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What principles should we follow 
when coordinating distributed energy 
resources (DERs) to provide services to 

the power grid?
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Outline

• Context – what does it mean to coordinate 
DERs and how do we do it?

• My favorite DERs
• 7 Principles … with examples!
• Concluding thoughts
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Challenges & Opportunities 
in Modern Power Systems

• Challenges
– Renewables
– Load growth 

(electrification)
– Aging system

• Opportunities
– More sensing and 

communications systems
– More controllable 

resources in the 
distribution network: 
DERs
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DER Coordination

• DERs: distributed generation, storage, and 
responsive loads

• DER coordination can provide a variety of services 
to power systems
– Frequency regulation and other ancillary services
– Synthetic inertia and droop control
– Transmission/distribution network constraint 

management, e.g., voltage control
– Load shifting for peak load management
– etc. etc.
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DER Coordination: This Talk

• Thousands of “small” (a few kW) devices 
coordinated to provide frequency control
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My Favorite DERs

• Thermostatically Controlled 
Loads (TCLs)

– Refrigerators, water heaters, air conditioners, 
space heaters

– On/Off control within a temperature dead-band
– Store thermal energy

• Existing, small-scale distributed batteries
• (Water pumping)
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Other DERs

DERs I’m less fond of…
• Commercial buildings
• Purpose-built storage

DERs I won’t talk much about (directly)
• Distributed solar and wind
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Principle 1: Use what 
we’ve already got
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But this is hard!

• Need to coordinate A LOT of relatively small DERs

• Each DER has something it needs to do, e.g., 
– TCLs providing heating/cooling
– Distributed batteries powering cars, smoothing solar 

photovoltaic power, etc.
and we must ensure it can still do it, while  
additionally doing something for the grid
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Principle 2: Don’t annoy 
the consumers

• Contracts, not prices 
to devices (or 
transactive energy?)
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Principle 2: Don’t annoy 
the consumers

• Nondisruptive control
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Principle 2: Don’t annoy 
the consumers

• Consumer privacy
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Principle 3: Minimize measurement 

& communication requirements

• Example A: [Mathieu, Koch, Callaway 2013]
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[Similar to that proposed by Lu & Chassin 2004;

Lu et al. 2005; Bashash & Fathy 2011; Kundu et al. 2011]

• Divide the dead-band into 

temperature intervals.

• Divide each temperature 

interval into two bins.

• A Markov Transition Matrix 

describes the movement of 

thousands of heterogenous
TCLs around the dead-band.

•We can force the system to 

consume:

• less power

•more power

à Linear time varying 

system model!



Probabilistic Control via 
Broadcasts

15
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Control performance across different 
sensing/communication scenarios
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Scenario 1:
• Identify model with 

historical data
• Measure/communicate 

state in real-time

Hours Hours

Scenario 2:
• Identify model with 

historical data
• Estimate state from 

substation power 
measurements

Scenario 3:
• Model learned in real-time
• Estimate state from 

substation power  
measurements

How do we ”measure” TCL aggregate power at the substation?



Principle 3: Minimize measurement 

& communication requirements

• Example B: [Ledva, Balzano, Mathieu 2018]
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Possible methods

• Short-term load (component) forecasting
– Doesn’t incorporate real-time feedback

• State estimation 
– Linear techniques require linear system models
– Nonlinear techniques can be computationally demanding

• Online learning
– (Typically) data-driven, “model-free”

• Hybrid approach: Dynamic Fixed Share & Dynamic Mirror 
Descent [Hall & Willet 2015]
– Admits dynamic models of arbitrary forms
– Optimization-based method to choose a weighted combination 

of the estimates of a collection of models 

9/27/18 J. Mathieu, University of Michigan 18



Problem Framework:
Offline Model Generation
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Problem Framework:
Real-time Estimation
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Dynamic Mirror Descent
[Hall & Willet 2015]

For each model m we compute

1. an observation-based update

where is a convex loss function and D is a 
Bregman divergence function

2. a model-based update
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Fig. 4. Examples AC demand and several AC demand model predictions.

the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature T

m and has the form

bxLTI,m
t+1 =A

LTI,m bxLTI,m
t (4)

byAC,LTI,m
t = C

LTI,m bxLTI,m
t , (5)

with m 2 MLTI
= {1, . . . , NLTI}. The state vector bxLTI,m

t 2
RN x⇥1 consists of the portion of the air conditioners within
each of N

x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x

= 2. The state
transition matrix, ALTI,m 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix C

LTI,m estimates
the AC demand byAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m

= N

ac
P

m ⇥
0 1

⇤
, where

P

m
is a parameter approximating of the average power draw

of air conditioners drawing power and N

ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
N

LTI evenly spaced temperatures T temps
=

�
T

min
, . . . , T

max
 

and denote the m-th temperature of the set as T

m. The dif-
ference between successive temperatures T

m and T

m+1 is
�T . Matrices A

LTI,m and C

LTI,m are constructed using power
demand signals from each air conditioner corresponding to
periods when T

m � �T
2  T

TX
t�⌧ l < T

m
+

�T
2 . Some

heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P

m
is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries in A

LTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} �F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first �AC,LTV1

uses the delayed temperature and has the form

bxLTV1
t+1 =A

LTV1
t bxLTV1

t (6)

byAC,LTV1
t = C

LTV1
t bxLTV1

t , (7)

where A

LTV1
t and C

LTV1
t are generated by linearly interpolating

the matrix entries based on T

TX
t�⌧ l . The second �

AC,LTV2 uses a
moving average of the past temperature over ⌧w time-steps to
generate the prediction byAC,LTV2

t . We chose ⌧w to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm
The objective of DFS is to form an estimate b

✓t 2 ⇥ of the
dynamic system parameter ✓t 2 ⇥ at each discrete time-step t

where ⇥ ⇢ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt 2 Y at each time-step after the prediction has been formed,
where Y ⇢ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where ✓t is the system state.

DFS uses a set of N

mdl models defined as Mmdl
=

{1, . . . , Nmdl} to generate the estimate b
✓t. To do this, DFS

applies the DMD algorithm to each model, forming predictions
b
✓

m
t for each m 2 Mmdl. DMD is executed in two steps

(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate b

✓t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]
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the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature T

m and has the form

bxLTI,m
t+1 =A

LTI,m bxLTI,m
t (4)

byAC,LTI,m
t = C

LTI,m bxLTI,m
t , (5)

with m 2 MLTI
= {1, . . . , NLTI}. The state vector bxLTI,m

t 2
RN x⇥1 consists of the portion of the air conditioners within
each of N

x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x

= 2. The state
transition matrix, ALTI,m 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix C

LTI,m estimates
the AC demand byAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m
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ac
P

m ⇥
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, where

P

m
is a parameter approximating of the average power draw

of air conditioners drawing power and N

ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
N

LTI evenly spaced temperatures T temps
=
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T
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and denote the m-th temperature of the set as T

m. The dif-
ference between successive temperatures T

m and T

m+1 is
�T . Matrices A

LTI,m and C

LTI,m are constructed using power
demand signals from each air conditioner corresponding to
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heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P
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is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries in A

LTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} �F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first �AC,LTV1

uses the delayed temperature and has the form
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t (6)
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where A
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t are generated by linearly interpolating

the matrix entries based on T
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AC,LTV2 uses a
moving average of the past temperature over ⌧w time-steps to
generate the prediction byAC,LTV2

t . We chose ⌧w to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm
The objective of DFS is to form an estimate b

✓t 2 ⇥ of the
dynamic system parameter ✓t 2 ⇥ at each discrete time-step t

where ⇥ ⇢ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt 2 Y at each time-step after the prediction has been formed,
where Y ⇢ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where ✓t is the system state.

DFS uses a set of N

mdl models defined as Mmdl
=

{1, . . . , Nmdl} to generate the estimate b
✓t. To do this, DFS

applies the DMD algorithm to each model, forming predictions
b
✓

m
t for each m 2 Mmdl. DMD is executed in two steps

(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate b

✓t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]

e
✓

m
t = argmin

✓2⇥
⌘

s
D
r`t(

b
✓

m
t ), ✓

E
+D

⇣
✓kb✓mt

⌘
(8)

b
✓

m
t+1 =�

m
(

e
✓

m
t ) (9)

w

m
t+1 =

�

N

mdl + (1� �)

w

m
t exp

⇣
�⌘

r
`t

⇣
b
✓

m
t

⌘⌘

PNmdl

j=1 w

j
t exp

⇣
�⌘

r
`t

⇣
b
✓

j
t

⌘⌘ (10)

0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2018.2800535, IEEE
Transactions on Power Systems

LEDVA et al.: REAL-TIME ENERGY DISAGGREGATION OF A DISTRIBUTION FEEDER’S DEMAND USING ONLINE LEARNING 5

12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM
0

2

4

6

A
ct

iv
e

Po
w

er
D

em
an

d
(M

W
)

yAC
t byAC,LTV1

t byAC,LTV2
t byAC,MLR

t

Fig. 4. Examples AC demand and several AC demand model predictions.

the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature T

m and has the form

bxLTI,m
t+1 =A

LTI,m bxLTI,m
t (4)

byAC,LTI,m
t = C

LTI,m bxLTI,m
t , (5)

with m 2 MLTI
= {1, . . . , NLTI}. The state vector bxLTI,m

t 2
RN x⇥1 consists of the portion of the air conditioners within
each of N

x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x

= 2. The state
transition matrix, ALTI,m 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix C

LTI,m estimates
the AC demand byAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m

= N

ac
P

m ⇥
0 1

⇤
, where

P

m
is a parameter approximating of the average power draw

of air conditioners drawing power and N

ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
N

LTI evenly spaced temperatures T temps
=

�
T

min
, . . . , T

max
 

and denote the m-th temperature of the set as T

m. The dif-
ference between successive temperatures T

m and T

m+1 is
�T . Matrices A

LTI,m and C

LTI,m are constructed using power
demand signals from each air conditioner corresponding to
periods when T

m � �T
2  T

TX
t�⌧ l < T

m
+

�T
2 . Some

heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P

m
is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries in A

LTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} �F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first �AC,LTV1

uses the delayed temperature and has the form

bxLTV1
t+1 =A

LTV1
t bxLTV1

t (6)

byAC,LTV1
t = C

LTV1
t bxLTV1

t , (7)

where A

LTV1
t and C

LTV1
t are generated by linearly interpolating

the matrix entries based on T

TX
t�⌧ l . The second �

AC,LTV2 uses a
moving average of the past temperature over ⌧w time-steps to
generate the prediction byAC,LTV2

t . We chose ⌧w to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm
The objective of DFS is to form an estimate b

✓t 2 ⇥ of the
dynamic system parameter ✓t 2 ⇥ at each discrete time-step t

where ⇥ ⇢ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt 2 Y at each time-step after the prediction has been formed,
where Y ⇢ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where ✓t is the system state.

DFS uses a set of N

mdl models defined as Mmdl
=

{1, . . . , Nmdl} to generate the estimate b
✓t. To do this, DFS

applies the DMD algorithm to each model, forming predictions
b
✓

m
t for each m 2 Mmdl. DMD is executed in two steps

(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate b

✓t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]
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Dynamic Fixed Share
[Hall & Willet 2015]

3. Next, we update the weight of each model

4. and compute the overall estimate.
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the set captures the aggregate behavior of the population of air
conditioners at outdoor temperature T

m and has the form

bxLTI,m
t+1 =A

LTI,m bxLTI,m
t (4)

byAC,LTI,m
t = C

LTI,m bxLTI,m
t , (5)

with m 2 MLTI
= {1, . . . , NLTI}. The state vector bxLTI,m

t 2
RN x⇥1 consists of the portion of the air conditioners within
each of N

x discrete states. In this paper, we use one state to
represent the portion of air conditioners that are drawing power
and another to represent those that are not, i.e.,N x

= 2. The state
transition matrix, ALTI,m 2 RN x⇥N x

, is a transposed Markov
transition matrix. Its entries capture the probabilities that air
conditioners maintain their current state or transition to the other
state during the time-step. The output matrix C

LTI,m estimates
the AC demand byAC,LTI,m

t from the portion of air conditioners
that are drawing power, i.e., CLTI,m

= N

ac
P

m ⇥
0 1

⇤
, where

P

m
is a parameter approximating of the average power draw

of air conditioners drawing power and N

ac is the number of air
conditioners, which we assume is known.

To identifyALTI,m andCLTI,m for allm, we first define a set of
N

LTI evenly spaced temperatures T temps
=

�
T

min
, . . . , T

max
 

and denote the m-th temperature of the set as T

m. The dif-
ference between successive temperatures T

m and T

m+1 is
�T . Matrices A

LTI,m and C

LTI,m are constructed using power
demand signals from each air conditioner corresponding to
periods when T

m � �T
2  T

TX
t�⌧ l < T

m
+

�T
2 . Some

heuristics were used to exclude anomalous high or low power
demand measurements. Parameter P

m
is set as the average

power draw of air conditioners that are drawing power. The
four entries of ALTI,m were determined by checking whether an
air conditioner 1) started drawing power, 2) stopped drawing
power, 3) continued to draw power, or 4) continued to not draw
power during each time-step. The occurrences for each case
were counted for every air conditioner at every time-step and
the totals were placed into their respective entries in A

LTI,m, and
then each column was normalized so that the sum of the column
entries was 1. In our case studies, we construct an LTI model
for each integer temperature in the set {74, . . . , 99} �F. If the
outdoor temperature lies outside of this range, we use the model
corresponding to the closest temperature.

3) LTV Models: We use two LTV models. The first �AC,LTV1

uses the delayed temperature and has the form

bxLTV1
t+1 =A

LTV1
t bxLTV1

t (6)

byAC,LTV1
t = C

LTV1
t bxLTV1

t , (7)

where A

LTV1
t and C

LTV1
t are generated by linearly interpolating

the matrix entries based on T

TX
t�⌧ l . The second �

AC,LTV2 uses a
moving average of the past temperature over ⌧w time-steps to
generate the prediction byAC,LTV2

t . We chose ⌧w to be the value that
maximizes the cross correlation between the historical moving
average temperature and the historical AC demand signal (270
min for our plant). When evaluating either LTV model, if the
temperature lies outside of the range used to generate the model,
we extrapolate using the difference between the nearest two
models.

VI. ONLINE LEARNING ALGORITHM

In this section, we first summarize the DFS algorithm devel-
oped in [8] and then describe two algorithm implementations,
one inspired by DFS and one a direct implementation of it.
DFS incorporates DMD, also developed in [8], into the Fixed
Share algorithm originally developed in [27]. The Fixed Share
algorithm combines a set of predictions that are generated by
independent experts, e.g., models, into an estimate of the system
parameter using the experts’ historical accuracy with respect to
observations of the system. DMD extends the traditional online
learning framework by incorporating dynamic models, enabling
the estimation of time-varying system parameters (or states).
DFS uses DMD, applied independently to each of the models,
as the experts within the Fixed Share algorithm.

A. The DFS Algorithm
The objective of DFS is to form an estimate b

✓t 2 ⇥ of the
dynamic system parameter ✓t 2 ⇥ at each discrete time-step t

where ⇥ ⇢ Rp is a bounded, closed, convex feasible set. The
underlying system produces observations, i.e., measurements,
yt 2 Y at each time-step after the prediction has been formed,
where Y ⇢ Rq is the domain of the measurements. From
a control systems perspective, this is equivalent to a state
estimation problem where ✓t is the system state.

DFS uses a set of N

mdl models defined as Mmdl
=

{1, . . . , Nmdl} to generate the estimate b
✓t. To do this, DFS

applies the DMD algorithm to each model, forming predictions
b
✓

m
t for each m 2 Mmdl. DMD is executed in two steps

(similar to a discrete-time Kalman filter): 1) an observation-
based update incorporates the new measurement into the pa-
rameter prediction, and 2) a model-based update advances the
parameter prediction to the next time-step. DFS then uses the
Fixed Share algorithm to form the estimate b

✓t as a weighted
combination of the individual model’s DMD-based predictions.
A weighting algorithm computes the weights based on each
model’s historical accuracy with respect to the observations yt.
Models that perform poorly have less influence on the overall
estimate. The DFS algorithm is [8]
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for each m 2 Mmdl, and
b
✓t+1 =

X

m2Mmdl

w

m
t+1

b
✓

m
t+1, (11)

where each term is defined below. DMD is applied to each model
in (8) and (9) to form the expert predictions, where (8) is a
convex program that constructs the measurement-based update
to the previous prediction and (9) is the model-based advance-
ment of the adjusted prediction. The Fixed Share algorithm
consists of (10) and (11), where (10) computes the weights
and (11) computes the estimate as a weighted combination of
the individual experts’ estimates. We note that the Fixed Share
algorithm’s updates are independent of the dynamics and only
use the experts’ predictions and their resulting losses.

In (8), we minimize over the variable ✓, ⌘s
> 0 is a step-

size parameter, and h·, ·i is the standard dot product. The
value r`t(

b
✓t) is a subgradient of the convex loss function

`t : ⇥ ! R, which penalizes the error between the predicted
and observed values yt using a known, possibly time-varying,
function ht : ⇥ ! Y that maps ✓t to an observation, i.e.,
yt = ht(✓t), to form predictions of the measurements. An
example loss function is `t(

b
✓t) = kCb

✓t � ytk22 where the
matrix C is ht(·). In (9), the function �

m
(·) applies model m

to advance the adjusted estimate e
✓

m
t in time. Each �

m
(·) can

have arbitrary form and time-varying parameters. In (10), the
weight associated with model m at time-step t is wm

t , � 2 (0, 1)

determines the amount of weight that is shared amongst models,
and ⌘

r influences switching speed. The weight for model m is
based on the loss of each model and the total loss of all models.
The term ⌘

shr`t(
b
✓t), ✓i captures the alignment of the variable

✓ with the positive gradient of `t(
b
✓t). To minimize this term

alone, we would choose ✓ to be exactly aligned with the negative
gradient direction. The term D(✓kb✓t) is a Bregman divergence
that penalizes the deviation between the new variable ✓ and the
old variable b

✓t. For simplicity, we have excluded regularization
within (8), which DMD readily incorporates [8].

B. Algorithm Implementations
We next describe two algorithm implementations to update

the expert predictions. First, we describe an implementation that
uses the concept of DMD but it is not a direct implementation of
DMD. This method treats the models as black boxes and adjusts
only their output, i.e., the OL and AC demand predictions,
using the measured and predicted total feeder demand. Second,
we describe a direct implementation of DMD, which updates
the state xt of the LTI and LTV AC demand models. In the
following, the total demand model is �(·) = {�AC

(·),�OL
(·)}

where �

AC
(·) is an AC demand model and �

OL
(·) is an OL

demand model, with predictions byAC
t and byOL

t , respectively.
1) Update Method 1: The models used within this paper

have different underlying parameters, dynamic variables, and/or
structures, which makes it difficult to define a common ✓t across
all of the models used. Therefore, we develop a variation of the
DMD algorithm that adjusts the demand predictions directly,
rather than applying the updates to quantities influencing the
demand predictions. This allows us to include a diverse set of
models. Specifically, we modify the DMD formulation to

bt+1 = argmin
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E
+D (✓kbt) (12)

b
✓t+1 =�(

b
✓t) (13)

b
✓t+1 =

b
✓t+1 + bt+1. (14)

The AC and OL demand models generate their predictions
independently from one another, and so (14) can be rewritten as

b
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"
�

AC
(

b
✓t)

�

OL
(

b
✓t)

#
+ bt+1. (15)

The convex program (12) is now used to update a value bt

that accumulates the deviation between the predicted and actual
measurements. The model-based update (13) computes an open-
loop prediction

b
✓t+1, meaning that the measurements do not

influence
b
✓t+1. The measurement-based updates and model-

based, open-loop predictions are combined in (14). In contrast,
DMD uses a closed-loop model-based update where the convex
program adjusts the parameter estimate to e

✓t, which is used to
compute the next parameter estimate b

✓t+1.
In this method, we define ✓t as the AC and OL demand, i.e.,

✓t =

⇥
y

AC
t y

OL
t

⇤T. The mapping from the parameter to the
measurement is ht(✓t) = Ct✓t where the matrix Ct =

⇥
1 1

⇤
.

While the mapping and matrix are time-invariant, they may be
time-varying in Section VI-B2, and so we use the more general
notation. We choose the loss function as `t(b✓t) = 1

2kCt
b
✓t�ytk22

and the divergence asD(✓kbt) =
1
2k✓�btk22. We can then write

(12) in closed form as

bt+1 = bt + ⌘

s
C

T
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⇣
yt � Ct

b
✓t

⌘
. (16)

2) Update Method 2: This method applies only to dynamic
system models with dynamic states, i.e., in this paper the LTI
or LTV AC demand models, which have dynamic states xt. We
set ✓t =

⇥
x

T
t y

OL
t

⇤T, where xt is bxLTI,m
t in (4), bxLTV1

t in (6), or
bxLTV2
t in an update equation similar to (6). The mapping from the

parameter to the measurement is then Ct =

⇥
C

AC
t 1

⇤
where

C

AC
t is the output matrix of the LTI or LTV AC demand model,

i.e., CLTI,m, CLTV1
t , or C

LTV2
t . Defining the system parameter

in this way allows us to update the dynamic states of the LTI
and LTV AC demand models, rather than just the output as in
Update Method 1. The model-based update is then
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
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0 1

�
bt+1, (17)

where we update the AC demand model using the adjusted
parameter estimate, as in DMD. Because the OL demand models
do not include dynamic states, we continue to update their
estimates according to Update Method 1. We again use (16)
as the measurement-based update.

VII. CASE STUDIES

In this section, we define the scenarios, describe the bench-
mark, summarize the parameter settings, and present the results.
In [8], performance bounds for DMD and DFS were established
in terms of a quantity called regret. Regret is the total (or
cumulative) loss of an online learning algorithm’s prediction
sequence versus that of a comparator sequence, often a best-
in-hindsight offline algorithm. In [8], the DMD regret bound
uses a comparator that can take on an arbitrary sequence of
values from the feasible domain⇥. The DFS regret bound uses a



Load models

• 29 aggregate air conditioning load (AC) models
• 6 “other load” (OL) model 
• 1 AC model + 1 OL model = 1 total load model

à 174 total load models
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Case study data

• Residential load and weather data from Pecan 

Street Dataport (Austin, TX)

• Commercial load data from Pacific Gas & 

Electric Company; weather data from NOAA 

(Bay Area, CA)

• GridLab-D feeder used to size the load
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Case study benchmark

• Each “other load” model + LTV AC model combination 
is used to compute one AC load estimate.

• We obtain the estimates from all Kalman filters and 
compute the a posteriori best and average results.

9/27/18 J. Mathieu, University of Michigan 25

-
Total load measurement

“Other load” prediction

AC load pseudo-measurement

Time-varying Kalman Filter (using LTV model)

AC load estimate

u = 0



Example results
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• DFS/DMD   151 kW
• a posteriori best KF 177 kW
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Summary results
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Back to the principles…

• “Estimation and learning is all well and good 

but your control approach still uses comm!”

– From the aggregator to the loads (control input)

– From the substation to the aggregator (output)

• Do we need communication?

9/27/18 J. Mathieu, University of Michigan 28



Principle 4: If you use comm, make 
sure your approach works even 

with faulty comm
• Example C: [Ledva, Vrettos, Mastellone, Andersson, Mathieu 2018]
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Methods

• Estimation: Kalman filtering with 
asynchronous measurements
– Estimator 1: Uses one Kalman filter per load
– Estimator 2: Uses individual load models for 

predictions and a single Kalman filter
• Control: model predictive control using 

knowledge of delay distributions and past 
control inputs
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TCLs tracking PJM regulation signals
(20 second input delay, delayed state 

measurements every 15 minutes)
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Principle 5: Plan for uncertainty 

• Weather, people, …
• Uncertain control responses
– Use feedback control

• Uncertain capacity: System operator’s 
perspective
– Example D: [Vrakopoulou, Li, Mathieu (in press); 

Li, Vrakopoulou, Mathieu (in press)]
• Uncertain capacity: Aggregator’s perspective
– Example E: [Mégel, Mathieu, Andersson 2015]
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An uncertain and time-
varying thermal battery

1000 electric space heaters
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In planning problems, 
we have temperature 
forecast uncertainty

We also have 
uncertainty in this 
dimension!
• human behavior
• effect of past DR 
actions



Stochastic Optimal Power 
Flow with Uncertain Reserves

minimize generation costs + generator reserve costs  
+ load reserve costs

subject to power flow equations
generation constraints
line constraints
controllable load constraints 
…

Decision variables: generator and load power set 
points, generator and load reserve capacity, 
participation factors
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Storage Multitasking & 
Aggregation

J. Mathieu 35

How much energy/power capacity should 
be allocated to each local service 
(individually) and to frequency regulation 
(in aggregate)?
Methods: model predictive 
control, stochastic dual 
dynamic programming



Principle 6: Once you have a 
population of coordinated DERs, 

do as much as you can with it
• Leverage multiple value streams
• Example F: [Yao, Molzahn, Mathieu 2017]
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Using Demand Response to 
Improve Voltage Stability

• Objective: maximize the smallest singular value (SSV) of the 
power flow Jacobian via spatial shifting of flexible load

• Constraint: total demand held constant over time to maintain 
frequency stability
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Loading changes in IEEE 
118-Bus System 
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Principle 7: Do no harm

• Network impacts: constraints, nonlinear dynamics
• Example G: [Ross, Vuylsteke, Mathieu (in press)]
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Transformer Aging
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Summary

1. Use what we’ve already got
2. Don’t annoy the consumers
3. Minimize measurement & communication 

requirements
4. If you use comm, make sure your approach 

works even with faulty comm
5. Plan for uncertainty
6. Once you have a population of coordinated 

DERs, do as much as you can with it
7. Do no harm
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Concluding thoughts

• This list isn’t exhaustive – regulatory, political, 
practical, social issues…

• Some of these things might be controversial

• What’s our true goal here? 
– Environment + health, economics, reliability
– Is DER coordination necessary? If so, how do we 

do it right? 
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