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What principles should we follow
when coordinating distributed energy
resources (DERs) to provide services to

the power grid?
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e Context —what does it mean to coordinate
DERs and how do we do it?

* My favorite DERs
e 7 Principles ... with examples!
e Concluding thoughts
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 DERs: distributed generation, storage, and
responsive loads

 DER coordination can provide a variety of services
to power systems
— Frequency regulation and other ancillary services
— Synthetic inertia and droop control

— Transmission/distribution network constraint
management, e.g., voltage control

— Load shifting for peak load management
— etc. etc.
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 Thousands of “small” (a few kW) devices
coordinated to provide frequency control
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 Thermostatically Controlled
Loads (TCLs) TCLs

— Refrigerators, water heaters, air conditioners,
space heaters

— On/Off control within a temperature dead-band
— Store thermal energy

* Existing, small-scale distributed batteries
e (Water pumping)
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DERs I’'m less fond of-...
* Commercial buildings
* Purpose-built storage

DERs | won’t talk much about (directly)
e Distributed solar and wind
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Principle 1: Use what

we’ve already got
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v But this is hard!
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* Need to coordinate A LOT of relatively small DERs

 Each DER has something it needs to do, e.g.,
— TCLs providing heating/cooling

— Distributed batteries powering cars, smoothing solar
photovoltaic power, etc.

and we must ensure it can still do it, while
additionally doing something for the grid



Principle 2: Don’t annoy
the consumers
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Principle 2: Don’t annoy
the consumers

without external control
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— Principle 2: Don’t annoy
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* Consumer privacy
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 Example A: [Mathieu, Koch, Callaway 2013]

A e Divide the dead-band into

m temperature intervals.

* Divide each temperature

R0, 0.0.0 58 0. A
N N N2 E Vo3 Non  Nol M interval into two bins.
2—+4 2—+3
Q
3 l * A Markov Transition Matrix
& Noin_ { Mo describes the movement of
l | 4 2 42 thousands of heterogenous
OFF v @@O- ‘OO TCLs around the dead-band.

* We can force the system to

—>
. consume:
normalized temperature ’ * less power
* more power
[Similar to that proposed by Lu & Chassin 2004; - Linear time varying

Lu et al. 2005; Bashash & Fathy 2011; Kundu et al. 2011] system model!
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P=I Control performance across different
¥/ — sensing/communication scenarios
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Scenario 1: Scenario 2: Scenario 3:
* Identify model with * |dentify model with * Model learned in real-time
historical data historical data * Estimate state from
e Measure/communicate ¢ Estimate state from substation power
state in real-time substation power measurements
measurements

0 0.5 1 0 0.5 1 0 0.5 1
Hours Hours Hours

How do we "measure” TCL aggregate power at the substation?
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 Example B: [Ledva, Balzano, Mathieu 2018]
A Netload measured at substation
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Possible methods

Short-term load (component) forecasting
— Doesn’t incorporate real-time feedback
* State estimation

— Linear techniques require linear system models
— Nonlinear techniques can be computationally demanding

* Online learning
— (Typically) data-driven, “model-free”

* Hybrid approach: Dynamic Fixed Share & Dynamic Mirror
Descent [Hall & Willet 2015]

— Admits dynamic models of arbitrary forms

— Optimization-based method to choose a weighted combination
of the estimates of a collection of models



p:L Problem Framework:
mamnreersesinonen— ()ffline Model Generation

| Physical Plant | Power System Entity
| Substation l
| 7 Feeder Demand |
| / Measurement | Model Bank
/ HiStOI‘y fOI‘ DFS
I IIIIIIIIIIIIIIIIII L | |
" 1
|[Commercial - TP Mode
- arameters

Load —O

Model Creation

27¢
O

Weather-Related f
Measurement History |

9/27/18 J. Mathieu, University of Michigan



Problem Framework:
Real-time Estimation

Individual Predictions
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‘fif’ P_L Dynamic Mirror Descent

1 NS — [Hall & Willet 2015]

For each model m we compute
1. an observation-based update

~

0" = aregergin n’ <V€t(§tm), 9> + D ((9”5%”)

where /,(6;") is a convex loss function and D is a
Bregman divergence function

2. a model-based update
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3. Next, we update the weight of each model

A F(1- ) w;" exp (—UT Cy (@m»

m _
Wiy = J\mdl mdl

>im wi exp (—77"“ by (55 ))
4. and compute the overall estimate.
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Load models
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e 29 aggregate air conditioning load (AC) models
* 6 “other load” (OL) model

e 1 ACmodel +1 OL model =1 total load model
—> 174 total load models
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e Residential load and weather data from Pecan
Street Dataport (Austin, TX)

e Commercial load data from Pacific Gas &
Electric Company; weather data from NOAA
(Bay Area, CA)

* GridLab-D feeder used to size the load



V== Case study benchmark
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Total load measurement

“Other load” prediction

AC load pseudo-measurement

—— | Time-varying Kalman Filter (using LTV model)
lAC load estimate

 Each “other load” model + LTV AC model combination
is used to compute one AC load estimate.

 We obtain the estimates from all Kalman filters and
compute the a posteriori best and average results.



Active Power Demand (MW)

Example results
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* average KF 214 kW
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—— Back to the principles...
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e “Estimation and learning is all well and good
but your control approach still uses comm!”

— From the aggregator to the loads (control input)
— From the substation to the aggregator (output)

e Do we need communication?



P =| Principle 4: If you use comm, make
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with faulty comm
 Example C: [Ledva, Vrettos, Mastellone, Andersson, Mathieu 2018]
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* Estimation: Kalman filtering with
asynchronous measurements

— Estimator 1: Uses one Kalman filter per load

— Estimator 2: Uses individual load models for
predictions and a single Kalman filter

* Control: model predictive control using
knowledge of delay distributions and past
control inputs



TCLs tracking PJIM regulation signals
(20 second input delay, delayed state
measurements every 15 minutes)
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 Weather, people, ...

* Uncertain control responses
— Use feedback control

* Uncertain capacity: System operator’s
perspective

— Example D: [Vrakopoulou, Li, Mathieu (in press);
Li, Vrakopoulou, Mathieu (in press)]

* Uncertain capacity: Aggregator’s perspective
— Example E: [Mégel, Mathieu, Andersson 2015]
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M= Stochastic Optimal Power
TS == Flow with Uncertain Reserves

minimize generation costs + generator reserve costs
+ load reserve costs

subject to power flow equations wind
. . uncertainty
generation constraints
line constraints
controllable load constraints

load control
uncertainty

Decision variables: generator and load power set

points, generator and load reserve capacity,
participation factors
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AN A—— Storage Multitasking &
e N Aggregation

How much energy/power capacity should
be allocated to each local service
(individually) and to frequency regulation
(in aggregate)?

Methods: model predictive
control, stochastic dual
dynamic programming

J. Mathieu 35



—— Principle 6: Once you have a
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sy 0P Ulation of coordinated DERs,
do as much as you can with it

* Leverage multiple value streams
 Example F: [Yao, Molzahn, Mathieu 2017]

Demand response

Post-disturbance Inactive disturtﬁance -

Energy paybg

Stability Margin

Initial
Active disturbance

Power flow feasibility boundary (SSV = 0) * > (0) > (b > (2) gl



Improve Voltage Stability

e Objective: maximize the smallest singular value (SSV) of the
power flow Jacobian via spatial shifting of flexible load

e Constraint: total demand held constant over time to maintain

frequency stability

O

Method: Optimal power flow —
type formulation with singular
value sensitivities

Solution approach: Successive

linear programming

O

3 Load 1 $
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Loading changes in IEEE
118-Bus System
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Principle 7: Do no harm

* Network impacts: constraints, nonlinear dynamics

 Example G: [Ross, Vuylsteke, Mathieu (in press)]

Mean Standard Deviation in Voltage Total Range of Voltage

0.00 0.50 1.00 0.0 5.0 10.0 150 200

' Base Case M Regulation Case
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Voltage distributions
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Transformer Aging

10!} Base case
— Regulation case

[—
-
e}

Aging Rate
S

o
<
(\ 9

[
<
W

R1 R2 R3 R4 R5
Feeder

9/27/18 J. Mathieu, University of Michigan 41



Summary

Use what we’ve already got
Don’t annoy the consumers

Minimize measurement & communication
requirements

If you use comm, make sure your approach
works even with faulty comm

Plan for uncertainty

. Once you have a population of coordinated
DERs, do as much as you can with it

Do no harm



== Concluding thoughts
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e This list isn’t exhaustive — regulatory, political,
practical, social issues...

* Some of these things might be controversial

 What’s our true goal here?
— Environment + health, economics, reliability

— |s DER coordination necessary? If so, how do we
do it right?



