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Energy Disaggregation

a.k.a Non-Intrusive Load Monitoring (NILM)

. » Stove Burnery_

[Hart 2010; Ziefman and Roth
2011; Berges et al. 2009; Dong,
Sastry, et al. 2013, 2014;
Wytock & Kolter 2013; Kolter
# THeg o and Jaakkola 2012; Kim et al.

R a5 2010; ...]
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Problem: Estimate individual load from a single power
measurement (usually) sampled at high frequency (10kHz-1MHz)
from the household main

Fig from Zoha et al. 2012

Solution approaches: offline algorithms including change detection,
supervised learning, unsupervised learning
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Key differences

 \We assume measurements at the substation, not
the household

* We estimate the power consumption of all loads
of a specific type, not individual loads

* We solve the problem online, not offline

 We use lower frequency measurements (e.g.,
taken every second to minute)

* |n some cases, we may get to be “intrusive,” but
not in this talk!
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Uses in demand response...

Load control feedback [noisy

aggregate power measurements  'ef

are assumed in Mathieu et al. 2013;

Controller

Load 1

Can Kara et al. 2013; BusSi¢ and Meyn
2016; Callaway 2009; ...]

Load aggregator bidding

Demand response event signaling
(when/how much)

Beyond demand response...
Energy efficiency via conservation voltage reduction (disaggregate

by ZIP load type)

Contingency planning (disaggregate motor loads)
Reserve planning (disaggregate PV production)

A

Load 2

aggregate
power

EL Why disaggregate feeder load?
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Possible Methods

e Short-term load (component) forecasting
— Doesn’t incorporate real-time feedback
* State estimation
— Linear techniques require linear system models
— Nonlinear techniques can be computationally demanding

* Online learning
— (Typically) data-driven, model-free

* Hybrid approach: Dynamic Fixed Share & Dynamic Mirror
Descent [Hall & Willet 2015]

— Admits dynamic models of arbitrary forms

— Optimization-based method to choose a weighted combination of
the estimates of a collection of models



Outline

* Problem Framework

e Algorithms: Dynamic Mirror Descent (DMD) &
Dynamic Fixed Share (DFS)

* Models

* Algorithm Modifications

* Case studies

* Connections with Kalman Filtering

Ledva, Balzano, and Mathieu, “Inferring the Behavior of Distributed
Energy Resources with Online Learning,” Allerton 2015.

Ledva, Balzano, and Mathieu, “Real-time Energy Disaggregation of a
Distribution Feeder’s Demand using Online Learning,” IEEE
Transactions on Power Systems, 2018.
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Problem Framework:
Offline Model Generation
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Problem Framework:
Real-time Estimation
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[Hall & Willet 2015]

For each model m we compute
1. an observation-based update

~

0" = aregergin n’ <V€t(§tm), 9> + D ((9||§tm)

where /,(6;") is a convex loss function and D is a
Bregman divergence function

2. a model-based update

/\

t—|—1 _(I)m(em)



Dynamic Fixed Share
[Hall & Willet 2015]

3. Next, we update the weight of each model

A (- ) w;" exp (—UT Ce (gtm>>

m _
wt—|—1 — N mdl mdl

>im wi exp (—77"“ by (55 ))
4. and compute the overall estimate.

9t+1— § wt—|—1 i1

meMmdl
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Models

Active Power Demand (MW)

12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM

e 29 aggregate air conditioning load (AC) models

* 6 “other load” (OL) model

e 1 ACmodel +1 OL model =1 total load model
—> 174 total load models
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s — “Other load” Models

n Power & Energy Laboratory
* (Smoothed) load on previous days (Mon-Fri)

 Multiple linear regression (MLR) model using time-of-week,
outdoor temperature, and previous total demand measurement
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AC Models

 Multiple linear regression (MLR) model using
time-of-week and current/past outdoor
temperatures

e Linear time-invariant (LTl) system models
corresponding to different outdoor
temperatures

* Linear time-varying (LTV) system models



LTI AC Model

[Mathieu et al. 2013]
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LTV AC Models

[Mathieu et al. 2015]
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— Algorithm Modifications

\ X
' j&an Power & Energy Laboratory

* The models have different structures, dynamic

states, and/or parameters. It is difficult to
define a common “state” 0,.

e Two versions

— Update Method 1: updates the output

— Update Method 2: updates the state (i.e., for the
LTI/LTV models, update the state, i.e., 6, = x,)



Update Method 1

| Adjust the output (demand estimates), rather than the state.

o = arg;ergin n° <V€t(5tm), (9> + D (9[](/9;”‘)
Oty =™ (07")

Ryr, = arg min 7’ <wt(§t), 9> + D (07
» _6e®
Ht—l—l :@(Ht)

Or+1 =011 + Kig1.

Then, with . £,(6,) = ||C,0,— |3 and D(8]|7;) = 310—F:|13
we can derive a closed form update:

Kit1 = Rt + 77801;[ (yt — Ctet)



M L Case studies: Plant
//S Power & Energy Laboratory

e Residential load and weather data from Pecan
Street Dataport (Austin, TX)

e Commercial load data from Pacific Gas &
Electric Company; weather data from NOAA

(Bay Area, CA)
 GridLab-D feeder used to size the load



Total load measurement

“Other load” prediction

e Each “other load” model + LTV AC model combination

AC load pseudo-measurement

Time-varying Kalman Filter (using LTV model)

lAC load estimate

is used to compute one AC load estimate.

 We obtain the estimates from all Kalman filters and
compute the a posteriori best (BKF) and average (AKF)

results.
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Comparison across model

sets & update methods
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Update Method 1: update output
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a posteriori BKF RMSE
e Mean 195 kW
* Min 148 kW

| * Max 319 kW

AKF RMSE

e Mean 259 kW
* Min 173 kW
 Max 358 kW
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Sensitivity to parameter
selections

RMSE (kW)
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* |n a Kalman Filter we assume the model form and
use/choose the process and measurement noise
covariance

* |n DMD the model can take any form and we
choose the loss and divergence functions. What
should we pick?

Ledva, Du, Balzano, and Mathieu, “Disaggregating Load by Type from
Distribution System Measurements in Real Time,” In: Energy Markets and
Responsive Grids, 2018.

Ledva, Balzano, and Mathieu, “Exploring Connections Between a Multiple
Model Kalman Filter and Dynamic Fixed Share with Applications to Demand
Response,” IEEE CCTA 2018 (to appear).



If we make the same assumption as we make for a
Kalman filter (linear model, normally distributed errors,
etc.), and we choose the following loss and divergence
functions

AN 1 AN — —_— AN
Ui(Zx) = = (CiTy — yk)T (P}) L (CrZr — yr)
2

D (z|@x) = 5 (z — Z)" Py (@ — )
where and are symmetric positive-definite
covariance matrices corresponding to the model and

measurement prediction error, then the DMD updates
are identical to those of the Kalman filter.



Including error statistics

Use the Kalman Filter covariance update equations and compare three
options for obtaining the process and measurement noise covariance

Method Covariance Total Demand AC Demand OL Demand
Min Mean Max Min | Mean Max Min Mean Max

UM 1 Identity 88.9 100.0 110.5 151.0 § 220.6§ 325.8 150.8 222.3 327.2
um 1 Historical  98.4 114.8 123.2 155.0 | 252.2 371.5 150.2 250.1 372.5
um1 Real-Time 146.6 1543 168.4 120.2 §125.3) 131.8 104.8 1145 130.5
UM 2 Identity 175.4 199.1 224.8 194.2 §230.9] 314.5 145.0 216.2 312.7
UM 2 Historical 100.5 119.5 126.1 192.0 § 259.8§ 311.5 190.6 265.5 320.2
UM2 Real-Time 120.8 125.2 129.1 104.0Q§116.5§ 140.1 96.6 1094 131.9
BKF  Historical - - - 148.4 § 195.3§ 318.9 - - -

AKF  Historical - - - 173.1 § 259.4§ 357.5 - - -

UM 1: Update Method 1 (output), UM 2: Update Method 2 (state)
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EL Historical vs. Real-time

Power & Energy Laboratory

Historical, Update Method 2 (state)
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El_ Historical vs. Real-time

Historical, Update Method 1 (output, blue) & 2 (state, purple)
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Active Power Demand (MW)
N

AC ~AC,P-DFS ___ ~AC.DFS
—y T wem oy, Yt

Active Power Demand (MW)

0 l |
12:00 AM 12:00 PM 12:00 AM

5/16/19 J. Mathieu, University of Michigan 29



\ _L DFS and Multiple Model
10 Kalman Filtering

* We can also construct DFS to produce
identical updates to a Multiple Model Kalman
Filter (MMKEF).

* A number of heuristics have been developed
for MMKEFs; these can be adapted for DFS.
— Setting a minimum weight
— Exponential decay used to update weights
— Sliding window used to update weights



"
£ 05 RMSE 61.9 kW
1.0 g
—_ - wis 0.0 k\ A \ |
fl 31 ) 0 9 4 6
205 RMSE 104.5 kW Z’;L Time [hr]
= K (c) DFS-M Weights
0.0 | ‘ ‘
0 2 4 6 —_
Time [hr] S
(a) MMKF Weights ) RMSE 61.4/ kW
1.0 T g
w ) \ \
Z 05| FYMSE 63.4'kW . 4 6
2 Time [hr]
2 M (d) DFS-W Weights
0.0 L. ‘ ‘
0 2 4 6
Time [hr] o
(b) MMKF-M Weights £ RMSE 60.9 kW
2
h ! A |
2 4 6

Time [hr]
(e) DFS-E Weights

5/16/19 J. Mathieu, University of Michigan 31



\\\\W‘V/ |
\, —L Conclusions

* Dynamic Mirror Descent (DMD) and Dynamic
Fixed Share (DFS) enables us to solve the

feeder energy disaggregation problem
leveraging dynamical models of arbitrary form

* Empirical results are often comparable to the
a posteriori best Kalman filter (obtained from
the same models)

* We can leverage ideas from Kalman filtering to
inform our choice of DFS
functions/parameters and heuristics
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—L_  Algorithmic guarantees

ergy Laboratory

// § wa r & Ene

* Regret: performance with respect to a
comparator @+

2N 0(0:) =) Le(6y).

e Often the comparator is the performance of a
patch algorithm

* Hall and Willet derive bounds on the regret and
show that for many classes of comparators regret
scales sublinearly in T



