time, feeder-level energy disaggregation can help sys-
tem operators, utilities, and demand response providers improve
power system reliability, economic efficiency, and environmen-
tal impact. For example, a system operator can 1) estimate the
real-time balancing reserve requirement from its estimate of the
production of distributed generation resources; 2) estimate the
real-time potential for fault induced delayed voltage recovery
(FIDVR) caused by stalling in small motor loads [4] from its
estimate of the motor load consumption; and 3) optimize con-
servation voltage recovery (CVR) strategies using its estimate
of the mix of constant impedance, constant power, and constant
current loads [5]. A utility can 4) better plan demand response
actions by knowing the weather forecast and the real-time por-
tion of weather-dependent loads (e.g., air conditioners, heaters,
dehumidifiers). A demand response provider can 5) optimize
capacity bids into ancillary services markets using its estimate of
the real-time, aggregate, demand-responsive load; and 6) use its
estimate of the real-time, aggregate, demand-responsive loads
as a feedback signal in load coordination algorithms, e.g., [6],
[7]. Note that the consumption of demand-responsive loads often
needs to be measured for auditing purposes, but the consumption
data need not be communicated in real-time.

In this paper, we develop the feeder-level energy disag-
gregation problem framework and apply an online learning
algorithm to separate the active power demand served by a feeder
into the active power demand of a population of residential
air conditioners and the active power demand of all other
loads connected to the feeder. The algorithm [8] incorporates
dynamical system models of arbitrary forms, blending aspects
of machine learning and state estimation. Building upon our
preliminary work [9], the contributions of this paper are to
i) frame the feeder-level energy disaggregation problem, ii)
adapt the machine learning algorithm in [8] to the feeder-level
energy disaggregation problem, iii) develop a variation of the
machine learning algorithm that allows it to include models with
different underlying states, iv) demonstrate the performance of
the online learning algorithm via a realistic data-driven case
study, and v) compare the performance of the algorithm to
that of a set of Kalman filters. Beyond [9], this paper develops
a modified version of the algorithm, compares this modified
implementation to a direct implementation of the algorithm,
uses only real data (rather than models) to construct the feeder
active power signal, uses real data to identify all load models,
and compares algorithm performance to that of an aggressive
benchmark as opposed to a simple prediction model.

Section II compares our problem and approach to related
problems/work. Section III defines the problem framework.
Section IV describes the data used to construct the underlying
system, and Section V describes the models used within the algo-
rithm. Section VI summarizes the online learning algorithm and
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our implementations for the feeder-level energy disaggregation
problem. Section VII constructs case studies and summarizes
their results. Finally, Section VIII presents the conclusions.

II. COMPARISON TO RELATED PROBLEMS AND WORK

The feeder-level energy disaggregation problem combines
aspects of building-level energy disaggregation and load fore-
casting. Building-level energy disaggregation, also referred to
as nonintrusive load monitoring [10], separates building-level
demand measurements into estimates of the demand of individ-
ual or small groups of devices [11]. Disaggregation algorithms
use data sampled at frequencies ranging from over 1 MHz to
0.3 mHz (i.e., hourly interval data) where higher-frequency
data allows separation of more devices [11]. The problem is
not usually solved online because the goal is long-term energy
efficiency decisions such as identification and replacement of
faulty appliances and/or load research. Both unsupervised and
supervised learning approaches have been proposed, with the
latter often using models developed with submetering data.

Load forecasting predicts the total future demand within a
given area over time horizons ranging from hours to years
[12]. Whereas energy disaggregation typically deals with small
load aggregations, load forecasting typically deals with large
aggregations, e.g., thousands to millions of loads. For example,
forecasting the load served by a distribution transformer is
considered a “small” forecasting problem [12]. Very short term
load forecasting, corresponding to intraday forecasts, generally
uses 15 min to one hour interval data [12], [13]. Smart meter
data enables offline development of detailed load models [14],
which may be used online for operational decisions [15], e.g., for
predicting the curtailable load [14]. However, load forecasting
is typically done offline and is typically used for planning.

In contrast to building-level energy disaggregation, feeder-
level energy disaggregation involves disaggregating the demand
of a large number of loads, e.g., thousands, into a small number
of source signals, e.g., two. In contrast to load forecasting,
feeder-level energy disaggregation estimates portions of the
total demand and assumes real-time demand measurements,
e.g., taken by SCADA systems at distribution substations, are
available on timescales of seconds to minutes. This corresponds
to relatively fast sampling for load forecasting and relatively
slow sampling for building-level energy disaggregation. In
contrast to both building-level energy disaggregation and load
forecasting, feeder-level energy disaggregation is done online.
However, much like load forecasting and some building-level
energy disaggregation approaches, we assume detailed histori-
cal load data are available and used offline to construct models.

Machine learning algorithms have been proposed to address
a number of problems in power systems including security
assessment, forecasting, and optimal operation [16]. A variety
of machine learning techniques have been used to forecast load,
renewable generation, and prices [17]–[21]. References [22]–
[26] apply learning approaches to demand response. However, to
the best of our knowledge, this is the first paper to pose and solve
the feeder-level energy disaggregation problem, or to apply the
approach in [8] to a power systems problem.

III. PROBLEM FRAMEWORK

We assume that a power system entity (e.g., a system op-
erator, utility, or third-party company) has access to real-time
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Fig. 1. Example time series of yt and its components yOL
t and yAC

t .

measurements of the electricity demand served by a distribution
feeder. The power system entity is interested in separating
these measurements into two components in real-time, i.e., at
each time-step. The first component is the power demand of a
population of residential air conditioners served by the feeder,
referred to as the “AC demand.” Air conditioners generally draw
power periodically to maintain a building’s indoor temperature
within a range centered at a user-defined temperature set-point.
The AC demand varies in time due to each air conditioner’s
power cycling, weather-related influences, and building occu-
pant influences. The second component is the power demand of
the other loads on the feeder, referred to as the “OL demand,”
which we assume includes both residential and commercial
loads. Figure 1 displays example time series for the measured
total demand yt, the AC demand yAC

t , and the OL demand yOL
t

over a day. We measure yt at each time-step and try to estimate
yAC
t and yOL

t at each time-step as each measurement arrives.
The power system entity has two distinct modes of operation.

The first is the real-time estimation mode depicted in Fig. 2a. The
second is the offline model generation mode, depicted in Fig. 2b.
During real-time operation, we assume that the power system
entity has access to active power measurements corresponding
to the demand served by the distribution feeder as well as
weather-related measurements. The power measurements are
time-averaged active power demands over one min intervals, and
they are the sum of the AC and OL demand. The weather-related
measurements could include, for example, temperature and
humidity, and can be obtained from existing weather sensors;
load-specific weather monitoring is not required.

Model generation occurs offline using historical smart me-
ter, feeder, and weather data. To apply DFS to feeder-level
energy disaggregation we assume real-time measurements of
the demand components are unavailable, but models of the
components are available. These models could be created using
a variety of techniques (e.g., via system identification using
historical measurements obtained from the same system or a
different system, or using analytical methods and parameters
from the literature). In this work, we assume that smart meters
are installed at all houses, and they enable the collection of
household-level demand measurements at one minute intervals.
The smart meters’ communication limitations [11] make real-
time communication of this information infeasible, and so we
assume that it is only available offline for prior days. Because
we do not need real-time, device-level demand measurements,
we assume that historical device-level demand estimates can
be obtained offline from the historical household-level mea-
surements either by applying non-intrusive load monitoring
(NILM) algorithms or by using information from communicat-
ing or advanced thermostats, which are becoming more common
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Fig. 2. Problem framework: real-time and offline modes.

within residences. These thermostats can measure and record the
on/off mode of a residence’s AC unit and measurement histories
can be used to estimate the power draw of these devices. The
resulting device-level demand estimates may not be exact, but
they are accurate enough to be used within the computation of
model parameters. As a result, we use historical, device-level
measurements to construct the AC demand models. We also
assume that the power system entity has access to historical
feeder and weather data. Once the models are formed, they are
used along with the real-time measurements to estimate the AC
and OL demand.

An online learning algorithm, Dynamic Mirror Descent
(DMD) [8], uses a single model to generate predictions of the
total demand, a loss function to penalize errors between the
predicted and measured total demand, and a convex optimization
formulation to adjust this prediction based on the measured total
demand. Dynamic Fixed Share (DFS) [8], uses DMD within the
Fixed Share Algorithm [27] to include predictions from a bank
of models. Specifically, DFS applies DMD separately to each
model and uses a weighting algorithm to associate a weight
with each model’s adjusted prediction before combining the
predictions into an overall estimate. In DFS, these models are
weighted based on their prediction accuracy – better prediction-
measurement matching leads to larger weighting and more
influence in the overall prediction.

Rather than predicting the AC demand using a single load
forecast, the proposed approach has two main advantages. First,
in DMD, the AC and OL demand predictions are adjusted
in real-time based on the real-time, realized feeder demand.
This feedback improves future predictions; in contrast, load
forecasting is open-loop. It is necessary to predict both the AC
and OL demand since only the total demand is measured. If only
the AC demand is predicted, the prediction cannot be adjusted

in real-time because measurements of the realized AC demand
are not available in real-time. Second, the DFS algorithm can
incorporate a number of AC demand predictions into an overall
AC demand prediction. Predictions associated with prediction
methods that have performed well recently are weighted more
heavily and the weights evolve over time so different predictors
will be preferred at different times. The algorithm is described
in detail in Section VI, but first we describe the construction of
the underlying physical system, i.e., the plant, used within the
case studies and the models used within the algorithm.

IV. CONSTRUCTION OF PLANT

In this section, we detail the methods used to form the AC
and OL demand time series and the associated weather time
series over one day. These time series incorporate data from real
households, the devices within those households, commercial
buildings, and nearby weather stations. The data for individual,
residential air conditioners are summed to form the AC demand,
the data for household non-AC devices are summed to form the
residential OL demand, and the data for commercial building
demand signals are summed and scaled to form the commercial,
OL demand signal. Lastly, the outdoor temperature data consists
of real data from nearby weather stations, and the data is
interpolated to make it applicable on the time-steps used within
the problem scenario. These time series are then used as the
plant, i.e., the underlying physical system or the ground-truth
signals. The time series for a day consist of nsteps one-minute
time-steps with t = 0 at 12:00 AM. Because we were unable to
find sufficient data from a single location/day, we use demand
and weather data from a variety of sources.

We use feeder model R5-25.00-1 from GridLAB-D’s feeder
taxonomy [28] to set the average residential and commercial
demand on the feeder to 5.8 MW and 2.1 MW, respectively.
Ignoring network losses (which, if included, would be treated as
part of the OL demand), the total feeder demand measurements
are the sum of the AC and OL demand, i.e., yt = yAC

t + yOL
t ,

where yOL
t is the sum of the other residential demand and the

commercial demand yOL
t = yOL,res

t + yOL,com
t .

Both yAC
t and yOL,res

t are constructed using residential data
from the Pecan Street Dataport [29]. The data consists of
historical one min interval household- and device-level demand
measurements for a set of single family homes in Texas. Daily
household demand signals were randomly drawn with replace-
ment and added together until the total residential signal’s mean
matched that of the feeder model, resulting in 2, 499 total houses.
To construct the AC demand signal, we summed the demand of
each household’s primary air conditioner and air blower unit.
Note that some houses have no/multiple air conditioner and
air blower units. We assume that only one unit per household
contributes to the AC demand, resulting in 2, 269 units. The
remaining demand is the residential OL demand.

The commercial data consists of 4 second interval whole-
building demand measurements from two buildings in Califor-
nia, a municipal building and a big box retail store. We summed
the demand of the two buildings, and then scaled the sum by
2.61 to match the average commercial demand of the feeder
model. We also down-sampled the data to one min intervals by
averaging the values over each minute.

The plant’s weather data is constructed from data obtained
from the Pecan Street Dataport [29] and the National Climatic
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Fig. 3. Example OL demand and several OL demand model predictions.

Data Center [30]. The Pecan Street weather data corresponds to
the residential demand. It consists of the outdoor air temperature
for Austin, TX, and it is sampled at one hour intervals. We
linearly interpolate the data down to one min intervals. The
NOAA weather data corresponds to the commercial demand.
It consists of outdoor temperature data from the Concord,
CA weather station, sampled at one hour intervals. Again, we
linearly interpolate the data down to one min intervals. All
weather data was taken from the same day as the demand data.

V. SYSTEM MODELS

In this section, we describe the models used to generate
predictions of the AC and OL demands. These models are
generated offline, using historical data, and then used within
the online learning algorithm detailed in Section VI. The his-
torical demand signals were constructed in the same manner as
described in Section IV, using the same combination of houses
as used to construct the plant signals. The OL demand is modeled
using two different linear regression methods as detailed in
Section V-A, and the AC demand is modeled using several
linear dynamic systems as well as a linear regression method
as detailed in Section V-B. Note that other models may prove to
be more accurate on average than the models that are used within
this work. However, the intended objective within this work is
to use an array of models (including some that are known to be
overly simple or less accurate) to investigate the performance
of DFS on the feeder-level energy disaggregation problem.

A. OL Demand Models
We use two types of regression models to predict the OL

demand: time-of-day (TOD) regression models and a multiple
linear regression (MLR) model. Figure 3 displays yOL

t for a
simulated day, several TOD regression model predictions, e.g.,
ŷOL,Mon
t , and the MLR model prediction ŷOL,MLR

t . We next
describe the construction of these models.

1) TOD Regression Models: The TOD regression model is
a lookup table where an OL demand prediction is generated for
each minute of the day based on the OL demand of a single day
in the past

ŷOL,TOD
t = αOL,TOD

k = αOL,TOD xOL,TOD
t . (1)

Whereas t indexes overall time-steps, k indexes the time of day
in minutes, i.e., k = 0 for 12:00 AM and k = 60 for 1:00

AM. The scalar αOL
k corresponds to the predicted OL demand

value for time-of-day k, αOL,TOD is a row vector containing all
αOL
k values, and xOL,TOD

t is a column vector that selects the
appropriate αOL,TOD based on the corresponding time of day
for t. We generate αOL,TOD by smoothing the OL demand signal
of a previous day using a piecewise linear and continuous, least-
squares fit. Each linear segment corresponds to a 15 min interval
of the historical data. We generate one TOD regression model
for each weekday, and the models are denoted ΦOL,Mon, ΦOL,Tues,
ΦOL,Wed, ΦOL,Thurs, and ΦOL,Fri. Their corresponding predictions
are ŷOL,Mon

t , ŷOL,Tues
t , ŷOL,Wed

t , ŷOL,Thurs
t , and ŷOL,Fri

t , respectively.
2) MLR Model: The MLR model of the OL demand is de-

noted ΦOL,MLR, and it uses input features that include calendar-
based variables, e.g., the day of the week, as well as weather-
based variables, e.g., the outdoor temperature, to generate an OL
demand prediction. We split the MLR model into two distinct
components: one model for the commercial demand and one
model for the residential OL demand since the underlying data
corresponds to different geographic areas and time periods.
The overall MLR model of the OL demand is then the sum of
the predicted residential OL demand ŷOL,res

t and the predicted
commercial demand ŷOL,com

t , i.e.,

ŷOL,MLR
t =ŷOL,res

t + ŷOL,com
t (2)

=βOL,res xOL,res
t + γOL,com xOL,com

t , (3)

where the row vectors βOL,res and γOL,com are regression pa-
rameters for the residential OL demand and the commercial
demand, respectively. The column vectors xOL,res

t and xOL,com
t

are the corresponding input features.
The MLR model for the residential OL demand uses input

features xOL,res
t =

[
(xTOW
t )T T TX

t yt−1

]T
where xTOW

t is an
indicator vector for the time of week in minutes, T TX

t is the
outdoor temperature for Austin, TX, and yt−1 is the measured
total demand of the previous time-step. The commercial re-
gression model corresponds to “Baseline Method 1” from [31];
it uses input features xOL,com

t =
[
(xTOW
t )T TCA

t · (xTOW
t )T

]T
where TCA

t is the outdoor temperature for Concord, CA and
TCA
t · (xTOW

t ) is a vector that associates the temperature to the
corresponding time of week.

B. AC Demand Models

We use three types of models to predict the AC demand: a
MLR model, linear time invariant (LTI) system models, and
linear time varying (LTV) system models. Figure 4 displays
yAC
t for a simulated day, several LTV model predictions, e.g.,
ŷAC,LTV1
t , and the MLR regression model prediction ŷAC,MLR

t .
We next describe the construction of these models.

1) MLR Model: The MLR model of the AC demand,
denoted ΦAC,MLR, is similar to the MLR model in
Section V-A2 with different input features xAC,MLR

t =[
(xTOW
t )T T TX

t−τ l (T TX
t−τ l)2 (T TX

t−τ l)3 (T TX
t−τ l)4

]T
, where

T TX
t−τ l is the temperature in Austin, TX from τ l time-steps ago

and τ l is the time lag that maximizes the cross correlation
between the historical AC demand signal and temperature
signal (119 min for our plant).

2) LTI Models: We construct a set of LTI models MLTI,
originally developed in [32], [33]. As in [34], each model within
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t ŷAC,LTV2
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Fig. 4. Examples AC demand and several AC demand model predictions.

the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature Tm and has the form

x̂LTI,m
t+1 =ALTI,m x̂LTI,m

t (4)

ŷAC,LTI,m
t = CLTI,m x̂LTI,m

t , (5)

with m ∈ MLTI = {1, . . . , NLTI}. The state vector x̂LTI,m
t ∈

RN x×1 consists of the portion of the air conditioners within
each of N x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x = 2. The state
transition matrix, ALTI,m ∈ RN x×N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix CLTI,m estimates
the AC demand ŷAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m = N acP

m [
0 1

]
, where

P
m

is a parameter approximating of the average power draw
of air conditioners drawing power and N ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
NLTI evenly spaced temperatures T temps =

{
Tmin, . . . , Tmax

}
and denote the m-th temperature of the set as Tm. The dif-
ference between successive temperatures Tm and Tm+1 is
∆T . Matrices ALTI,m and CLTI,m are constructed using power
demand signals from each air conditioner corresponding to
periods when Tm − ∆T

2 ≤ T TX
t−τ l < Tm + ∆T

2 . Some
heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P

m
is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries inALTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} ◦F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first ΦAC,LTV1

uses the delayed temperature and has the form

x̂LTV1
t+1 =ALTV1

t x̂LTV1
t (6)

ŷAC,LTV1
t = CLTV1

t x̂LTV1
t , (7)

where ALTV1
t and CLTV1

t are generated by linearly interpolating
the matrix entries based on T TX

t−τ l . The second ΦAC,LTV2 uses a
moving average of the past temperature over τw time-steps to
generate the prediction ŷAC,LTV2

t . We chose τw to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm

The objective of DFS is to form an estimate θ̂t ∈ Θ of the
dynamic system parameter θt ∈ Θ at each discrete time-step t
where Θ ⊂ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt ∈ Y at each time-step after the prediction has been formed,
where Y ⊂ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where θt is the system state.

DFS uses a set of Nmdl models defined as Mmdl =
{1, . . . , Nmdl} to generate the estimate θ̂t. To do this, DFS
applies the DMD algorithm to each model, forming predictions
θ̂mt for each m ∈ Mmdl. DMD is executed in two steps
(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate θ̂t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]

θ̃mt = arg min
θ∈Θ

ηs
〈
∇`t(θ̂mt ), θ

〉
+D

(
θ‖θ̂mt

)
(8)

θ̂mt+1 =Φm(θ̃mt ) (9)

wmt+1 =
λ

Nmdl + (1− λ)
wmt exp

(
−ηr `t

(
θ̂mt

))
∑Nmdl

j=1 w
j
t exp

(
−ηr `t

(
θ̂jt

)) (10)
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for each m ∈Mmdl, and

θ̂t+1 =
∑

m∈Mmdl

wmt+1 θ̂
m
t+1, (11)

where each term is defined below. DMD is applied to each model
in (8) and (9) to form the expert predictions, where (8) is a
convex program that constructs the measurement-based update
to the previous prediction and (9) is the model-based advance-
ment of the adjusted prediction. The Fixed Share algorithm
consists of (10) and (11), where (10) computes the weights
and (11) computes the estimate as a weighted combination of
the individual experts’ estimates. We note that the Fixed Share
algorithm’s updates are independent of the dynamics and only
use the experts’ predictions and their resulting losses.

In (8), we minimize over the variable θ, ηs > 0 is a step-
size parameter, and 〈·, ·〉 is the standard dot product. The
value ∇`t(θ̂t) is a subgradient of the convex loss function
`t : Θ → R, which penalizes the error between the predicted
and observed values yt using a known, possibly time-varying,
function ht : Θ → Y that maps θt to an observation, i.e.,
yt = ht(θt), to form predictions of the measurements. An
example loss function is `t(θ̂t) = ‖Cθ̂t − yt‖22 where the
matrix C is ht(·). In (9), the function Φm(·) applies model m
to advance the adjusted estimate θ̃mt in time. Each Φm(·) can
have arbitrary form and time-varying parameters. In (10), the
weight associated with modelm at time-step t iswmt , λ ∈ (0, 1)
determines the amount of weight that is shared amongst models,
and ηr influences switching speed. The weight for model m is
based on the loss of each model and the total loss of all models.
The term ηs〈∇`t(θ̂t), θ〉 captures the alignment of the variable
θ with the positive gradient of `t(θ̂t). To minimize this term
alone, we would choose θ to be exactly aligned with the negative
gradient direction. The term D(θ‖θ̂t) is a Bregman divergence
that penalizes the deviation between the new variable θ and the
old variable θ̂t. For simplicity, we have excluded regularization
within (8), which DMD readily incorporates [8].

B. Algorithm Implementations
We next describe two algorithm implementations to update

the expert predictions. First, we describe an implementation that
uses the concept of DMD but it is not a direct implementation of
DMD. This method treats the models as black boxes and adjusts
only their output, i.e., the OL and AC demand predictions,
using the measured and predicted total feeder demand. Second,
we describe a direct implementation of DMD, which updates
the state xt of the LTI and LTV AC demand models. In the
following, the total demand model is Φ(·) = {ΦAC(·),ΦOL(·)}
where ΦAC(·) is an AC demand model and ΦOL(·) is an OL
demand model, with predictions ŷAC

t and ŷOL
t , respectively.

1) Update Method 1: The models used within this paper
have different underlying parameters, dynamic variables, and/or
structures, which makes it difficult to define a common θt across
all of the models used. Therefore, we develop a variation of the
DMD algorithm that adjusts the demand predictions directly,
rather than applying the updates to quantities influencing the
demand predictions. This allows us to include a diverse set of
models. Specifically, we modify the DMD formulation to

κ̂t+1 = arg min
θ∈Θ

ηs
〈
∇`t(θ̂t), θ

〉
+D (θ‖κ̂t) (12)

θ̂t+1 =Φ(θ̂t) (13)

θ̂t+1 =θ̂t+1 + κ̂t+1. (14)

The AC and OL demand models generate their predictions
independently from one another, and so (14) can be rewritten as

θ̂t+1 = Φ(θ̂t) + κ̂t+1 =

[
ΦAC(θ̂t)

ΦOL(θ̂t)

]
+ κ̂t+1. (15)

The convex program (12) is now used to update a value κ̂t
that accumulates the deviation between the predicted and actual
measurements. The model-based update (13) computes an open-
loop prediction θ̂t+1, meaning that the measurements do not
influence θ̂t+1. The measurement-based updates and model-
based, open-loop predictions are combined in (14). In contrast,
DMD uses a closed-loop model-based update where the convex
program adjusts the parameter estimate to θ̃t, which is used to
compute the next parameter estimate θ̂t+1.

In this method, we define θt as the AC and OL demand, i.e.,
θt =

[
yAC
t yOL

t

]T
. The mapping from the parameter to the

measurement is ht(θt) = Ctθt where the matrix Ct =
[
1 1

]
.

While the mapping and matrix are time-invariant, they may be
time-varying in Section VI-B2, and so we use the more general
notation. We choose the loss function as `t(θ̂t) = 1

2‖Ctθ̂t−yt‖
2
2

and the divergence asD(θ‖κ̂t) = 1
2‖θ−κ̂t‖

2
2. We can then write

(12) in closed form as

κ̂t+1 = κ̂t + ηsCTt

(
yt − Ctθ̂t

)
. (16)

2) Update Method 2: This method applies only to dynamic
system models with dynamic states, i.e., in this paper the LTI
or LTV AC demand models, which have dynamic states xt. We
set θt =

[
xT
t yOL

t

]T
, where xt is x̂LTI,m

t in (4), x̂LTV1
t in (6), or

x̂LTV2
t in an update equation similar to (6). The mapping from the

parameter to the measurement is then Ct =
[
CAC
t 1

]
where

CAC
t is the output matrix of the LTI or LTV AC demand model,

i.e., CLTI,m, CLTV1
t , or CLTV2

t . Defining the system parameter
in this way allows us to update the dynamic states of the LTI
and LTV AC demand models, rather than just the output as in
Update Method 1. The model-based update is then

θ̂t+1 =

[
ΦAC(θ̃t)

ΦOL(θ̂t)

]
+

[
0 0
0 1

]
κ̂t+1, (17)

where we update the AC demand model using the adjusted
parameter estimate, as in DMD. Because the OL demand models
do not include dynamic states, we continue to update their
estimates according to Update Method 1. We again use (16)
as the measurement-based update.

VII. CASE STUDIES

In this section, we define the scenarios, describe the bench-
mark, summarize the parameter settings, and present the results.
In [8], performance bounds for DMD and DFS were established
in terms of a quantity called regret. Regret is the total (or
cumulative) loss of an online learning algorithm’s prediction
sequence versus that of a comparator sequence, often a best-
in-hindsight offline algorithm. In [8], the DMD regret bound
uses a comparator that can take on an arbitrary sequence of
values from the feasible domain Θ. The DFS regret bound uses a
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comparator that chooses the best-in-hindsight possible sequence
of models chosen from the same model collection used by DFS,
where the number of model switches is a predefined number.
In lieu of developing formal performance bounds for the given
problem scenario, we benchmark the algorithms’ performance
using Kalman filters, which is described in Section VII-B. Future
work will investigate regret bounds for our particular problem.

A. Scenario Definitions

We define the three sets of models for use within DFS:
1) MFull, all of the models developed in Section V,

i.e., every combination of AC and OL demand
models from the AC demand model set
MAC,Full = {MLTI, ΦAC,MLR, ΦAC,LTV1, ΦAC,LTV2}
and the OL demand model set MOL =
{ΦOL,Mon,ΦOL,Tues,ΦOL,Wed,ΦOL,Thurs,ΦOL,Fri,ΦOL,MLR};

2) MRed, a reduced set that excludes the LTI models, which
are not accurate over the course of the day;

3) MKF, a further reduced set that excludes the MLR AC
demand model, which can not be used in a Kalman filter;

Since the Update Method 2 is only applicable to the LTI and
LTV AC demand models, case studies using Update Method
2 apply the method to all applicable model combinations and
otherwise use Update Method 1.

B. Kalman filter benchmark

A set of Kalman filters are used to establish a benchmark
for the DFS algorithm. A Kalman filter uses measurements,
an assumed system model, and known statistics of random
variables, which are assumed to be zero-mean and normally
distributed, to estimate the value of dynamic system parameters,
i.e., the system state, at each time-step. Additional background
on Kalman filters can be found in [35].

We use the LTV AC demand models within the Kalman filters.
For each LTV model, the covariance of the process noise is
computed using a week of historical data, where the true state is
generated using the measured AC demand and the LTV model’s
matrices. The Kalman filter estimates the state of the AC demand
model, i.e., θt = xt where xt is x̂LTV1

t or x̂LTV2
t , using output

pseudo-measurements of the AC demand ỹAC
t = yt − ŷOL

t .
We assume that yt is noise-free, but ỹAC

t is noisy due to OL
demand prediction error. The covariance of the measurement
errors depends on the OL demand model used, and is computed
for each model using a week of historical errors.

We run one Kalman filter for each model pair in the setMKF.
We compare the performance of the DFS algorithm to that of the
best Kalman filter (BKF), which takes the lowest ex post root
mean squared error (RMSE) achieved by a Kalman filter within
the setMKF, and the average Kalman filter (AKF), which is the
average RMSE across all of the Kalman filters.

C. Data

We test the methods on data from Aug 3-5, 10-14, 17, and
18, where the commercial data is from 2009 and the residential
data is from 2015. Note that the dates in both years pertain
to the same days of the week. The household and commercial
demand data for Aug 3 were used to determine the set of houses

TABLE I
PARAMETER ηS USED IN THE DFS SCENARIOS IN SECTION VII-D

Model Set MFull MFull MRed MRed MKF MKF

Update Method 1 2 1 2 1 2
ηs 0.013 0.015 0.4 0.013 0.4 0.5

included on the feeder and construct the plant. To generate
the MLR regression models of the AC and OL demand, we
use data from June 24 to Aug 2, 2015 and commercial data
from June 24 to Aug 2, 2009. The LTI and LTV models of
the AC demand were constructed using device-level data from
individual air conditioners from May 2 to Aug 2, 2015. The
TOD regression models and Kalman filter covariance matrices
were generated using data from the week preceding Aug 3. All
testing and training data are available at [36].

D. Investigation of Algorithm Performance
Table I gives the settings of ηs, and we set λ = ηr = 1.0 ×

10−5 across all simulations (with the exception of sensitivity
simulations in Sections VII-E and VII-F). Parameter λ dictates
the amount of weight shared amongst the models, where values
near 1 force the DFS algorithm to generate estimates that are
close to an average of the predictions of all models. By using
a λ value near 0, a single model can dominate the estimate if
one model is more accurate than the rest. Parameters ηr and
ηs were roughly tuned to achieve qualitative characteristics
of fast switching between models without over-fitting. The
optimal ηr and ηs for a given day will generally not be optimal
across all days, and so tuning to achieve the desired qualitative
characteristics is appropriate. In practice, ηr and ηs can be tuned
based on recent historical data, and λ can be tuned based on
the historical accuracy of the models within the algorithm. An
avenue for future research is to develop methods for online
parameter tuning using real-time data.

Figure 5 depicts time series for the Aug 17 simulation
withMRed while using Update Method 1. Figure 6 shows the
evolution of the dominant model weights. The weights of the
remaining models are summed and referred to as “Other Mod-
els." In this scenario, the total demand is accurately separated
into its AC demand and OL demand components in real-time,
where the RMSE of the total demand, AC demand, and OL
demand is 93.2 kW, 151.0 kW, and 150.8 kW, respectively.
In this scenario, DFS produces a more accurate AC demand
estimate than BKF, which has an AC demand RMSE of 177.3
kW. The RMSE of the AC demand for AKF is 214.0 kW. The
majority of the weight is initially given to the “Other Models,"
because we initialize all models with the same weight. As the
simulation progresses, the weight shifts between different model
combinations. Since the combinations {ΦAC,LTV2,ΦOL,MLR} and
{ΦAC,LTV1,ΦOL,MLR} perform best, they eventually earn more
weight and dominate the predictions. It is unsurprising that
the ΦOL,MLR is the most accurate OL demand model as it
captures weather and time variables with the most detail, and it
is unsurprising that ΦAC,LTV1 and ΦAC,LTV2 are the most accurate
AC demand models as they capture the physical phenomenon
driving changes in the AC demand as the outdoor temperature
changes.

Figure 7 presents the minimum, mean, and maximum RMSE
across the full set of testing days for the total demand, the
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Fig. 5. Total, OL, and AC demands versus their DFS estimates (Aug 17,
MRed, Update Method 1). The best Kalman filter estimate of the AC demand
is also shown.
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Fig. 6. Model weights (Aug 17, MRed, Update Method 1).

AC demand, and the OL demand for each DFS scenario. For
comparison, BKF achieves a minimum RMSE of 148.4 kW, a
mean RMSE of 195.3 kW, and a maximum RMSE of 318.9 kW
for the AC demand, and AKF achieves a minimum RMSE of
173.1 kW, a mean RMSE of 259.4 kW, and a maximum RMSE
of 357.5 kW for the AC demand. The model corresponding to
the BKF varies from day to day and so it is not possible to
obtain a single Kalman filter that always outperforms DFS.1To
demonstrate the value of the measurement-based updates, we
generated results for the full set of days using the model
set MRed and with ηs = 0; the measurement-based update
is irrelevant with this parameter setting. The resulting total
demand, AC demand, and OL demand RMSEs were 260.4 kW,
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(b) Update Method 2
Fig. 7. Minimum, mean, and maximum RMSE (kW) for the DFS scenarios
in Section VII-D.

254.2 kW, and 245.2 kW, respectively. These are significant
increases over the DFS scenarios usingMRed.

The scenarios using MFull have significantly higher AC
demand RMSEs than the simulations using MRed as well as
the BKF and AKF simulations. Each of the LTI models may be
accurate for a portion of the day when the AC demand is near
the steady-state demand of the particular model. However, as the
AC demand changes due to changes in the outdoor temperature,
a given LTI model will become highly inaccurate. The DFS
algorithm takes time to shift weight from the inaccurate model
that was heavily weighted to the new model, and this results
in increased RMSE. Eliminating these “bad models”, by using
MRed rather thanMFull, eliminates this issue.

The scenarios using MRed generally do better, in terms of
AC demand RMSE, than AKF and worse than BKF. On some
simulated days DFS also outperforms BKF, as was shown in
Fig. 5. Within this set of simulations, Update Method 2 results in
higher AC demand RMSE than Update Method 1. The increased
RMSE in Update Method 2 versus Update Method 1 can be
explained due to the usage of only two discrete states within
the LTV models. Specifically, the states reach their steady-state
values rapidly, and so the measurement-based updates to the
state do not persist for very long, whereas the measurement-
based updates to the output used in Update Method 1 do. Using
LTV models with more discrete states may allow Update Method
2 to achieve better RMSE, but this would complicate system
identification.

Finally, the scenarios withMKF result in larger AC demand
RMSE than those with MRed. The MLR model of the AC
demand is often weighted heavily in the MRed simulations,
especially for Update Method 2. Given this, it makes sense that
excluding this model would result in increased RMSE.

1Choosing BKF on a particular day and applying it to all other days, we
find that DFS performs better on approximately half of the days when using
MRed. However, the loss function, divergence function, and initial model
weights within DFS could be modified based on historical performance, which
would improve its performance relative to the Kalman filter.
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Fig. 8. Average RMSE of the estimated AC demand across all days as a
function of ηs and ηr, using Update Method 1, MRed, and λ = 1.0× 10−5

where the marker indicates the parameter values used in Section VII-D.

E. Sensitivity to the Parameters ηr and ηs

We apply DFS to the full set of days while varying ηr and
ηs to investigate the impact of those parameters on the results.
We vary ηs from 0.0 to 0.9 using increments of 0.1, and we
vary ηr from 10−7 to 10−3, where we increment the order (i.e.,
10−7, 10−6, . . . ). We apply DFS using every combination of
these parameter values while using Update Method 1, MRed,
and λ = 1.0× 10−5 as in Section VII-D.

Figure 8 provides the average RMSE of the AC demand across
the full set of testing days for each parameter value combination.
With ηs near zero the RMSE is relatively large as DFS makes
small adjustments to the model predictions based on the realized
prediction errors. The RMSE with ηs near zero decreases slightly
as ηr increases because this allows for faster transitions in the
weighting of the models. However, it should be noted that at
larger ηr values (e.g., 10−3), the model weights within DFS
become erratic or noisy, and overfitting is possible. The RMSE
is also relatively high with large ηs (e.g., 0.9) and small ηr

as DFS adjusts the model predictions too aggressively and the
model weights change slowly. Alternatively, as ηr increases with
large ηs, the RMSE decreases, but again the weights become
vulnerable to overfitting. The RMSE using moderate ηs values
(e.g., from 0.2-0.7) are similar. The ηs and ηr values used within
Section VII-D do not achieve the lowest RMSE, but they achieve
low RMSE while ensuring changes in the weights are reasonably
fast but not erratic.

F. Sensitivity to the Parameter λ

We apply DFS to the full set of days while varying λ from
1.0× 10−7 to 1.0 to investigate the impact of λ on the results.
Within DFS, we use Update Method 1 andMRed, and we also
set ηs = 0.4, and ηr = 1.0× 10−5 as in VII-D.

Figure 9 gives the average RMSE of the estimated AC demand
across all days as a function of λ. The average RMSE of the AC
demand decreases as λ is increased from 1.0×10−7 and reaches
a minimum RMSE of 211.3 kW with λ = 0.005. As λ increases
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Fig. 9. Average RMSE of the estimated AC demand across all days as a
function of λ, using Update Method 1,MRed, ηs = 0.4, and ηr = 1.0×10−5.

from 0.005, the RMSE increases until it remains relatively
constant from 0.1 to 1.0. While we set λ in Section VII-D to
allow a single model to dominate the DFS estimate if one model
proved to be more accurate than the rest, Fig. 9 indicates that
tuning λ on a set days that are similar to the testing days may
allow a reduction in the RMSE.

VIII. CONCLUSIONS

In this paper, we applied an online learning algorithm, DFS,
which uses DMD together with the Fixed Share algorithm,
to estimate the real-time AC demand on a distribution feeder
using feeder demand measurements, weather data, and system
models. Two implementations of algorithms based on DMD
were developed and compared via case studies. Our results
showed that DFS can effectively estimate the real-time AC
demand on a feeder. DFS achieved lower AC demand RMSE
than the average across a set of Kalman filters. When selecting
the most accurate Kalman filter ex post, DFS generally results
in larger RMSE. However, DFS learns the most accurate model,
or combination of models, in real-time whereas the best Kalman
filter can only be chosen after the simulation. The performance
of DFS depends heavily on the inclusion of models within its
set. Including models that are inaccurate for majority of the day
degraded the algorithm performance as did removing models
that were frequently weighted heavily.

In this work, we separated the demand into only two com-
ponents. However, the algorithm is applicable to scenarios
with more than two components, assuming that we have at
least one model of each demand component. As the number
of components increases, it may become more difficult to
disaggregate them, but these difficulties could be counteracted
by incorporating more real-time measurements, e.g., the reactive
power demand. Future work will develop improved AC demand
models, investigate the relationship between the DMD and
Kalman filter algorithms, and incorporate active control into
the problem framework.
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