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Energy Disaggregation
a.k.a Non-Intrusive Load Monitoring (NILM)

Problem: Estimate individual load from a single power 
measurement (usually) sampled at high frequency (10kHz-1MHz) 
from the household main

Solution approaches: offline algorithms including change detection, 
supervised learning, unsupervised learning
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Fig from Zoha et al. 2012 

[Hart 2010; Ziefman and Roth 
2011; Berges et al. 2009; Dong, 
Sastry, et al. 2013, 2014; 
Wytock & Kolter 2013; Kolter
and Jaakkola 2012; Kim et al. 
2010; …]



Feeder Energy Disaggregation
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Key differences

• We assume measurements at the substation, not 
the household 

• We estimate the power consumption of all loads 
of a specific type, not individual loads

• We solve the problem online, not offline

• We use lower frequency measurements (e.g., 
taken every second to minute)

• In some cases, we may get to be “intrusive,” but 
not in this talk!

5/16/19 J. Mathieu, University of Michigan 4



Why disaggregate feeder load?

Uses in demand response…
• Load control feedback [noisy 

aggregate power measurements 
are assumed in Mathieu et al. 2013; 
Can Kara et al. 2013; Bušić and Meyn
2016; Callaway 2009; …]

• Load aggregator bidding
• Demand response event signaling 

(when/how much)

Beyond demand response…
• Energy efficiency via conservation voltage reduction (disaggregate 

by ZIP load type)
• Contingency planning (disaggregate motor loads)
• Reserve planning (disaggregate PV production)
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Possible Methods

• Short-term load (component) forecasting
– Doesn’t incorporate real-time feedback

• State estimation 
– Linear techniques require linear system models
– Nonlinear techniques can be computationally demanding

• Online learning
– (Typically) data-driven, model-free

• Hybrid approach: Dynamic Fixed Share & Dynamic Mirror 
Descent [Hall & Willet 2015]

– Admits dynamic models of arbitrary forms
– Optimization-based method to choose a weighted combination of 

the estimates of a collection of models 
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Outline

• Problem Framework
• Algorithms: Dynamic Mirror Descent (DMD) & 

Dynamic Fixed Share (DFS)
• Models
• Algorithm Modifications
• Case studies
• Connections with Kalman Filtering

Ledva, Balzano, and Mathieu, “Inferring the Behavior of Distributed 
Energy Resources with Online Learning,” Allerton 2015.
Ledva, Balzano, and Mathieu, “Real-time Energy Disaggregation of a 
Distribution Feeder’s Demand using Online Learning,” IEEE 
Transactions on Power Systems, 2018.
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Problem Framework
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Problem Framework:
Offline Model Generation
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Problem Framework:
Real-time Estimation
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Dynamic Mirror Descent
[Hall & Willet 2015]

For each model m we compute

1. an observation-based update

where is a convex loss function and D is a 
Bregman divergence function

2. a model-based update
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Fig. 4. Examples AC demand and several AC demand model predictions.

the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature T

m and has the form

bxLTI,m
t+1 =A

LTI,m bxLTI,m
t (4)

byAC,LTI,m
t = C

LTI,m bxLTI,m
t , (5)

with m 2 MLTI
= {1, . . . , NLTI}. The state vector bxLTI,m

t 2
RN x⇥1 consists of the portion of the air conditioners within
each of N

x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x

= 2. The state
transition matrix, ALTI,m 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix C

LTI,m estimates
the AC demand byAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m

= N

ac
P

m ⇥
0 1

⇤
, where

P

m
is a parameter approximating of the average power draw

of air conditioners drawing power and N

ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
N

LTI evenly spaced temperatures T temps
=

�
T

min
, . . . , T

max
 

and denote the m-th temperature of the set as T

m. The dif-
ference between successive temperatures T

m and T

m+1 is
�T . Matrices A

LTI,m and C

LTI,m are constructed using power
demand signals from each air conditioner corresponding to
periods when T

m � �T
2  T

TX
t�⌧ l < T

m
+

�T
2 . Some

heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P

m
is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries in A

LTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} �F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first �AC,LTV1

uses the delayed temperature and has the form

bxLTV1
t+1 =A

LTV1
t bxLTV1

t (6)

byAC,LTV1
t = C

LTV1
t bxLTV1

t , (7)

where A

LTV1
t and C

LTV1
t are generated by linearly interpolating

the matrix entries based on T

TX
t�⌧ l . The second �

AC,LTV2 uses a
moving average of the past temperature over ⌧w time-steps to
generate the prediction byAC,LTV2

t . We chose ⌧w to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm
The objective of DFS is to form an estimate b

✓t 2 ⇥ of the
dynamic system parameter ✓t 2 ⇥ at each discrete time-step t

where ⇥ ⇢ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt 2 Y at each time-step after the prediction has been formed,
where Y ⇢ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where ✓t is the system state.

DFS uses a set of N

mdl models defined as Mmdl
=

{1, . . . , Nmdl} to generate the estimate b
✓t. To do this, DFS

applies the DMD algorithm to each model, forming predictions
b
✓

m
t for each m 2 Mmdl. DMD is executed in two steps

(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate b

✓t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]
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Fig. 4. Examples AC demand and several AC demand model predictions.

the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature T

m and has the form

bxLTI,m
t+1 =A

LTI,m bxLTI,m
t (4)

byAC,LTI,m
t = C

LTI,m bxLTI,m
t , (5)

with m 2 MLTI
= {1, . . . , NLTI}. The state vector bxLTI,m

t 2
RN x⇥1 consists of the portion of the air conditioners within
each of N

x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x

= 2. The state
transition matrix, ALTI,m 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix C

LTI,m estimates
the AC demand byAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m

= N

ac
P

m ⇥
0 1

⇤
, where

P

m
is a parameter approximating of the average power draw

of air conditioners drawing power and N

ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
N

LTI evenly spaced temperatures T temps
=

�
T

min
, . . . , T

max
 

and denote the m-th temperature of the set as T

m. The dif-
ference between successive temperatures T

m and T

m+1 is
�T . Matrices A

LTI,m and C

LTI,m are constructed using power
demand signals from each air conditioner corresponding to
periods when T

m � �T
2  T

TX
t�⌧ l < T

m
+

�T
2 . Some

heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P

m
is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries in A

LTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} �F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first �AC,LTV1

uses the delayed temperature and has the form

bxLTV1
t+1 =A

LTV1
t bxLTV1

t (6)

byAC,LTV1
t = C

LTV1
t bxLTV1

t , (7)

where A

LTV1
t and C

LTV1
t are generated by linearly interpolating

the matrix entries based on T

TX
t�⌧ l . The second �

AC,LTV2 uses a
moving average of the past temperature over ⌧w time-steps to
generate the prediction byAC,LTV2

t . We chose ⌧w to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm
The objective of DFS is to form an estimate b

✓t 2 ⇥ of the
dynamic system parameter ✓t 2 ⇥ at each discrete time-step t

where ⇥ ⇢ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt 2 Y at each time-step after the prediction has been formed,
where Y ⇢ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where ✓t is the system state.

DFS uses a set of N

mdl models defined as Mmdl
=

{1, . . . , Nmdl} to generate the estimate b
✓t. To do this, DFS

applies the DMD algorithm to each model, forming predictions
b
✓

m
t for each m 2 Mmdl. DMD is executed in two steps

(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate b

✓t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]
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Fig. 4. Examples AC demand and several AC demand model predictions.

the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature T

m and has the form

bxLTI,m
t+1 =A

LTI,m bxLTI,m
t (4)

byAC,LTI,m
t = C

LTI,m bxLTI,m
t , (5)

with m 2 MLTI
= {1, . . . , NLTI}. The state vector bxLTI,m

t 2
RN x⇥1 consists of the portion of the air conditioners within
each of N

x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x

= 2. The state
transition matrix, ALTI,m 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix C

LTI,m estimates
the AC demand byAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m

= N

ac
P

m ⇥
0 1

⇤
, where

P

m
is a parameter approximating of the average power draw

of air conditioners drawing power and N

ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
N

LTI evenly spaced temperatures T temps
=

�
T

min
, . . . , T

max
 

and denote the m-th temperature of the set as T

m. The dif-
ference between successive temperatures T

m and T

m+1 is
�T . Matrices A

LTI,m and C

LTI,m are constructed using power
demand signals from each air conditioner corresponding to
periods when T

m � �T
2  T

TX
t�⌧ l < T

m
+

�T
2 . Some

heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P

m
is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries in A

LTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} �F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first �AC,LTV1

uses the delayed temperature and has the form

bxLTV1
t+1 =A

LTV1
t bxLTV1

t (6)

byAC,LTV1
t = C

LTV1
t bxLTV1

t , (7)

where A

LTV1
t and C

LTV1
t are generated by linearly interpolating

the matrix entries based on T

TX
t�⌧ l . The second �

AC,LTV2 uses a
moving average of the past temperature over ⌧w time-steps to
generate the prediction byAC,LTV2

t . We chose ⌧w to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm
The objective of DFS is to form an estimate b

✓t 2 ⇥ of the
dynamic system parameter ✓t 2 ⇥ at each discrete time-step t

where ⇥ ⇢ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt 2 Y at each time-step after the prediction has been formed,
where Y ⇢ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where ✓t is the system state.

DFS uses a set of N

mdl models defined as Mmdl
=

{1, . . . , Nmdl} to generate the estimate b
✓t. To do this, DFS

applies the DMD algorithm to each model, forming predictions
b
✓

m
t for each m 2 Mmdl. DMD is executed in two steps

(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate b

✓t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]
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Dynamic Fixed Share
[Hall & Willet 2015]

3. Next, we update the weight of each model

4. and compute the overall estimate.
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Fig. 4. Examples AC demand and several AC demand model predictions.

the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature T

m and has the form

bxLTI,m
t+1 =A

LTI,m bxLTI,m
t (4)

byAC,LTI,m
t = C

LTI,m bxLTI,m
t , (5)

with m 2 MLTI
= {1, . . . , NLTI}. The state vector bxLTI,m

t 2
RN x⇥1 consists of the portion of the air conditioners within
each of N

x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x

= 2. The state
transition matrix, ALTI,m 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix C

LTI,m estimates
the AC demand byAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m

= N

ac
P

m ⇥
0 1

⇤
, where

P

m
is a parameter approximating of the average power draw

of air conditioners drawing power and N

ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
N

LTI evenly spaced temperatures T temps
=

�
T

min
, . . . , T

max
 

and denote the m-th temperature of the set as T

m. The dif-
ference between successive temperatures T

m and T

m+1 is
�T . Matrices A

LTI,m and C

LTI,m are constructed using power
demand signals from each air conditioner corresponding to
periods when T

m � �T
2  T

TX
t�⌧ l < T

m
+

�T
2 . Some

heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P

m
is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries in A

LTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} �F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first �AC,LTV1

uses the delayed temperature and has the form

bxLTV1
t+1 =A

LTV1
t bxLTV1

t (6)

byAC,LTV1
t = C

LTV1
t bxLTV1

t , (7)

where A

LTV1
t and C

LTV1
t are generated by linearly interpolating

the matrix entries based on T

TX
t�⌧ l . The second �

AC,LTV2 uses a
moving average of the past temperature over ⌧w time-steps to
generate the prediction byAC,LTV2

t . We chose ⌧w to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm
The objective of DFS is to form an estimate b

✓t 2 ⇥ of the
dynamic system parameter ✓t 2 ⇥ at each discrete time-step t

where ⇥ ⇢ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt 2 Y at each time-step after the prediction has been formed,
where Y ⇢ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where ✓t is the system state.

DFS uses a set of N

mdl models defined as Mmdl
=

{1, . . . , Nmdl} to generate the estimate b
✓t. To do this, DFS

applies the DMD algorithm to each model, forming predictions
b
✓

m
t for each m 2 Mmdl. DMD is executed in two steps

(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate b

✓t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]
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for each m 2 Mmdl, and
b
✓t+1 =

X

m2Mmdl

w

m
t+1

b
✓

m
t+1, (11)

where each term is defined below. DMD is applied to each model
in (8) and (9) to form the expert predictions, where (8) is a
convex program that constructs the measurement-based update
to the previous prediction and (9) is the model-based advance-
ment of the adjusted prediction. The Fixed Share algorithm
consists of (10) and (11), where (10) computes the weights
and (11) computes the estimate as a weighted combination of
the individual experts’ estimates. We note that the Fixed Share
algorithm’s updates are independent of the dynamics and only
use the experts’ predictions and their resulting losses.

In (8), we minimize over the variable ✓, ⌘s
> 0 is a step-

size parameter, and h·, ·i is the standard dot product. The
value r`t(

b
✓t) is a subgradient of the convex loss function

`t : ⇥ ! R, which penalizes the error between the predicted
and observed values yt using a known, possibly time-varying,
function ht : ⇥ ! Y that maps ✓t to an observation, i.e.,
yt = ht(✓t), to form predictions of the measurements. An
example loss function is `t(

b
✓t) = kCb

✓t � ytk22 where the
matrix C is ht(·). In (9), the function �

m
(·) applies model m

to advance the adjusted estimate e
✓

m
t in time. Each �

m
(·) can

have arbitrary form and time-varying parameters. In (10), the
weight associated with model m at time-step t is wm

t , � 2 (0, 1)

determines the amount of weight that is shared amongst models,
and ⌘

r influences switching speed. The weight for model m is
based on the loss of each model and the total loss of all models.
The term ⌘

shr`t(
b
✓t), ✓i captures the alignment of the variable

✓ with the positive gradient of `t(
b
✓t). To minimize this term

alone, we would choose ✓ to be exactly aligned with the negative
gradient direction. The term D(✓kb✓t) is a Bregman divergence
that penalizes the deviation between the new variable ✓ and the
old variable b

✓t. For simplicity, we have excluded regularization
within (8), which DMD readily incorporates [8].

B. Algorithm Implementations
We next describe two algorithm implementations to update

the expert predictions. First, we describe an implementation that
uses the concept of DMD but it is not a direct implementation of
DMD. This method treats the models as black boxes and adjusts
only their output, i.e., the OL and AC demand predictions,
using the measured and predicted total feeder demand. Second,
we describe a direct implementation of DMD, which updates
the state xt of the LTI and LTV AC demand models. In the
following, the total demand model is �(·) = {�AC

(·),�OL
(·)}

where �

AC
(·) is an AC demand model and �

OL
(·) is an OL

demand model, with predictions byAC
t and byOL

t , respectively.
1) Update Method 1: The models used within this paper

have different underlying parameters, dynamic variables, and/or
structures, which makes it difficult to define a common ✓t across
all of the models used. Therefore, we develop a variation of the
DMD algorithm that adjusts the demand predictions directly,
rather than applying the updates to quantities influencing the
demand predictions. This allows us to include a diverse set of
models. Specifically, we modify the DMD formulation to

bt+1 = argmin

✓2⇥
⌘
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E
+D (✓kbt) (12)

b
✓t+1 =�(

b
✓t) (13)

b
✓t+1 =

b
✓t+1 + bt+1. (14)

The AC and OL demand models generate their predictions
independently from one another, and so (14) can be rewritten as

b
✓t+1 = �(

b
✓t) + bt+1 =

"
�

AC
(

b
✓t)

�

OL
(

b
✓t)

#
+ bt+1. (15)

The convex program (12) is now used to update a value bt

that accumulates the deviation between the predicted and actual
measurements. The model-based update (13) computes an open-
loop prediction

b
✓t+1, meaning that the measurements do not

influence
b
✓t+1. The measurement-based updates and model-

based, open-loop predictions are combined in (14). In contrast,
DMD uses a closed-loop model-based update where the convex
program adjusts the parameter estimate to e

✓t, which is used to
compute the next parameter estimate b

✓t+1.
In this method, we define ✓t as the AC and OL demand, i.e.,

✓t =

⇥
y

AC
t y

OL
t

⇤T. The mapping from the parameter to the
measurement is ht(✓t) = Ct✓t where the matrix Ct =

⇥
1 1

⇤
.

While the mapping and matrix are time-invariant, they may be
time-varying in Section VI-B2, and so we use the more general
notation. We choose the loss function as `t(b✓t) = 1

2kCt
b
✓t�ytk22

and the divergence asD(✓kbt) =
1
2k✓�btk22. We can then write

(12) in closed form as

bt+1 = bt + ⌘

s
C

T
t

⇣
yt � Ct

b
✓t

⌘
. (16)

2) Update Method 2: This method applies only to dynamic
system models with dynamic states, i.e., in this paper the LTI
or LTV AC demand models, which have dynamic states xt. We
set ✓t =

⇥
x

T
t y

OL
t

⇤T, where xt is bxLTI,m
t in (4), bxLTV1

t in (6), or
bxLTV2
t in an update equation similar to (6). The mapping from the

parameter to the measurement is then Ct =

⇥
C

AC
t 1

⇤
where

C

AC
t is the output matrix of the LTI or LTV AC demand model,

i.e., CLTI,m, CLTV1
t , or C

LTV2
t . Defining the system parameter

in this way allows us to update the dynamic states of the LTI
and LTV AC demand models, rather than just the output as in
Update Method 1. The model-based update is then

b
✓t+1 =

"
�

AC
(

e
✓t)

�

OL
(

b
✓t)

#
+


0 0

0 1

�
bt+1, (17)

where we update the AC demand model using the adjusted
parameter estimate, as in DMD. Because the OL demand models
do not include dynamic states, we continue to update their
estimates according to Update Method 1. We again use (16)
as the measurement-based update.

VII. CASE STUDIES

In this section, we define the scenarios, describe the bench-
mark, summarize the parameter settings, and present the results.
In [8], performance bounds for DMD and DFS were established
in terms of a quantity called regret. Regret is the total (or
cumulative) loss of an online learning algorithm’s prediction
sequence versus that of a comparator sequence, often a best-
in-hindsight offline algorithm. In [8], the DMD regret bound
uses a comparator that can take on an arbitrary sequence of
values from the feasible domain⇥. The DFS regret bound uses a



Models

• 29 aggregate air conditioning load (AC) models
• 6 “other load” (OL) model 
• 1 AC model + 1 OL model = 1 total load model

à 174 total load models
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“Other load” Models

• (Smoothed) load on previous days (Mon-Fri)

• Multiple linear regression (MLR) model using time-of-week, 

outdoor temperature, and previous total demand measurement
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AC Models

• Multiple linear regression (MLR) model using 
time-of-week and current/past outdoor 
temperatures

• Linear time-invariant (LTI) system models 
corresponding to different outdoor 
temperatures

• Linear time-varying (LTV) system models
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LTI AC Model
[Mathieu et al. 2013]

J. Mathieu, University of Michigan5/16/19 16

!""#$"%&$'()*+(,-'$./(

0&%&$(123(&#%3425-3(6-'$.(

!(,%#7-8()#%3425-3(,%&#29('$4:#21$4(&;$(6-8$6$3&(-<()*+4(%#-=3'(

&;$('$%'>1%3'?(

@A(@@B@CB@@( D?(,%&;2$=E(F*(G$#7$.$H(

ON 

OFF 

normalized temperature 

1 2 3 4 

Nbin-1 Nbin-2 

I(

I(

Nbin-3 Nbin Nbin 

2 
+4 
Nbin 

2 
+3 
Nbin 

2 
+2 
Nbin 

2 
+1 

Nbin 

2 
-3 
Nbin 

2 
-2 
Nbin 

2 
-1 

Nbin 

2 

st
at

e 

0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2018.2800535, IEEE
Transactions on Power Systems

LEDVA et al.: REAL-TIME ENERGY DISAGGREGATION OF A DISTRIBUTION FEEDER’S DEMAND USING ONLINE LEARNING 5

12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM
0

2

4

6

A
ct

iv
e

Po
w

er
D

em
an

d
(M

W
)

yAC
t byAC,LTV1

t byAC,LTV2
t byAC,MLR

t

Fig. 4. Examples AC demand and several AC demand model predictions.

the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature T

m and has the form

bxLTI,m
t+1 =A

LTI,m bxLTI,m
t (4)

byAC,LTI,m
t = C

LTI,m bxLTI,m
t , (5)

with m 2 MLTI
= {1, . . . , NLTI}. The state vector bxLTI,m

t 2
RN x⇥1 consists of the portion of the air conditioners within
each of N

x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x

= 2. The state
transition matrix, ALTI,m 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix C

LTI,m estimates
the AC demand byAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m

= N

ac
P

m ⇥
0 1

⇤
, where

P

m
is a parameter approximating of the average power draw

of air conditioners drawing power and N

ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
N

LTI evenly spaced temperatures T temps
=

�
T

min
, . . . , T

max
 

and denote the m-th temperature of the set as T

m. The dif-
ference between successive temperatures T

m and T

m+1 is
�T . Matrices A

LTI,m and C

LTI,m are constructed using power
demand signals from each air conditioner corresponding to
periods when T

m � �T
2  T

TX
t�⌧ l < T

m
+

�T
2 . Some

heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P

m
is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries in A

LTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} �F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first �AC,LTV1

uses the delayed temperature and has the form

bxLTV1
t+1 =A

LTV1
t bxLTV1

t (6)

byAC,LTV1
t = C

LTV1
t bxLTV1

t , (7)

where A

LTV1
t and C

LTV1
t are generated by linearly interpolating

the matrix entries based on T

TX
t�⌧ l . The second �

AC,LTV2 uses a
moving average of the past temperature over ⌧w time-steps to
generate the prediction byAC,LTV2

t . We chose ⌧w to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm
The objective of DFS is to form an estimate b

✓t 2 ⇥ of the
dynamic system parameter ✓t 2 ⇥ at each discrete time-step t

where ⇥ ⇢ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt 2 Y at each time-step after the prediction has been formed,
where Y ⇢ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where ✓t is the system state.

DFS uses a set of N

mdl models defined as Mmdl
=

{1, . . . , Nmdl} to generate the estimate b
✓t. To do this, DFS

applies the DMD algorithm to each model, forming predictions
b
✓

m
t for each m 2 Mmdl. DMD is executed in two steps

(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate b

✓t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]
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LTV AC Models
[Mathieu et al. 2015]
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Fig. 4. Examples AC demand and several AC demand model predictions.

the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature T

m and has the form

bxLTI,m
t+1 =A

LTI,m bxLTI,m
t (4)

byAC,LTI,m
t = C

LTI,m bxLTI,m
t , (5)

with m 2 MLTI
= {1, . . . , NLTI}. The state vector bxLTI,m

t 2
RN x⇥1 consists of the portion of the air conditioners within
each of N

x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x

= 2. The state
transition matrix, ALTI,m 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix C

LTI,m estimates
the AC demand byAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m

= N

ac
P

m ⇥
0 1

⇤
, where

P

m
is a parameter approximating of the average power draw

of air conditioners drawing power and N

ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
N

LTI evenly spaced temperatures T temps
=

�
T

min
, . . . , T

max
 

and denote the m-th temperature of the set as T

m. The dif-
ference between successive temperatures T

m and T

m+1 is
�T . Matrices A

LTI,m and C

LTI,m are constructed using power
demand signals from each air conditioner corresponding to
periods when T

m � �T
2  T

TX
t�⌧ l < T

m
+

�T
2 . Some

heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P

m
is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries in A

LTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} �F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first �AC,LTV1

uses the delayed temperature and has the form

bxLTV1
t+1 =A

LTV1
t bxLTV1

t (6)

byAC,LTV1
t = C

LTV1
t bxLTV1

t , (7)

where A

LTV1
t and C

LTV1
t are generated by linearly interpolating

the matrix entries based on T

TX
t�⌧ l . The second �

AC,LTV2 uses a
moving average of the past temperature over ⌧w time-steps to
generate the prediction byAC,LTV2

t . We chose ⌧w to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm
The objective of DFS is to form an estimate b

✓t 2 ⇥ of the
dynamic system parameter ✓t 2 ⇥ at each discrete time-step t

where ⇥ ⇢ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt 2 Y at each time-step after the prediction has been formed,
where Y ⇢ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where ✓t is the system state.

DFS uses a set of N

mdl models defined as Mmdl
=

{1, . . . , Nmdl} to generate the estimate b
✓t. To do this, DFS

applies the DMD algorithm to each model, forming predictions
b
✓

m
t for each m 2 Mmdl. DMD is executed in two steps

(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate b

✓t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]
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Fig. 4. Examples AC demand and several AC demand model predictions.

the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature T

m and has the form

bxLTI,m
t+1 =A

LTI,m bxLTI,m
t (4)

byAC,LTI,m
t = C

LTI,m bxLTI,m
t , (5)

with m 2 MLTI
= {1, . . . , NLTI}. The state vector bxLTI,m

t 2
RN x⇥1 consists of the portion of the air conditioners within
each of N

x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x

= 2. The state
transition matrix, ALTI,m 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix C

LTI,m estimates
the AC demand byAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m

= N

ac
P

m ⇥
0 1

⇤
, where

P

m
is a parameter approximating of the average power draw

of air conditioners drawing power and N

ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
N

LTI evenly spaced temperatures T temps
=

�
T
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, . . . , T
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and denote the m-th temperature of the set as T

m. The dif-
ference between successive temperatures T

m and T

m+1 is
�T . Matrices A

LTI,m and C

LTI,m are constructed using power
demand signals from each air conditioner corresponding to
periods when T

m � �T
2  T

TX
t�⌧ l < T

m
+

�T
2 . Some

heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P

m
is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries in A

LTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} �F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first �AC,LTV1
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bxLTV1
t+1 =A

LTV1
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the matrix entries based on T

TX
t�⌧ l . The second �

AC,LTV2 uses a
moving average of the past temperature over ⌧w time-steps to
generate the prediction byAC,LTV2

t . We chose ⌧w to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm
The objective of DFS is to form an estimate b

✓t 2 ⇥ of the
dynamic system parameter ✓t 2 ⇥ at each discrete time-step t

where ⇥ ⇢ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt 2 Y at each time-step after the prediction has been formed,
where Y ⇢ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where ✓t is the system state.

DFS uses a set of N

mdl models defined as Mmdl
=

{1, . . . , Nmdl} to generate the estimate b
✓t. To do this, DFS

applies the DMD algorithm to each model, forming predictions
b
✓

m
t for each m 2 Mmdl. DMD is executed in two steps

(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate b

✓t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]
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Two variants identify At using delayed 
temperature measurements vs. a 
moving average of past temperature 
measurements
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Algorithm Modifications

• The models have different structures, dynamic 
states, and/or parameters. It is difficult to 
define a common “state” θt .

• Two versions
– Update Method 1: updates the output
– Update Method 2: updates the state (i.e., for the 

LTI/LTV models, update the state, i.e., θt = xt )
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Adjust the output (demand estimates), rather than the state.
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for each m 2 Mmdl, and
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where each term is defined below. DMD is applied to each model
in (8) and (9) to form the expert predictions, where (8) is a
convex program that constructs the measurement-based update
to the previous prediction and (9) is the model-based advance-
ment of the adjusted prediction. The Fixed Share algorithm
consists of (10) and (11), where (10) computes the weights
and (11) computes the estimate as a weighted combination of
the individual experts’ estimates. We note that the Fixed Share
algorithm’s updates are independent of the dynamics and only
use the experts’ predictions and their resulting losses.

In (8), we minimize over the variable ✓, ⌘s
> 0 is a step-

size parameter, and h·, ·i is the standard dot product. The
value r`t(

b
✓t) is a subgradient of the convex loss function

`t : ⇥ ! R, which penalizes the error between the predicted
and observed values yt using a known, possibly time-varying,
function ht : ⇥ ! Y that maps ✓t to an observation, i.e.,
yt = ht(✓t), to form predictions of the measurements. An
example loss function is `t(

b
✓t) = kCb

✓t � ytk22 where the
matrix C is ht(·). In (9), the function �

m
(·) applies model m

to advance the adjusted estimate e
✓

m
t in time. Each �

m
(·) can

have arbitrary form and time-varying parameters. In (10), the
weight associated with model m at time-step t is wm

t , � 2 (0, 1)

determines the amount of weight that is shared amongst models,
and ⌘

r influences switching speed. The weight for model m is
based on the loss of each model and the total loss of all models.
The term ⌘

shr`t(
b
✓t), ✓i captures the alignment of the variable

✓ with the positive gradient of `t(
b
✓t). To minimize this term

alone, we would choose ✓ to be exactly aligned with the negative
gradient direction. The term D(✓kb✓t) is a Bregman divergence
that penalizes the deviation between the new variable ✓ and the
old variable b

✓t. For simplicity, we have excluded regularization
within (8), which DMD readily incorporates [8].

B. Algorithm Implementations
We next describe two algorithm implementations to update

the expert predictions. First, we describe an implementation that
uses the concept of DMD but it is not a direct implementation of
DMD. This method treats the models as black boxes and adjusts
only their output, i.e., the OL and AC demand predictions,
using the measured and predicted total feeder demand. Second,
we describe a direct implementation of DMD, which updates
the state xt of the LTI and LTV AC demand models. In the
following, the total demand model is �(·) = {�AC

(·),�OL
(·)}

where �

AC
(·) is an AC demand model and �

OL
(·) is an OL

demand model, with predictions byAC
t and byOL

t , respectively.
1) Update Method 1: The models used within this paper

have different underlying parameters, dynamic variables, and/or
structures, which makes it difficult to define a common ✓t across
all of the models used. Therefore, we develop a variation of the
DMD algorithm that adjusts the demand predictions directly,
rather than applying the updates to quantities influencing the
demand predictions. This allows us to include a diverse set of
models. Specifically, we modify the DMD formulation to

bt+1 = argmin
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The AC and OL demand models generate their predictions
independently from one another, and so (14) can be rewritten as
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The convex program (12) is now used to update a value bt

that accumulates the deviation between the predicted and actual
measurements. The model-based update (13) computes an open-
loop prediction

b
✓t+1, meaning that the measurements do not

influence
b
✓t+1. The measurement-based updates and model-

based, open-loop predictions are combined in (14). In contrast,
DMD uses a closed-loop model-based update where the convex
program adjusts the parameter estimate to e

✓t, which is used to
compute the next parameter estimate b

✓t+1.
In this method, we define ✓t as the AC and OL demand, i.e.,

✓t =

⇥
y

AC
t y

OL
t

⇤T. The mapping from the parameter to the
measurement is ht(✓t) = Ct✓t where the matrix Ct =

⇥
1 1

⇤
.

While the mapping and matrix are time-invariant, they may be
time-varying in Section VI-B2, and so we use the more general
notation. We choose the loss function as `t(b✓t) = 1

2kCt
b
✓t�ytk22

and the divergence asD(✓kbt) =
1
2k✓�btk22. We can then write

(12) in closed form as
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⌘
. (16)

2) Update Method 2: This method applies only to dynamic
system models with dynamic states, i.e., in this paper the LTI
or LTV AC demand models, which have dynamic states xt. We
set ✓t =

⇥
x

T
t y

OL
t

⇤T, where xt is bxLTI,m
t in (4), bxLTV1

t in (6), or
bxLTV2
t in an update equation similar to (6). The mapping from the

parameter to the measurement is then Ct =

⇥
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t 1

⇤
where

C

AC
t is the output matrix of the LTI or LTV AC demand model,

i.e., CLTI,m, CLTV1
t , or C

LTV2
t . Defining the system parameter

in this way allows us to update the dynamic states of the LTI
and LTV AC demand models, rather than just the output as in
Update Method 1. The model-based update is then

b
✓t+1 =
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e
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0 0

0 1

�
bt+1, (17)

where we update the AC demand model using the adjusted
parameter estimate, as in DMD. Because the OL demand models
do not include dynamic states, we continue to update their
estimates according to Update Method 1. We again use (16)
as the measurement-based update.

VII. CASE STUDIES

In this section, we define the scenarios, describe the bench-
mark, summarize the parameter settings, and present the results.
In [8], performance bounds for DMD and DFS were established
in terms of a quantity called regret. Regret is the total (or
cumulative) loss of an online learning algorithm’s prediction
sequence versus that of a comparator sequence, often a best-
in-hindsight offline algorithm. In [8], the DMD regret bound
uses a comparator that can take on an arbitrary sequence of
values from the feasible domain⇥. The DFS regret bound uses a

Then, with                                       and                       
we can derive a closed form update:

Update Method 1
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where each term is defined below. DMD is applied to each model
in (8) and (9) to form the expert predictions, where (8) is a
convex program that constructs the measurement-based update
to the previous prediction and (9) is the model-based advance-
ment of the adjusted prediction. The Fixed Share algorithm
consists of (10) and (11), where (10) computes the weights
and (11) computes the estimate as a weighted combination of
the individual experts’ estimates. We note that the Fixed Share
algorithm’s updates are independent of the dynamics and only
use the experts’ predictions and their resulting losses.

In (8), we minimize over the variable ✓, ⌘s
> 0 is a step-

size parameter, and h·, ·i is the standard dot product. The
value r`t(
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✓t) is a subgradient of the convex loss function

`t : ⇥ ! R, which penalizes the error between the predicted
and observed values yt using a known, possibly time-varying,
function ht : ⇥ ! Y that maps ✓t to an observation, i.e.,
yt = ht(✓t), to form predictions of the measurements. An
example loss function is `t(
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matrix C is ht(·). In (9), the function �
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to advance the adjusted estimate e
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t in time. Each �
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(·) can

have arbitrary form and time-varying parameters. In (10), the
weight associated with model m at time-step t is wm

t , � 2 (0, 1)

determines the amount of weight that is shared amongst models,
and ⌘

r influences switching speed. The weight for model m is
based on the loss of each model and the total loss of all models.
The term ⌘

shr`t(
b
✓t), ✓i captures the alignment of the variable

✓ with the positive gradient of `t(
b
✓t). To minimize this term

alone, we would choose ✓ to be exactly aligned with the negative
gradient direction. The term D(✓kb✓t) is a Bregman divergence
that penalizes the deviation between the new variable ✓ and the
old variable b

✓t. For simplicity, we have excluded regularization
within (8), which DMD readily incorporates [8].

B. Algorithm Implementations
We next describe two algorithm implementations to update

the expert predictions. First, we describe an implementation that
uses the concept of DMD but it is not a direct implementation of
DMD. This method treats the models as black boxes and adjusts
only their output, i.e., the OL and AC demand predictions,
using the measured and predicted total feeder demand. Second,
we describe a direct implementation of DMD, which updates
the state xt of the LTI and LTV AC demand models. In the
following, the total demand model is �(·) = {�AC

(·),�OL
(·)}

where �

AC
(·) is an AC demand model and �

OL
(·) is an OL

demand model, with predictions byAC
t and byOL

t , respectively.
1) Update Method 1: The models used within this paper

have different underlying parameters, dynamic variables, and/or
structures, which makes it difficult to define a common ✓t across
all of the models used. Therefore, we develop a variation of the
DMD algorithm that adjusts the demand predictions directly,
rather than applying the updates to quantities influencing the
demand predictions. This allows us to include a diverse set of
models. Specifically, we modify the DMD formulation to

bt+1 = argmin
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The convex program (12) is now used to update a value bt

that accumulates the deviation between the predicted and actual
measurements. The model-based update (13) computes an open-
loop prediction
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✓t+1, meaning that the measurements do not

influence
b
✓t+1. The measurement-based updates and model-

based, open-loop predictions are combined in (14). In contrast,
DMD uses a closed-loop model-based update where the convex
program adjusts the parameter estimate to e

✓t, which is used to
compute the next parameter estimate b

✓t+1.
In this method, we define ✓t as the AC and OL demand, i.e.,
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⇤T. The mapping from the parameter to the
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While the mapping and matrix are time-invariant, they may be
time-varying in Section VI-B2, and so we use the more general
notation. We choose the loss function as `t(b✓t) = 1
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2) Update Method 2: This method applies only to dynamic
system models with dynamic states, i.e., in this paper the LTI
or LTV AC demand models, which have dynamic states xt. We
set ✓t =
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in this way allows us to update the dynamic states of the LTI
and LTV AC demand models, rather than just the output as in
Update Method 1. The model-based update is then
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where we update the AC demand model using the adjusted
parameter estimate, as in DMD. Because the OL demand models
do not include dynamic states, we continue to update their
estimates according to Update Method 1. We again use (16)
as the measurement-based update.

VII. CASE STUDIES

In this section, we define the scenarios, describe the bench-
mark, summarize the parameter settings, and present the results.
In [8], performance bounds for DMD and DFS were established
in terms of a quantity called regret. Regret is the total (or
cumulative) loss of an online learning algorithm’s prediction
sequence versus that of a comparator sequence, often a best-
in-hindsight offline algorithm. In [8], the DMD regret bound
uses a comparator that can take on an arbitrary sequence of
values from the feasible domain⇥. The DFS regret bound uses a
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for each m 2 Mmdl, and
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X

m2Mmdl

w

m
t+1

b
✓

m
t+1, (11)

where each term is defined below. DMD is applied to each model
in (8) and (9) to form the expert predictions, where (8) is a
convex program that constructs the measurement-based update
to the previous prediction and (9) is the model-based advance-
ment of the adjusted prediction. The Fixed Share algorithm
consists of (10) and (11), where (10) computes the weights
and (11) computes the estimate as a weighted combination of
the individual experts’ estimates. We note that the Fixed Share
algorithm’s updates are independent of the dynamics and only
use the experts’ predictions and their resulting losses.

In (8), we minimize over the variable ✓, ⌘s
> 0 is a step-

size parameter, and h·, ·i is the standard dot product. The
value r`t(

b
✓t) is a subgradient of the convex loss function

`t : ⇥ ! R, which penalizes the error between the predicted
and observed values yt using a known, possibly time-varying,
function ht : ⇥ ! Y that maps ✓t to an observation, i.e.,
yt = ht(✓t), to form predictions of the measurements. An
example loss function is `t(

b
✓t) = kCb

✓t � ytk22 where the
matrix C is ht(·). In (9), the function �

m
(·) applies model m

to advance the adjusted estimate e
✓

m
t in time. Each �

m
(·) can

have arbitrary form and time-varying parameters. In (10), the
weight associated with model m at time-step t is wm

t , � 2 (0, 1)

determines the amount of weight that is shared amongst models,
and ⌘

r influences switching speed. The weight for model m is
based on the loss of each model and the total loss of all models.
The term ⌘

shr`t(
b
✓t), ✓i captures the alignment of the variable

✓ with the positive gradient of `t(
b
✓t). To minimize this term

alone, we would choose ✓ to be exactly aligned with the negative
gradient direction. The term D(✓kb✓t) is a Bregman divergence
that penalizes the deviation between the new variable ✓ and the
old variable b

✓t. For simplicity, we have excluded regularization
within (8), which DMD readily incorporates [8].

B. Algorithm Implementations
We next describe two algorithm implementations to update

the expert predictions. First, we describe an implementation that
uses the concept of DMD but it is not a direct implementation of
DMD. This method treats the models as black boxes and adjusts
only their output, i.e., the OL and AC demand predictions,
using the measured and predicted total feeder demand. Second,
we describe a direct implementation of DMD, which updates
the state xt of the LTI and LTV AC demand models. In the
following, the total demand model is �(·) = {�AC

(·),�OL
(·)}

where �

AC
(·) is an AC demand model and �

OL
(·) is an OL

demand model, with predictions byAC
t and byOL

t , respectively.
1) Update Method 1: The models used within this paper

have different underlying parameters, dynamic variables, and/or
structures, which makes it difficult to define a common ✓t across
all of the models used. Therefore, we develop a variation of the
DMD algorithm that adjusts the demand predictions directly,
rather than applying the updates to quantities influencing the
demand predictions. This allows us to include a diverse set of
models. Specifically, we modify the DMD formulation to

bt+1 = argmin

✓2⇥
⌘

s
D
r`t(

b
✓t), ✓

E
+D (✓kbt) (12)

b
✓t+1 =�(

b
✓t) (13)

b
✓t+1 =

b
✓t+1 + bt+1. (14)

The AC and OL demand models generate their predictions
independently from one another, and so (14) can be rewritten as

b
✓t+1 = �(

b
✓t) + bt+1 =

"
�

AC
(

b
✓t)

�

OL
(

b
✓t)

#
+ bt+1. (15)

The convex program (12) is now used to update a value bt

that accumulates the deviation between the predicted and actual
measurements. The model-based update (13) computes an open-
loop prediction

b
✓t+1, meaning that the measurements do not

influence
b
✓t+1. The measurement-based updates and model-

based, open-loop predictions are combined in (14). In contrast,
DMD uses a closed-loop model-based update where the convex
program adjusts the parameter estimate to e

✓t, which is used to
compute the next parameter estimate b

✓t+1.
In this method, we define ✓t as the AC and OL demand, i.e.,

✓t =

⇥
y

AC
t y

OL
t

⇤T. The mapping from the parameter to the
measurement is ht(✓t) = Ct✓t where the matrix Ct =

⇥
1 1

⇤
.

While the mapping and matrix are time-invariant, they may be
time-varying in Section VI-B2, and so we use the more general
notation. We choose the loss function as `t(b✓t) = 1

2kCt
b
✓t�ytk22

and the divergence asD(✓kbt) =
1
2k✓�btk22. We can then write

(12) in closed form as

bt+1 = bt + ⌘

s
C

T
t

⇣
yt � Ct

b
✓t

⌘
. (16)

2) Update Method 2: This method applies only to dynamic
system models with dynamic states, i.e., in this paper the LTI
or LTV AC demand models, which have dynamic states xt. We
set ✓t =

⇥
x

T
t y

OL
t

⇤T, where xt is bxLTI,m
t in (4), bxLTV1

t in (6), or
bxLTV2
t in an update equation similar to (6). The mapping from the

parameter to the measurement is then Ct =

⇥
C

AC
t 1

⇤
where

C

AC
t is the output matrix of the LTI or LTV AC demand model,

i.e., CLTI,m, CLTV1
t , or C

LTV2
t . Defining the system parameter

in this way allows us to update the dynamic states of the LTI
and LTV AC demand models, rather than just the output as in
Update Method 1. The model-based update is then

b
✓t+1 =

"
�

AC
(

e
✓t)

�

OL
(

b
✓t)

#
+


0 0

0 1

�
bt+1, (17)

where we update the AC demand model using the adjusted
parameter estimate, as in DMD. Because the OL demand models
do not include dynamic states, we continue to update their
estimates according to Update Method 1. We again use (16)
as the measurement-based update.

VII. CASE STUDIES

In this section, we define the scenarios, describe the bench-
mark, summarize the parameter settings, and present the results.
In [8], performance bounds for DMD and DFS were established
in terms of a quantity called regret. Regret is the total (or
cumulative) loss of an online learning algorithm’s prediction
sequence versus that of a comparator sequence, often a best-
in-hindsight offline algorithm. In [8], the DMD regret bound
uses a comparator that can take on an arbitrary sequence of
values from the feasible domain⇥. The DFS regret bound uses a
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Fig. 4. Examples AC demand and several AC demand model predictions.

the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature T

m and has the form

bxLTI,m
t+1 =A

LTI,m bxLTI,m
t (4)

byAC,LTI,m
t = C

LTI,m bxLTI,m
t , (5)

with m 2 MLTI
= {1, . . . , NLTI}. The state vector bxLTI,m

t 2
RN x⇥1 consists of the portion of the air conditioners within
each of N

x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x

= 2. The state
transition matrix, ALTI,m 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix C

LTI,m estimates
the AC demand byAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m

= N

ac
P

m ⇥
0 1

⇤
, where

P

m
is a parameter approximating of the average power draw

of air conditioners drawing power and N

ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
N

LTI evenly spaced temperatures T temps
=

�
T

min
, . . . , T

max
 

and denote the m-th temperature of the set as T

m. The dif-
ference between successive temperatures T

m and T

m+1 is
�T . Matrices A

LTI,m and C

LTI,m are constructed using power
demand signals from each air conditioner corresponding to
periods when T

m � �T
2  T

TX
t�⌧ l < T

m
+

�T
2 . Some

heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P

m
is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries in A

LTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} �F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first �AC,LTV1

uses the delayed temperature and has the form

bxLTV1
t+1 =A

LTV1
t bxLTV1

t (6)

byAC,LTV1
t = C

LTV1
t bxLTV1

t , (7)

where A

LTV1
t and C

LTV1
t are generated by linearly interpolating

the matrix entries based on T

TX
t�⌧ l . The second �

AC,LTV2 uses a
moving average of the past temperature over ⌧w time-steps to
generate the prediction byAC,LTV2

t . We chose ⌧w to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm
The objective of DFS is to form an estimate b

✓t 2 ⇥ of the
dynamic system parameter ✓t 2 ⇥ at each discrete time-step t

where ⇥ ⇢ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt 2 Y at each time-step after the prediction has been formed,
where Y ⇢ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where ✓t is the system state.

DFS uses a set of N

mdl models defined as Mmdl
=

{1, . . . , Nmdl} to generate the estimate b
✓t. To do this, DFS

applies the DMD algorithm to each model, forming predictions
b
✓

m
t for each m 2 Mmdl. DMD is executed in two steps

(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate b

✓t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]

e
✓

m
t = argmin

✓2⇥
⌘

s
D
r`t(

b
✓

m
t ), ✓

E
+D

⇣
✓kb✓mt

⌘
(8)

b
✓

m
t+1 =�

m
(

e
✓

m
t ) (9)

w

m
t+1 =

�

N

mdl + (1� �)

w

m
t exp

⇣
�⌘

r
`t

⇣
b
✓

m
t

⌘⌘

PNmdl

j=1 w

j
t exp

⇣
�⌘

r
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⇣
b
✓

j
t

⌘⌘ (10)
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Fig. 4. Examples AC demand and several AC demand model predictions.

the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature T

m and has the form

bxLTI,m
t+1 =A

LTI,m bxLTI,m
t (4)

byAC,LTI,m
t = C

LTI,m bxLTI,m
t , (5)

with m 2 MLTI
= {1, . . . , NLTI}. The state vector bxLTI,m

t 2
RN x⇥1 consists of the portion of the air conditioners within
each of N

x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x

= 2. The state
transition matrix, ALTI,m 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix C

LTI,m estimates
the AC demand byAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m

= N

ac
P

m ⇥
0 1

⇤
, where

P

m
is a parameter approximating of the average power draw

of air conditioners drawing power and N

ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
N

LTI evenly spaced temperatures T temps
=

�
T

min
, . . . , T

max
 

and denote the m-th temperature of the set as T

m. The dif-
ference between successive temperatures T

m and T

m+1 is
�T . Matrices A

LTI,m and C

LTI,m are constructed using power
demand signals from each air conditioner corresponding to
periods when T

m � �T
2  T

TX
t�⌧ l < T

m
+

�T
2 . Some

heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P

m
is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries in A

LTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} �F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first �AC,LTV1

uses the delayed temperature and has the form

bxLTV1
t+1 =A

LTV1
t bxLTV1

t (6)

byAC,LTV1
t = C

LTV1
t bxLTV1

t , (7)

where A

LTV1
t and C

LTV1
t are generated by linearly interpolating

the matrix entries based on T

TX
t�⌧ l . The second �

AC,LTV2 uses a
moving average of the past temperature over ⌧w time-steps to
generate the prediction byAC,LTV2

t . We chose ⌧w to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm
The objective of DFS is to form an estimate b

✓t 2 ⇥ of the
dynamic system parameter ✓t 2 ⇥ at each discrete time-step t

where ⇥ ⇢ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt 2 Y at each time-step after the prediction has been formed,
where Y ⇢ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where ✓t is the system state.

DFS uses a set of N

mdl models defined as Mmdl
=

{1, . . . , Nmdl} to generate the estimate b
✓t. To do this, DFS

applies the DMD algorithm to each model, forming predictions
b
✓

m
t for each m 2 Mmdl. DMD is executed in two steps

(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate b

✓t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]
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for each m 2 Mmdl, and
b
✓t+1 =

X

m2Mmdl

w

m
t+1

b
✓

m
t+1, (11)

where each term is defined below. DMD is applied to each model
in (8) and (9) to form the expert predictions, where (8) is a
convex program that constructs the measurement-based update
to the previous prediction and (9) is the model-based advance-
ment of the adjusted prediction. The Fixed Share algorithm
consists of (10) and (11), where (10) computes the weights
and (11) computes the estimate as a weighted combination of
the individual experts’ estimates. We note that the Fixed Share
algorithm’s updates are independent of the dynamics and only
use the experts’ predictions and their resulting losses.

In (8), we minimize over the variable ✓, ⌘s
> 0 is a step-

size parameter, and h·, ·i is the standard dot product. The
value r`t(

b
✓t) is a subgradient of the convex loss function

`t : ⇥ ! R, which penalizes the error between the predicted
and observed values yt using a known, possibly time-varying,
function ht : ⇥ ! Y that maps ✓t to an observation, i.e.,
yt = ht(✓t), to form predictions of the measurements. An
example loss function is `t(

b
✓t) = kCb

✓t � ytk22 where the
matrix C is ht(·). In (9), the function �

m
(·) applies model m

to advance the adjusted estimate e
✓

m
t in time. Each �

m
(·) can

have arbitrary form and time-varying parameters. In (10), the
weight associated with model m at time-step t is wm

t , � 2 (0, 1)

determines the amount of weight that is shared amongst models,
and ⌘

r influences switching speed. The weight for model m is
based on the loss of each model and the total loss of all models.
The term ⌘

shr`t(
b
✓t), ✓i captures the alignment of the variable

✓ with the positive gradient of `t(
b
✓t). To minimize this term

alone, we would choose ✓ to be exactly aligned with the negative
gradient direction. The term D(✓kb✓t) is a Bregman divergence
that penalizes the deviation between the new variable ✓ and the
old variable b

✓t. For simplicity, we have excluded regularization
within (8), which DMD readily incorporates [8].

B. Algorithm Implementations
We next describe two algorithm implementations to update

the expert predictions. First, we describe an implementation that
uses the concept of DMD but it is not a direct implementation of
DMD. This method treats the models as black boxes and adjusts
only their output, i.e., the OL and AC demand predictions,
using the measured and predicted total feeder demand. Second,
we describe a direct implementation of DMD, which updates
the state xt of the LTI and LTV AC demand models. In the
following, the total demand model is �(·) = {�AC

(·),�OL
(·)}

where �

AC
(·) is an AC demand model and �

OL
(·) is an OL

demand model, with predictions byAC
t and byOL

t , respectively.
1) Update Method 1: The models used within this paper

have different underlying parameters, dynamic variables, and/or
structures, which makes it difficult to define a common ✓t across
all of the models used. Therefore, we develop a variation of the
DMD algorithm that adjusts the demand predictions directly,
rather than applying the updates to quantities influencing the
demand predictions. This allows us to include a diverse set of
models. Specifically, we modify the DMD formulation to

bt+1 = argmin

✓2⇥
⌘

s
D
r`t(

b
✓t), ✓

E
+D (✓kbt) (12)

b
✓t+1 =�(

b
✓t) (13)

b
✓t+1 =

b
✓t+1 + bt+1. (14)

The AC and OL demand models generate their predictions
independently from one another, and so (14) can be rewritten as

b
✓t+1 = �(

b
✓t) + bt+1 =

"
�

AC
(

b
✓t)

�

OL
(

b
✓t)

#
+ bt+1. (15)

The convex program (12) is now used to update a value bt

that accumulates the deviation between the predicted and actual
measurements. The model-based update (13) computes an open-
loop prediction

b
✓t+1, meaning that the measurements do not

influence
b
✓t+1. The measurement-based updates and model-

based, open-loop predictions are combined in (14). In contrast,
DMD uses a closed-loop model-based update where the convex
program adjusts the parameter estimate to e

✓t, which is used to
compute the next parameter estimate b

✓t+1.
In this method, we define ✓t as the AC and OL demand, i.e.,

✓t =

⇥
y

AC
t y

OL
t

⇤T. The mapping from the parameter to the
measurement is ht(✓t) = Ct✓t where the matrix Ct =

⇥
1 1

⇤
.

While the mapping and matrix are time-invariant, they may be
time-varying in Section VI-B2, and so we use the more general
notation. We choose the loss function as `t(b✓t) = 1

2kCt
b
✓t�ytk22

and the divergence asD(✓kbt) =
1
2k✓�btk22. We can then write

(12) in closed form as

bt+1 = bt + ⌘

s
C

T
t

⇣
yt � Ct

b
✓t

⌘
. (16)

2) Update Method 2: This method applies only to dynamic
system models with dynamic states, i.e., in this paper the LTI
or LTV AC demand models, which have dynamic states xt. We
set ✓t =

⇥
x

T
t y

OL
t

⇤T, where xt is bxLTI,m
t in (4), bxLTV1

t in (6), or
bxLTV2
t in an update equation similar to (6). The mapping from the

parameter to the measurement is then Ct =

⇥
C

AC
t 1

⇤
where

C

AC
t is the output matrix of the LTI or LTV AC demand model,

i.e., CLTI,m, CLTV1
t , or C

LTV2
t . Defining the system parameter

in this way allows us to update the dynamic states of the LTI
and LTV AC demand models, rather than just the output as in
Update Method 1. The model-based update is then
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where we update the AC demand model using the adjusted
parameter estimate, as in DMD. Because the OL demand models
do not include dynamic states, we continue to update their
estimates according to Update Method 1. We again use (16)
as the measurement-based update.

VII. CASE STUDIES

In this section, we define the scenarios, describe the bench-
mark, summarize the parameter settings, and present the results.
In [8], performance bounds for DMD and DFS were established
in terms of a quantity called regret. Regret is the total (or
cumulative) loss of an online learning algorithm’s prediction
sequence versus that of a comparator sequence, often a best-
in-hindsight offline algorithm. In [8], the DMD regret bound
uses a comparator that can take on an arbitrary sequence of
values from the feasible domain⇥. The DFS regret bound uses a
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for each m 2 Mmdl, and
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where each term is defined below. DMD is applied to each model
in (8) and (9) to form the expert predictions, where (8) is a
convex program that constructs the measurement-based update
to the previous prediction and (9) is the model-based advance-
ment of the adjusted prediction. The Fixed Share algorithm
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and (11) computes the estimate as a weighted combination of
the individual experts’ estimates. We note that the Fixed Share
algorithm’s updates are independent of the dynamics and only
use the experts’ predictions and their resulting losses.
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> 0 is a step-
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✓t) is a subgradient of the convex loss function

`t : ⇥ ! R, which penalizes the error between the predicted
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OL
(·) is an OL

demand model, with predictions byAC
t and byOL

t , respectively.
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and LTV AC demand models, rather than just the output as in
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where we update the AC demand model using the adjusted
parameter estimate, as in DMD. Because the OL demand models
do not include dynamic states, we continue to update their
estimates according to Update Method 1. We again use (16)
as the measurement-based update.

VII. CASE STUDIES

In this section, we define the scenarios, describe the bench-
mark, summarize the parameter settings, and present the results.
In [8], performance bounds for DMD and DFS were established
in terms of a quantity called regret. Regret is the total (or
cumulative) loss of an online learning algorithm’s prediction
sequence versus that of a comparator sequence, often a best-
in-hindsight offline algorithm. In [8], the DMD regret bound
uses a comparator that can take on an arbitrary sequence of
values from the feasible domain⇥. The DFS regret bound uses a



Case studies: Plant

• Residential load and weather data from Pecan 
Street Dataport (Austin, TX)

• Commercial load data from Pacific Gas & 
Electric Company; weather data from NOAA 
(Bay Area, CA)

• GridLab-D feeder used to size the load

5/16/19 J. Mathieu, University of Michigan 20



Case studies: Benchmark

• Each “other load” model + LTV AC model combination 
is used to compute one AC load estimate.

• We obtain the estimates from all Kalman filters and 
compute the a posteriori best (BKF) and average (AKF) 
results.

5/16/19 J. Mathieu, University of Michigan 21

-
Total load measurement

“Other load” prediction

AC load pseudo-measurement

Time-varying Kalman Filter (using LTV model)
AC load estimate

u = 0



Example results

J. Mathieu, University of Michigan5/16/19 22

12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM
0

0.2

0.4

0.6

0.8

W
ei

gh
t

[-
]

�AC,MLR and �OL,MLR �AC,LTV1 and �OL,MLR

�AC,LTV2 and �OL,MLR Other Models

12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM
2

4

6

8

A
ct

iv
e

Po
w

er
D

em
an

d
(M

W
)

yOL
t byOL

t

12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM

0

2

4

6

A
c
t
i
v
e

P
o
w

e
r

D
e
m

a
n

d
(
M

W
)

yAC

t byAC

t byKF

t

12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM

4

6

8

10

12

A
c
t
i
v
e

P
o
w

e
r

D
e
m

a
n
d

(
M

W
)

yt byt
Total load

Other load

AC loadModel weights

AC load RMSE
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Comparison across model 
sets & update methods
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Update Method 1: update output

Update Method 2: update state

a posteriori BKF RMSE 
• Mean 195 kW
• Min 148 kW
• Max 319 kW

AKF RMSE
• Mean 259 kW
• Min 173 kW
• Max 358 kW



Sensitivity to parameter 
selections
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Connections with Kalman Filtering

• In a Kalman Filter we assume the model form and 
use/choose the process and measurement noise 
covariance

• In DMD the model can take any form and we 
choose the loss and divergence functions. What 
should we pick?

Ledva, Du, Balzano, and Mathieu, “Disaggregating Load by Type from 
Distribution System Measurements in Real Time,” In: Energy Markets and 
Responsive Grids, 2018.
Ledva, Balzano, and Mathieu, “Exploring Connections Between a Multiple 
Model Kalman Filter and Dynamic Fixed Share with Applications to Demand 
Response,” IEEE CCTA 2018 (to appear).
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Including Error Statistics in DMD
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If we make the same assumption as we make for a 
Kalman filter (linear model, normally distributed errors, 
etc.), and we choose the following loss and divergence 
functions

where      and      are symmetric positive-definite 
covariance matrices corresponding to the model and 
measurement prediction error, then the DMD updates 
are identical to those of the Kalman filter.

V. CONNECTIONS BETWEEN THE KALMAN FILTERING
AND ONLINE LEARNING ALGORITHMS

Section V-A reviews the method developed in [5] to
construct the functions/parameters within DMD to produce
estimates identical to those produced by a Kalman filter.
Section V-B builds on this result and presents our main
result: a method to construct the functions/parameters used
within DFS to produce estimates identical to those produced
by a MMKF. Finally, Section V-C adapts several heuristics
commonly used within MMKFs to DFS.

A. Producing Identical Estimates with DMD and a Kalman
Filter

We construct DMD by choosing the model, user-defined
parameters, and user-defined functions. As with a Kalman
filter, we assume as linear model and that the model matrices
A

k

, C
k

, Q
k

, and R

k

are known, and additionally, that b
P

k

is
known. Choosing the model used within DMD to be identical
to that used within the Kalman filter results in the same
model-based update. The remaining step is to construct the
convex program (9) such it corresponds to (3).

In (9) we have the ability to choose the ⌘

s, D(xkbx
k

),
and `
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(bx
k

). Recall that the measurement-based update in a
Kalman filter is
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and the measurement-based update in DMD is
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) .

Choosing the Bregman divergence as D (xkbx
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) =

1
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)

T b
P
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), setting ⌘

s
= 1, and solving for

the closed form solution of the convex program (i.e., taking
the gradient with respect to x and setting this equal to zero)
gives
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k

= bx
k

+

b
P

k

(�r`

k

(bx
k

)) . (13)

Note that with the appropriate selection of the Bregman
divergence, the structure of DMD’s measurement-based up-
date closely matches that of the Kalman filter, and the
remaining step is to choose `

k

(bx
k

) appropriately. Noting that
�

da
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). Plugging
�r`
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(bx
k

) into (13) gives the same measurement-based
update as the Kalman filter.

B. Producing Identical Estimates with DFS and a MMKF

Since DMD can be constructed to produce identical esti-
mates to those produced by a Kalman filter, all that is needed
to produce identical updates with DFS and MMKF is to
ensure that the updates to the weights w

i

k

are equal. We

first set � = 0, ⌘r
= 1, and use the loss function developed

in Section V-A. The resulting weight update in DFS is
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for i 2 Mmdl. Note that (15) corresponds exactly to (7),
and the remaining step is to construct hDFS
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|mi

) to equal
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i amounts to adjusting our belief of the accuracy of the
output estimate, and the output equations should be changed
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i, we use the property of determinants
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where the scaling eliminated the constant in front of the ex-
ponential, and where the scaling cancels out in the exponent.
Applying the scaling to h
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through each MMKF equation. Within the Kalman gain,
we see that replacing the output matrices and the estimated
output with their scaled values results in a scaled gain:
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However, the scaling cancels out within the measurement-
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V. CONNECTIONS BETWEEN THE KALMAN FILTERING
AND ONLINE LEARNING ALGORITHMS

Section V-A reviews the method developed in [5] to
construct the functions/parameters within DMD to produce
estimates identical to those produced by a Kalman filter.
Section V-B builds on this result and presents our main
result: a method to construct the functions/parameters used
within DFS to produce estimates identical to those produced
by a MMKF. Finally, Section V-C adapts several heuristics
commonly used within MMKFs to DFS.
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is
known. Choosing the model used within DMD to be identical
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model-based update. The remaining step is to construct the
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Since DMD can be constructed to produce identical esti-
mates to those produced by a Kalman filter, all that is needed
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where the scaling eliminated the constant in front of the ex-
ponential, and where the scaling cancels out in the exponent.
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V. CONNECTIONS BETWEEN THE KALMAN FILTERING
AND ONLINE LEARNING ALGORITHMS

Section V-A reviews the method developed in [5] to
construct the functions/parameters within DMD to produce
estimates identical to those produced by a Kalman filter.
Section V-B builds on this result and presents our main
result: a method to construct the functions/parameters used
within DFS to produce estimates identical to those produced
by a MMKF. Finally, Section V-C adapts several heuristics
commonly used within MMKFs to DFS.

A. Producing Identical Estimates with DMD and a Kalman
Filter

We construct DMD by choosing the model, user-defined
parameters, and user-defined functions. As with a Kalman
filter, we assume as linear model and that the model matrices
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, and R
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are known, and additionally, that b
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is
known. Choosing the model used within DMD to be identical
to that used within the Kalman filter results in the same
model-based update. The remaining step is to construct the
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Note that with the appropriate selection of the Bregman
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B. Producing Identical Estimates with DFS and a MMKF
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where the scaling eliminated the constant in front of the ex-
ponential, and where the scaling cancels out in the exponent.
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construct the functions/parameters within DMD to produce
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Section V-B builds on this result and presents our main
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within DFS to produce estimates identical to those produced
by a MMKF. Finally, Section V-C adapts several heuristics
commonly used within MMKFs to DFS.

A. Producing Identical Estimates with DMD and a Kalman
Filter

We construct DMD by choosing the model, user-defined
parameters, and user-defined functions. As with a Kalman
filter, we assume as linear model and that the model matrices
A

k

, C
k

, Q
k

, and R

k

are known, and additionally, that b
P

k

is
known. Choosing the model used within DMD to be identical
to that used within the Kalman filter results in the same
model-based update. The remaining step is to construct the
convex program (9) such it corresponds to (3).

In (9) we have the ability to choose the ⌘

s, D(xkbx
k

),
and `

k

(bx
k

). Recall that the measurement-based update in a
Kalman filter is

ex
k

= bx
k

+

b
P

k

C

T

k

(

b
P

y
k

)

�1
(y

k

� C

k

bx
k

) ,

and the measurement-based update in DMD is

ex
k

= arg min
x2X

⌘

s
(r`

k

(bx
k

))

T

x+D (xkbx
k

) .

Choosing the Bregman divergence as D (xkbx
k

) =

1
2 (x� bx

k

)

T b
P

�1
k

(x� bx
k

), setting ⌘

s
= 1, and solving for

the closed form solution of the convex program (i.e., taking
the gradient with respect to x and setting this equal to zero)
gives

ex
k

= bx
k

+

b
P

k

(�r`

k

(bx
k

)) . (13)

Note that with the appropriate selection of the Bregman
divergence, the structure of DMD’s measurement-based up-
date closely matches that of the Kalman filter, and the
remaining step is to choose `

k

(bx
k

) appropriately. Noting that
�

da

⇥
(Ma� b)

T

V (Ma� b)

⇤
= 2M

T

V (Ma�b), we choose

`

k

(bx
k

) =

1

2

(C

k

bx
k

� y

k

)

T

(

b
P

y
k

)

�1
(C

k

bx
k

� y

k

) ,

and then �r`

k

(bx
k

) = C

T

k

(

b
P

y
k

)

�1
(y

k

� C

k

bx
k

). Plugging
�r`

k

(bx
k

) into (13) gives the same measurement-based
update as the Kalman filter.

B. Producing Identical Estimates with DFS and a MMKF

Since DMD can be constructed to produce identical esti-
mates to those produced by a Kalman filter, all that is needed
to produce identical updates with DFS and MMKF is to
ensure that the updates to the weights w

i

k

are equal. We

first set � = 0, ⌘r
= 1, and use the loss function developed

in Section V-A. The resulting weight update in DFS is

h

DFS
(y

k

|mi

) = exp

�
�`

k

(bxi

k

)

�
(14)

w

i

k+1 =

h

DFS
(y

k

|mi

) w

i

kP
j2Mmdl h

DFS
(y

k

|mj

) w

j

k

(15)

for i 2 Mmdl. Note that (15) corresponds exactly to (7),
and the remaining step is to construct hDFS

(y

k

|mi

) to equal
h(y

k

|mi

).
To make h

DFS
(y

k

|mi

) equal h(y
k

|mi

), we will scale b
P

y,i
k

by a parameter �

i such that (2⇡)

�q/2
(|�i b

P

y,i
k

|)�1/2
= 1.

The parameter �

i will be positive since b
P

y,i
k

is positive
definite, and we also define ↵

i ,
p

�

i. Scaling b
P

y,i
k

by
�

i amounts to adjusting our belief of the accuracy of the
output estimate, and the output equations should be changed
accordingly. To see this, recall that b

P

y,i
k

= C

i

k

b
P

i

k

(C

i

k

)

T

+R

i

k

,
and then �

i b
P

y,i
k

= (↵

i

C

i

k

)

b
P

i

k

(↵

i

C

i

k

)

T

+�

i

R

i

k

, i.e., the scal-
ing parameters only appear with the output-related quantities.
As a result, the outputs are scaled, i.e., byi

k

= C

i

k

bxi

k

becomes
↵

ibyi
k

= (↵

i

C

i

k

)bxi

k

, the measurement noise covariance R

i

k

becomes �

i

R

i

k

, and the output y

k

= C

i

k

x

k

+ v

k

becomes
↵

i

y

k

= ↵

i

C

i

k

x

k

+ ↵

i

v

k

.
To determine �

i, we use the property of determinants
where |�V | = �

n|V | for an n ⇥ n matrix V and scalar
�. To set �i, we replace b

P

y,i
k

with (�

i b
P

y,i
k

), and then solve
for �i:

1 =

1

(2⇡)

q/2

q
|�i b

P

y,i
k

|

=) �

i

=

q

q
(2⇡)

�q | bP y,i
k

|�1
.

Using this scaling to adjust h(y

k

|mi

) within the MMKF
gives

h(y

k

|mi

) =

exp

✓
�1

2

(↵

ibyi
k

� ↵

i

y

k

)

T

(�

i b
P

y,i
k

)

�1
(↵

ibyi
k

� ↵

i

y

k

◆
,

where the scaling eliminated the constant in front of the ex-
ponential, and where the scaling cancels out in the exponent.
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Disaggregating Load by Type from Distribution System Measurements in Real-Time 17
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Fig. 1 Time series of the total, OL, and AC demands versus their estimates as well as times series
of the weights from the August 4 simulation while running P-DFS with historical covariances

Table 2 Mean, Minimum (Min), and Maximum (Max) RMSEE in kW over 10 Simulated Days
for each Algorithm and Covariance Computation Method

Method Covariance Total Demand AC Demand OL Demand
Min Mean Max Min Mean Max Min Mean Max

P-DFS Identity 88.9 100.0 110.5 151.0 220.6 325.8 150.8 222.3 327.2
P-DFS Historical 98.4 114.8 123.2 155.0 252.2 371.5 150.2 250.1 372.5
P-DFS Real-Time 146.6 154.3 168.4 120.2 125.3 131.8 104.8 114.5 130.5

DFS Identity 175.4 199.1 224.8 194.2 230.9 314.5 145.0 216.2 312.7
DFS Historical 100.5 119.5 126.1 192.0 259.8 311.5 190.6 265.5 320.2
DFS Real-Time 120.8 125.2 129.1 104.0 116.5 140.1 96.6 109.4 131.9
BKF Historical - - - 148.4 195.3 318.9 - - -
AKF Historical - - - 173.1 259.4 357.5 - - -

than P-DFS when real-time errors are used to generate the covariance matrices. Part
of the reasoning for this is that the LTV AC demand models only include two states,
and for a given outdoor temperature, the models rapidly converge to a steady-state
value. When running DFS, this means that the measurement-based adjustment at
a given time-step may not have an effect on the model’s predictions after several
time-steps. Alternatively, the P-DFS formulation continually adjusts the model pre-
dictions based on its accuracy, and by separating these adjustments from the model,
these adjustments persist.

Also, our method of computing the covariances with historical data degrades per-
formance. This implies that our assumptions regarding the errors are overly coarse.
However, the inclusion of unrealistically accurate covariance information, which is
done when using real-time covariance data, the DFS and P-DFS algorithms’ perfor-
mance improves dramatically.

Use the Kalman Filter covariance update equations and compare three 
options for obtaining the process and measurement noise covariance 

UM 1
UM 1
UM 1
UM 2
UM 2
UM 2

UM 1: Update Method 1 (output), UM 2: Update Method 2 (state) 
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Historical, Update Method 1 (output, blue) & 2 (state, purple)

Real-time, Update Method 1 (output, blue) & 2 (state, purple)



DFS and Multiple Model 
Kalman Filtering

• We can also construct DFS to produce 
identical updates to a Multiple Model Kalman
Filter (MMKF).

• A number of heuristics have been developed 
for MMKFs; these can be adapted for DFS.
– Setting a minimum weight
– Exponential decay used to update weights
– Sliding window used to update weights

5/16/19 J. Mathieu, University of Michigan 30



Example results
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TABLE II
SUMMARY OF ALGORITHMS AND THEIR RMS ESTIMATION ERRORS (KW)

Abbreviation Details RMS Error (kW)
MMKF The standard MMKF algorithm without any heuristics 104.5
MMKF-S A MMKF with scaling performed according to Section V-B 104.5
MMKF-M A MMKF using a minimum weight for each model, i.e., using an equation similar to (11) as the weight update 63.4
MMKF-W A MMKF using an exponential decay weight update and a minimum weight for each model -
MMKF-E A MMKF using a sliding window weight update and a minimum weight for each model 61.1
DFS-S DFS with scaling performed according to Section V-B 104.5
DFS-M DFS with the standard weight update (11), which includes a minimum weight for each model 61.9
DFS-W DFS using the sliding window weight update (21), which includes a minimum weight for each model 61.4
DFS-E DFS using the exponential decay weight update (20), which includes a minimum weight for each model 60.9
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Fig. 5. Time series of the weights for MMKF, MMKF-M, DFS-M, DFS-W,
and DFS-E where w28

k , w31
k , and w34

k denote the weights for m28, m31,
and m34, respectively

established via scaling the output equations in Section V-B
and demonstrates that the MMKF scaling does not change
its performance.

From Table II, we can see that the MMKF performance
can be improved with heuristics. In general, the DFS im-
plementations slightly outperform the comparable MMKF
implementations. It is unsurprising that the results are sim-
ilar due to the similarities in the MMKF and DFS algo-
rithms. Tuning the covariance matrices within the underlying
Kalman filters may improve the performance of all imple-
mentations, but this improvement would be identical across
all implementations as they all use the same underlying
estimates. The improvement in DFS is due to the parameter
⌘

r, which allows the algorithm to generate more dynamic
weights by setting ⌘

r to larger values. This is not possible in
a MMKF.

Comparing the various time series of the weights to the
accuracy of the underlying Kalman filter estimates illuminate
the differences in algorithm performance. Specifically, the
MMKF weights presented in Fig. 5a show that the MMKF
does not ever weight m

28 heavily, even though the model
is accurate over the final two hours of the simulation. This
is because m

28 was inaccurate over the early portion of the
simulation, resulting in a low likelihood and a low weight,
and it was unable to regain weight once it became accurate.
Including a minimum weight into the MMKF overcomes this
issue, as can be seen in Fig. 5b, which shows the weight time
series for MMKF-M. In contrast, the DFS algorithm weights
m

28 heavily in the final two hours of the simulation, as can
be see in Fig. 5c.

Another characteristic of the DFS-M, MMKF, and
MMKF-M weights are that they become smoother as the
simulation progresses. This is because the weights sum the
losses (related to the output estimation errors) as the simu-
lation progresses, and the weights become more stagnant as
the losses accrue. Alternatively, the behavior of the DFS-W
and DFS-E weights in Fig. 5d and Fig. 5e, respectively, are
more consistent throughout the simulation. The MMKF-E
weights behave similar to those of DFS-E. This is because
the recent losses have larger influence on the weights. As
a result, the weights are able to react to the models’ recent
performance. Incorporating a sliding window or exponential
decay into the weight function performs a similar function,
which results in similar weights. This can be seen in that
DFS-W and DFS-E weights are almost identical and result
in very similar RMS error values.

TABLE II
SUMMARY OF ALGORITHMS AND THEIR RMS ESTIMATION ERRORS (KW)

Abbreviation Details RMS Error (kW)
MMKF The standard MMKF algorithm without any heuristics 104.5
MMKF-S A MMKF with scaling performed according to Section V-B 104.5
MMKF-M A MMKF using a minimum weight for each model, i.e., using an equation similar to (11) as the weight update 63.4
MMKF-W A MMKF using an exponential decay weight update and a minimum weight for each model -
MMKF-E A MMKF using a sliding window weight update and a minimum weight for each model 61.1
DFS-S DFS with scaling performed according to Section V-B 104.5
DFS-M DFS with the standard weight update (11), which includes a minimum weight for each model 61.9
DFS-W DFS using the sliding window weight update (21), which includes a minimum weight for each model 61.4
DFS-E DFS using the exponential decay weight update (20), which includes a minimum weight for each model 60.9
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and DFS-E where w28

k , w31
k , and w34

k denote the weights for m28, m31,
and m34, respectively

established via scaling the output equations in Section V-B
and demonstrates that the MMKF scaling does not change
its performance.

From Table II, we can see that the MMKF performance
can be improved with heuristics. In general, the DFS im-
plementations slightly outperform the comparable MMKF
implementations. It is unsurprising that the results are sim-
ilar due to the similarities in the MMKF and DFS algo-
rithms. Tuning the covariance matrices within the underlying
Kalman filters may improve the performance of all imple-
mentations, but this improvement would be identical across
all implementations as they all use the same underlying
estimates. The improvement in DFS is due to the parameter
⌘

r, which allows the algorithm to generate more dynamic
weights by setting ⌘

r to larger values. This is not possible in
a MMKF.

Comparing the various time series of the weights to the
accuracy of the underlying Kalman filter estimates illuminate
the differences in algorithm performance. Specifically, the
MMKF weights presented in Fig. 5a show that the MMKF
does not ever weight m

28 heavily, even though the model
is accurate over the final two hours of the simulation. This
is because m

28 was inaccurate over the early portion of the
simulation, resulting in a low likelihood and a low weight,
and it was unable to regain weight once it became accurate.
Including a minimum weight into the MMKF overcomes this
issue, as can be seen in Fig. 5b, which shows the weight time
series for MMKF-M. In contrast, the DFS algorithm weights
m

28 heavily in the final two hours of the simulation, as can
be see in Fig. 5c.

Another characteristic of the DFS-M, MMKF, and
MMKF-M weights are that they become smoother as the
simulation progresses. This is because the weights sum the
losses (related to the output estimation errors) as the simu-
lation progresses, and the weights become more stagnant as
the losses accrue. Alternatively, the behavior of the DFS-W
and DFS-E weights in Fig. 5d and Fig. 5e, respectively, are
more consistent throughout the simulation. The MMKF-E
weights behave similar to those of DFS-E. This is because
the recent losses have larger influence on the weights. As
a result, the weights are able to react to the models’ recent
performance. Incorporating a sliding window or exponential
decay into the weight function performs a similar function,
which results in similar weights. This can be seen in that
DFS-W and DFS-E weights are almost identical and result
in very similar RMS error values.

RMSE 104.5 kW

RMSE 63.4 kW

RMSE 61.9 kW

RMSE 61.4 kW

RMSE 60.9 kW



Conclusions

• Dynamic Mirror Descent (DMD) and Dynamic 
Fixed Share (DFS) enables us to solve the 
feeder energy disaggregation problem 
leveraging dynamical models of arbitrary form

• Empirical results are often comparable to the 
a posteriori best Kalman filter (obtained from 
the same models)

• We can leverage ideas from Kalman filtering to 
inform our choice of DFS 
functions/parameters and heuristics

J. Mathieu, University of Michigan5/16/19 32



Backup
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Algorithmic guarantees 

• Regret: performance with respect to a 
comparator

• Often the comparator is the performance of a 
batch algorithm

• Hall and Willet derive bounds on the regret and 
show that for many classes of comparators regret 
scales sublinearly in T

5/16/19 J. Mathieu, University of Michigan 34
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PHDVXUHV LWV SUHGLFWLYH SHUIRUPDQFH DFFRUGLQJ WR D FRQYH[ ORVV
IXQFWLRQ� DQG ZLWK HDFK QHZ REVHUYDWLRQ LW FRPSXWHV WKH QHJD�
WLYH JUDGLHQW RI WKH ORVV DQG VKLIWV LWV SUHGLFWLRQ LQ WKDW GLUHFWLRQ�
6WRFKDVWLF JUDGLHQW GHVFHQW PHWKRGV VWHP IURP VLPLODU SULQFL�
SOHV DQG KDYH EHHQ VWXGLHG IRU GHFDGHV� EXW UHFHQW WHFKQLFDO
EUHDNWKURXJKV DOORZ WKHVH DSSURDFKHV WR EH XQGHUVWRRG ZLWKRXW
VWURQJ VWRFKDVWLF DVVXPSWLRQV RQ WKH GDWD� HYHQ LQ DGYHUVDULDO
VHWWLQJV� OHDGLQJ WR PRUH HI¿FLHQW DQG UDSLGO\ FRQYHUJLQJ DOJR�
ULWKPV LQ PDQ\ VHWWLQJV�
7KLV SDSHU GHVFULEHV D QRYHO IUDPHZRUN IRU SUHGLFWLRQ LQ

WKH LQGLYLGXDO VHTXHQFH VHWWLQJ ZKLFK LQFRUSRUDWHV G\QDPLFDO
PRGHOV²HIIHFWLYHO\ D QRYHO FRPELQDWLRQ RI VWDWH XSGDWLQJ
IURP VWRFKDVWLF ¿OWHU WKHRU\ DQG RQOLQH FRQYH[ RSWLPL]DWLRQ
IURP XQLYHUVDO SUHGLFWLRQ� :H HVWDEOLVK WUDFNLQJ UHJUHW ERXQGV
IRU RXU SURSRVHG DOJRULWKP� Dynamic Mirror Descent (DMD)�
ZKLFK FKDUDFWHUL]H KRZ ZHOO ZH SHUIRUP UHODWLYH WR VRPH
DOWHUQDWLYH DSSURDFK �e.g., D FRPSXWDWLRQDOO\ LQWUDFWDEOH EDWFK
DOJRULWKP� RSHUDWLQJ RQ WKH VDPH GDWD WR JHQHUDWH LWV RZQ
SUHGLFWLRQV� FDOOHG D ³FRPSDUDWRU VHTXHQFH�´ 2XU QRYHO UHJUHW
ERXQGV VFDOH ZLWK WKH GHYLDWLRQ RI WKLV FRPSDUDWRU VHTXHQFH
IURP D G\QDPLFDO PRGHO� 7KHVH ERXQGV VLPSOLI\ WR SUHYLRXVO\
VKRZQ ERXQGV ZKHQ WKHUH DUH QR G\QDPLFV� ,Q DGGLWLRQ� ZH
GHVFULEH PHWKRGV EDVHG RQ '0' IRU DGDSWLQJ WR WKH EHVW
G\QDPLFDO PRGHO IURP HLWKHU D ¿QLWH RU SDUDPHWULF FODVV RI
FDQGLGDWH PRGHOV� ,Q WKHVH VHWWLQJV� ZH HVWDEOLVK WUDFNLQJ
UHJUHW ERXQGV ZKLFK VFDOH ZLWK WKH GHYLDWLRQ RI D FRPSDUDWRU
VHTXHQFH IURP WKH best sequence RI G\QDPLFDO PRGHOV�
:KLOH RXU PHWKRGV DQG WKHRU\ DSSO\ LQ D EURDG UDQJH RI VHW�

WLQJV� ZH DUH SDUWLFXODUO\ LQWHUHVWHG LQ WKH VHWWLQJ ZKHUH WKH GL�
PHQVLRQDOLW\ RI WKH SDUDPHWHU WR EH HVWLPDWHG LV YHU\ KLJK� ,Q
WKLV UHJLPH� WKH LQFRUSRUDWLRQ RI ERWK G\QDPLFDO PRGHOV DQG
VSDUVLW\ UHJXODUL]DWLRQ SOD\V D NH\ UROH� :LWK WKLV LQ PLQG� ZH
IRFXV RQ D FODVV RI PHWKRGV ZKLFK LQFRUSRUDWH UHJXODUL]DWLRQ DV
ZHOO DV G\QDPLFDO PRGHOLQJ� 7KH UROH RI UHJXODUL]DWLRQ� SDUWLF�
XODUO\ VSDUVLW\ UHJXODUL]DWLRQ� LV LQFUHDVLQJO\ ZHOO XQGHUVWRRG LQ
EDWFK VHWWLQJV DQG KDV UHVXOWHG LQ VLJQL¿FDQW JDLQV LQ LOO�SRVHG
DQG GDWD�VWDUYHG VHWWLQJV >��@±>��@� 0RUH UHFHQW ZRUN KDV H[�
DPLQHG WKH UROH RI VSDUVLW\ LQ RQOLQH PHWKRGV VXFK DV UHFXUVLYH
OHDVW VTXDUHV �5/6� DOJRULWKPV� EXW GR QRW DFFRXQW IRU G\QDPLF
HQYLURQPHQWV >��@�

A. Organization of Paper and Main Contributions

7KH UHPDLQGHU RI WKLV SDSHU LV VWUXFWXUHG DV IROORZV� ,Q
6HFWLRQ ,,� ZH IRUPXODWH WKH SUREOHP DQG LQWURGXFH QRWDWLRQ
XVHG WKURXJKRXW WKH SDSHU� DQG 6HFWLRQ ,,, LQWURGXFHV WKH
Dynamic Mirror Descent (DMD) PHWKRG� DQG JLYHV EULHI
FRPSDULVRQ WR H[LVWLQJ PHWKRGV� DORQJ ZLWK QRYHO WUDFNLQJ
UHJUHW ERXQGV� 7KLV VHFWLRQ DOVR GHVFULEHV WKH DSSOLFDWLRQ RI
GDWD�GHSHQGHQW G\QDPLFDO PRGHOV DQG WKHLU FRQQHFWLRQ WR UH�
FHQW ZRUN RQ RQOLQH OHDUQLQJ ZLWK SUHGLFWDEOH VHTXHQFHV� '0'
XVHV RQO\ D VLQJOH VHULHV RI G\QDPLFDO PRGHOV� EXW ZH FDQ XVH
LW WR FKRRVH DPRQJ D IDPLO\ RI FDQGLGDWH G\QDPLFDO PRGHOV�
7KLV LV GHVFULEHG IRU ¿QLWH IDPLOLHV LQ 6HFWLRQ ,9 XVLQJ D ¿[HG
VKDUH DOJRULWKP� DQG IRU SDUDPHWULF IDPLOLHV LQ 6HFWLRQ 9�
6HFWLRQ 9, VKRZV H[SHULPHQWDO UHVXOWV RI RXU PHWKRGV LQ D
YDULHW\ RI FRQWH[WV UDQJLQJ IURP LPDJLQJ WR VHOI�H[FLWLQJ SRLQW
SURFHVVHV� )LQDOO\� 6HFWLRQ 9,, PDNHV FRQFOXGLQJ UHPDUNV
ZKLOH SURRIV DUH UHOHJDWHG WR $SSHQGL[ $�

,,� 352%/(0 )2508/$7,21

7KH SUREOHP RI VHTXHQWLDO SUHGLFWLRQ LV SRVHG DV DQ LWHUDWLYH
JDPH EHWZHHQ D )RUHFDVWHU DQG WKH (QYLURQPHQW� $W HYHU\ WLPH
SRLQW� � WKH )RUHFDVWHU JHQHUDWHV D SUHGLFWLRQ IURP D ERXQGHG�
FORVHG� FRQYH[ VHW � $IWHU WKH )RUHFDVWHU PDNHV D SUH�
GLFWLRQ� WKH (QYLURQPHQW UHYHDOV WKH ORVV IXQFWLRQ ZKHUH
LV D FRQYH[ IXQFWLRQ ZKLFK PDSV WKH VSDFH WR WKH UHDO QXPEHU
OLQH� :H ZLOO DVVXPH WKDW WKH ORVV IXQFWLRQ LV WKH FRPSRVLWLRQ
RI D FRQYH[ IXQFWLRQ IURP WKH (QYLURQPHQW DQG
D FRQYH[ UHJXODUL]DWLRQ IXQFWLRQ ZKLFK GRHV QRW
FKDQJH RYHU WLPH� )UHTXHQWO\ WKH ORVV IXQFWLRQ� ZLOO PHDVXUH
WKH DFFXUDF\ RI D SUHGLFWLRQ FRPSDUHG WR VRPH QHZ GDWD SRLQW

ZKHUH LV WKH GRPDLQ RI SRVVLEOH REVHUYDWLRQV� 7KH UHJ�
XODUL]DWLRQ IXQFWLRQ SURPRWHV ORZ�GLPHQVLRQDO VWUXFWXUH �VXFK
DV VSDUVLW\� ZLWKLQ WKH SUHGLFWLRQV� :H DGGLWLRQDOO\ DVVXPH WKDW
ZH FDQ FRPSXWH D VXEJUDGLHQW RI RU DW DQ\ SRLQW �
ZKLFK ZH GHQRWH DQG � 7KXV WKH )RUHFDVWHU LQFXUV WKH
ORVV �
7KH JRDO RI WKH )RUHFDVWHU LV WR FUHDWH D VHTXHQFH RI SUHGLF�

WLRQV WKDW KDV D ORZ FXPXODWLYH ORVV �
%HFDXVH WKH ORVV IXQFWLRQV DUH EHLQJ UHYHDOHG VHTXHQWLDOO\� WKH
SUHGLFWLRQ DW HDFK WLPH FDQ RQO\ EH D IXQFWLRQ RI DOO SUHYLRXVO\
UHYHDOHG ORVVHV WR HQVXUH FDXVDOLW\� 7KXV� WKH WDVN IDFLQJ WKH
)RUHFDVWHU LV WR FUHDWH D QHZ SUHGLFWLRQ� � EDVHG RQ WKH SUH�
YLRXV SUHGLFWLRQ DQG WKH QHZ ORVV IXQFWLRQ � ZLWK WKH JRDO
RI PLQLPL]LQJ ORVV DW WKH QH[W WLPH VWHS� :H FKDUDFWHUL]H WKH HI�
¿FDF\ RI UHODWLYH WR D FRPSDUDWRU
VHTXHQFH XVLQJ D FRQFHSW FDOOHG
regret� ZKLFK PHDVXUHV WKH GLIIHUHQFH RI WKH WRWDO DFFXPXODWHG
ORVV RI WKH )RUHFDVWHU ZLWK WKH WRWDO DFFXPXODWHG ORVV RI WKH FRP�
SDUDWRU�
Definition 1 (Regret): 7KH regret RI ZLWK UHVSHFW WR D FRP�

SDUDWRU LV

1RWLFH WKDW WKLV GH¿QLWLRQ RI UHJUHW LV YHU\ JHQHUDO DQG VLPSO\
PHDVXUHV WKH SHUIRUPDQFH RI DQ DOJRULWKP YHUVXV DQ DUELWUDU\
VHTXHQFH � :H DUH SDUWLFXODUO\ LQWHUHVWHG LQ FRPSDUDWRUV
ZKLFK FRUUHVSRQG WR WKH RXWSXW RI D batch DOJRULWKP �ZLWK DF�
FHVV WR DOO WKH GDWD VLPXOWDQHRXVO\� WKDW LV WRR FRPSXWDWLRQDOO\
FRPSOH[ RU PHPRU\�LQWHQVLYH IRU SUDFWLFDO ELJ GDWD DQDO\VLV
SUREOHPV� ,Q WKLV VHQVH� UHJUHW HQFDSVXODWHV KRZ PXFK RQH
UHJUHWV ZRUNLQJ LQ DQ RQOLQH VHWWLQJ DV RSSRVHG WR D EDWFK
VHWWLQJ ZLWK IXOO NQRZOHGJH RI SDVW DQG IXWXUH REVHUYDWLRQV�
0XFK RI WKH RQOLQH OHDUQLQJ OLWHUDWXUH LV IRFXVHG RQ DO�

JRULWKPV ZLWK JXDUDQWHHG VXEOLQHDU UHJUHW �e.g.,
� LQ WKH VSHFLDO FDVH ZKHUH WKH FRPSDUDWRU LV FRQ�

VWUDLQHG VR WKDW � 8QIRUWXQDWHO\� WKLV LV
D KLJKO\ XQUHDOLVWLF FRQVWUDLQW LQ PRVW SUDFWLFDO VWUHDPLQJ ELJ
GDWD VHWWLQJV� 7KH SDUDPHWHUV FRXOG FRUUHVSRQG WR IUDPHV LQ
D YLGHR RU WKH ZHLJKWV RI HGJHV LQ D G\QDPLF QHWZRUN DQG E\
QDWXUH DUH KLJKO\ YDULDEOH�
7KLV SDSHU IRFXVHV PRUH JHQHUDOO\ RQ DUELWUDU\ FRPSDUDWRU

VHTXHQFHV DQG VKRZV KRZ WKH UHJUHW VFDOHV DV D IXQFWLRQ RI
WKH WHPSRUDO YDULDELOLW\ LQ WKDW FRPSDUDWRU� 7KLV LGHD LV W\SLFDOO\
UHIHUUHG WR DV ³WUDFNLQJ´ RU ³VKLIWLQJ´ UHJUHW >��@� >��@� ZKLFK LV
FORVHO\�UHODWHG WR ³DGDSWLYH´ UHJUHW >��@� >��@� ([LVWLQJ PHWKRGV
JXDUDQWHH VXEOLQHDU UHJUHW IRU DOO ZKLFK GR QRW YDU\ DW DOO RYHU
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PHDVXUHV LWV SUHGLFWLYH SHUIRUPDQFH DFFRUGLQJ WR D FRQYH[ ORVV
IXQFWLRQ� DQG ZLWK HDFK QHZ REVHUYDWLRQ LW FRPSXWHV WKH QHJD�
WLYH JUDGLHQW RI WKH ORVV DQG VKLIWV LWV SUHGLFWLRQ LQ WKDW GLUHFWLRQ�
6WRFKDVWLF JUDGLHQW GHVFHQW PHWKRGV VWHP IURP VLPLODU SULQFL�
SOHV DQG KDYH EHHQ VWXGLHG IRU GHFDGHV� EXW UHFHQW WHFKQLFDO
EUHDNWKURXJKV DOORZ WKHVH DSSURDFKHV WR EH XQGHUVWRRG ZLWKRXW
VWURQJ VWRFKDVWLF DVVXPSWLRQV RQ WKH GDWD� HYHQ LQ DGYHUVDULDO
VHWWLQJV� OHDGLQJ WR PRUH HI¿FLHQW DQG UDSLGO\ FRQYHUJLQJ DOJR�
ULWKPV LQ PDQ\ VHWWLQJV�
7KLV SDSHU GHVFULEHV D QRYHO IUDPHZRUN IRU SUHGLFWLRQ LQ

WKH LQGLYLGXDO VHTXHQFH VHWWLQJ ZKLFK LQFRUSRUDWHV G\QDPLFDO
PRGHOV²HIIHFWLYHO\ D QRYHO FRPELQDWLRQ RI VWDWH XSGDWLQJ
IURP VWRFKDVWLF ¿OWHU WKHRU\ DQG RQOLQH FRQYH[ RSWLPL]DWLRQ
IURP XQLYHUVDO SUHGLFWLRQ� :H HVWDEOLVK WUDFNLQJ UHJUHW ERXQGV
IRU RXU SURSRVHG DOJRULWKP� Dynamic Mirror Descent (DMD)�
ZKLFK FKDUDFWHUL]H KRZ ZHOO ZH SHUIRUP UHODWLYH WR VRPH
DOWHUQDWLYH DSSURDFK �e.g., D FRPSXWDWLRQDOO\ LQWUDFWDEOH EDWFK
DOJRULWKP� RSHUDWLQJ RQ WKH VDPH GDWD WR JHQHUDWH LWV RZQ
SUHGLFWLRQV� FDOOHG D ³FRPSDUDWRU VHTXHQFH�´ 2XU QRYHO UHJUHW
ERXQGV VFDOH ZLWK WKH GHYLDWLRQ RI WKLV FRPSDUDWRU VHTXHQFH
IURP D G\QDPLFDO PRGHO� 7KHVH ERXQGV VLPSOLI\ WR SUHYLRXVO\
VKRZQ ERXQGV ZKHQ WKHUH DUH QR G\QDPLFV� ,Q DGGLWLRQ� ZH
GHVFULEH PHWKRGV EDVHG RQ '0' IRU DGDSWLQJ WR WKH EHVW
G\QDPLFDO PRGHO IURP HLWKHU D ¿QLWH RU SDUDPHWULF FODVV RI
FDQGLGDWH PRGHOV� ,Q WKHVH VHWWLQJV� ZH HVWDEOLVK WUDFNLQJ
UHJUHW ERXQGV ZKLFK VFDOH ZLWK WKH GHYLDWLRQ RI D FRPSDUDWRU
VHTXHQFH IURP WKH best sequence RI G\QDPLFDO PRGHOV�
:KLOH RXU PHWKRGV DQG WKHRU\ DSSO\ LQ D EURDG UDQJH RI VHW�
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A. Organization of Paper and Main Contributions

7KH UHPDLQGHU RI WKLV SDSHU LV VWUXFWXUHG DV IROORZV� ,Q
6HFWLRQ ,,� ZH IRUPXODWH WKH SUREOHP DQG LQWURGXFH QRWDWLRQ
XVHG WKURXJKRXW WKH SDSHU� DQG 6HFWLRQ ,,, LQWURGXFHV WKH
Dynamic Mirror Descent (DMD) PHWKRG� DQG JLYHV EULHI
FRPSDULVRQ WR H[LVWLQJ PHWKRGV� DORQJ ZLWK QRYHO WUDFNLQJ
UHJUHW ERXQGV� 7KLV VHFWLRQ DOVR GHVFULEHV WKH DSSOLFDWLRQ RI
GDWD�GHSHQGHQW G\QDPLFDO PRGHOV DQG WKHLU FRQQHFWLRQ WR UH�
FHQW ZRUN RQ RQOLQH OHDUQLQJ ZLWK SUHGLFWDEOH VHTXHQFHV� '0'
XVHV RQO\ D VLQJOH VHULHV RI G\QDPLFDO PRGHOV� EXW ZH FDQ XVH
LW WR FKRRVH DPRQJ D IDPLO\ RI FDQGLGDWH G\QDPLFDO PRGHOV�
7KLV LV GHVFULEHG IRU ¿QLWH IDPLOLHV LQ 6HFWLRQ ,9 XVLQJ D ¿[HG
VKDUH DOJRULWKP� DQG IRU SDUDPHWULF IDPLOLHV LQ 6HFWLRQ 9�
6HFWLRQ 9, VKRZV H[SHULPHQWDO UHVXOWV RI RXU PHWKRGV LQ D
YDULHW\ RI FRQWH[WV UDQJLQJ IURP LPDJLQJ WR VHOI�H[FLWLQJ SRLQW
SURFHVVHV� )LQDOO\� 6HFWLRQ 9,, PDNHV FRQFOXGLQJ UHPDUNV
ZKLOH SURRIV DUH UHOHJDWHG WR $SSHQGL[ $�
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7KH SUREOHP RI VHTXHQWLDO SUHGLFWLRQ LV SRVHG DV DQ LWHUDWLYH
JDPH EHWZHHQ D )RUHFDVWHU DQG WKH (QYLURQPHQW� $W HYHU\ WLPH
SRLQW� � WKH )RUHFDVWHU JHQHUDWHV D SUHGLFWLRQ IURP D ERXQGHG�
FORVHG� FRQYH[ VHW � $IWHU WKH )RUHFDVWHU PDNHV D SUH�
GLFWLRQ� WKH (QYLURQPHQW UHYHDOV WKH ORVV IXQFWLRQ ZKHUH
LV D FRQYH[ IXQFWLRQ ZKLFK PDSV WKH VSDFH WR WKH UHDO QXPEHU
OLQH� :H ZLOO DVVXPH WKDW WKH ORVV IXQFWLRQ LV WKH FRPSRVLWLRQ
RI D FRQYH[ IXQFWLRQ IURP WKH (QYLURQPHQW DQG
D FRQYH[ UHJXODUL]DWLRQ IXQFWLRQ ZKLFK GRHV QRW
FKDQJH RYHU WLPH� )UHTXHQWO\ WKH ORVV IXQFWLRQ� ZLOO PHDVXUH
WKH DFFXUDF\ RI D SUHGLFWLRQ FRPSDUHG WR VRPH QHZ GDWD SRLQW

ZKHUH LV WKH GRPDLQ RI SRVVLEOH REVHUYDWLRQV� 7KH UHJ�
XODUL]DWLRQ IXQFWLRQ SURPRWHV ORZ�GLPHQVLRQDO VWUXFWXUH �VXFK
DV VSDUVLW\� ZLWKLQ WKH SUHGLFWLRQV� :H DGGLWLRQDOO\ DVVXPH WKDW
ZH FDQ FRPSXWH D VXEJUDGLHQW RI RU DW DQ\ SRLQW �
ZKLFK ZH GHQRWH DQG � 7KXV WKH )RUHFDVWHU LQFXUV WKH
ORVV �
7KH JRDO RI WKH )RUHFDVWHU LV WR FUHDWH D VHTXHQFH RI SUHGLF�

WLRQV WKDW KDV D ORZ FXPXODWLYH ORVV �
%HFDXVH WKH ORVV IXQFWLRQV DUH EHLQJ UHYHDOHG VHTXHQWLDOO\� WKH
SUHGLFWLRQ DW HDFK WLPH FDQ RQO\ EH D IXQFWLRQ RI DOO SUHYLRXVO\
UHYHDOHG ORVVHV WR HQVXUH FDXVDOLW\� 7KXV� WKH WDVN IDFLQJ WKH
)RUHFDVWHU LV WR FUHDWH D QHZ SUHGLFWLRQ� � EDVHG RQ WKH SUH�
YLRXV SUHGLFWLRQ DQG WKH QHZ ORVV IXQFWLRQ � ZLWK WKH JRDO
RI PLQLPL]LQJ ORVV DW WKH QH[W WLPH VWHS� :H FKDUDFWHUL]H WKH HI�
¿FDF\ RI UHODWLYH WR D FRPSDUDWRU
VHTXHQFH XVLQJ D FRQFHSW FDOOHG
regret� ZKLFK PHDVXUHV WKH GLIIHUHQFH RI WKH WRWDO DFFXPXODWHG
ORVV RI WKH )RUHFDVWHU ZLWK WKH WRWDO DFFXPXODWHG ORVV RI WKH FRP�
SDUDWRU�
Definition 1 (Regret): 7KH regret RI ZLWK UHVSHFW WR D FRP�

SDUDWRU LV

1RWLFH WKDW WKLV GH¿QLWLRQ RI UHJUHW LV YHU\ JHQHUDO DQG VLPSO\
PHDVXUHV WKH SHUIRUPDQFH RI DQ DOJRULWKP YHUVXV DQ DUELWUDU\
VHTXHQFH � :H DUH SDUWLFXODUO\ LQWHUHVWHG LQ FRPSDUDWRUV
ZKLFK FRUUHVSRQG WR WKH RXWSXW RI D batch DOJRULWKP �ZLWK DF�
FHVV WR DOO WKH GDWD VLPXOWDQHRXVO\� WKDW LV WRR FRPSXWDWLRQDOO\
FRPSOH[ RU PHPRU\�LQWHQVLYH IRU SUDFWLFDO ELJ GDWD DQDO\VLV
SUREOHPV� ,Q WKLV VHQVH� UHJUHW HQFDSVXODWHV KRZ PXFK RQH
UHJUHWV ZRUNLQJ LQ DQ RQOLQH VHWWLQJ DV RSSRVHG WR D EDWFK
VHWWLQJ ZLWK IXOO NQRZOHGJH RI SDVW DQG IXWXUH REVHUYDWLRQV�
0XFK RI WKH RQOLQH OHDUQLQJ OLWHUDWXUH LV IRFXVHG RQ DO�

JRULWKPV ZLWK JXDUDQWHHG VXEOLQHDU UHJUHW �e.g.,
� LQ WKH VSHFLDO FDVH ZKHUH WKH FRPSDUDWRU LV FRQ�

VWUDLQHG VR WKDW � 8QIRUWXQDWHO\� WKLV LV
D KLJKO\ XQUHDOLVWLF FRQVWUDLQW LQ PRVW SUDFWLFDO VWUHDPLQJ ELJ
GDWD VHWWLQJV� 7KH SDUDPHWHUV FRXOG FRUUHVSRQG WR IUDPHV LQ
D YLGHR RU WKH ZHLJKWV RI HGJHV LQ D G\QDPLF QHWZRUN DQG E\
QDWXUH DUH KLJKO\ YDULDEOH�
7KLV SDSHU IRFXVHV PRUH JHQHUDOO\ RQ DUELWUDU\ FRPSDUDWRU

VHTXHQFHV DQG VKRZV KRZ WKH UHJUHW VFDOHV DV D IXQFWLRQ RI
WKH WHPSRUDO YDULDELOLW\ LQ WKDW FRPSDUDWRU� 7KLV LGHD LV W\SLFDOO\
UHIHUUHG WR DV ³WUDFNLQJ´ RU ³VKLIWLQJ´ UHJUHW >��@� >��@� ZKLFK LV
FORVHO\�UHODWHG WR ³DGDSWLYH´ UHJUHW >��@� >��@� ([LVWLQJ PHWKRGV
JXDUDQWHH VXEOLQHDU UHJUHW IRU DOO ZKLFK GR QRW YDU\ DW DOO RYHU


