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New nonlinear hyperbolic groups

Richard D. Canary, Matthew Stover and Konstantinos Tsouvalas

Abstract

We construct nonlinear hyperbolic groups which are large, torsion-free, one-ended, and admit
a finite K(π, 1). Our examples are built from superrigid cocompact rank one lattices via
amalgamated free products and HNN extensions.

1. Introduction

In this note, we construct new examples of nonlinear hyperbolic groups. For us, a group is
‘nonlinear’ if it does not admit a faithful representation into GLn(F ) for F any field. As with
previous constructions, our groups are built from superrigid cocompact lattices in rank 1 Lie
groups. Previous examples were quotients of such lattices, small cancellation theory was used to
show that the quotients are hyperbolic, and superrigidity results were used to see that they are
nonlinear (see M. Kapovich [11, § 8]). Our construction involves simple HNN extensions and
free products with amalgamation, and one can prove that the resulting groups are hyperbolic
using the Bestvina–Feighn combination theorem [2]. Our examples are large (that is, have finite
index subgroups that surject a free group of rank two), torsion-free, one-ended and admit a
finite K(π, 1).

Theorem 1.1. For any n � 0, there exist large, torsion-free, one-ended, nonlinear hyperbolic
groups that admit a finite K(π, 1), have first betti number n, and surject a free group of
rank n.

We present two related constructions, both of which begin with a cocompact torsion-free
lattice Γ in Sp(m, 1) (always with m � 2) or F(−20)

4 . As in M. Kapovich [11], our proofs
rely crucially on Corlette’s [4] and Gromov–Schoen’s [8] generalizations of the Margulis
superrigidity theorem to lattices in these groups. In what follows, let G be Sp(m, 1) or F(−20)

4

and X be the associated rank one symmetric space, that is, quaternionic hyperbolic m-space
or the Cayley hyperbolic plane.

In our first construction, we choose elements γ1 and γ2 of Γ associated with primitive closed
geodesics of different length in the locally symmetric space X/Γ. We consider the group Λ1

obtained by taking the HNN extension of Γ such that the stable letter conjugates γ1 to γ2,
that is,

Λ1 = 〈Γ, t | tγ1t
−1 = γ2〉.

We use superrigidity results to show that if Λ1 is linear, then it admits a faithful representation
ρ into GLn(R) and there is a totally geodesic embedding of X into the symmetric space Yn of
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GLn(R) which is equivariant with respect to the restriction ρ|Γ of ρ to Γ. Since the translation
lengths of ρ(γ1) and ρ(γ2) agree in Yn and f is totally geodesic, the translation lengths of γ1

and γ2 on X agree, which gives a contradiction. It follows that Λ1 is nonlinear. The Bestvina–
Feighn combination theorem [2] implies that Λ1 is hyperbolic, and it is clear that Λ1 has first
betti number 1, has the same cohomological dimension as Γ, admits a finite K(π, 1), and is
torsion-free. (In order to easily guarantee that Λ1 is large, we will choose γ1 and γ2 to be
elements of a normal, finite index subgroup of Γ of index at least 3.) We will see that it is easy
to iterate this construction to produce examples with arbitrarily large first betti number.

Our second construction involves amalgamated free products and produces examples with
first betti number zero. Let Δ = 〈α, β〉 be a malnormal, infinite index subgroup of Γ freely
generated by α and β. Let φ : Δ → Δ be an isomorphism such that the ratio of the translation
lengths of α and β is different than the ratio of the translation lengths of φ(α) and φ(β). We
then construct

Λ0 = Γ ∗φ Γ

from two copies of Γ by identifying Δ in the first copy with Δ in the second copy via the
isomorphism φ. We argue, as before, that if Λ0 is linear, then there is a representation ρ of
Λ0 into GLn(R) such that the restriction of ρ to each factor determines an equivariant totally
geodesic embedding of X into Yn. It follows that the ratio of the translation lengths of α and
β agrees with the ratios of the translation lengths of φ(α) and φ(β), which we have disallowed.
(In order to establish that Λ0 is large, we will also assume that Δ is contained in a normal
subgroup of Γ of finite index at least 3.)

We regard the main advantage of our new constructions to be their relative simplicity and
flexibility. For example, if one were given an explicit presentation of a superrigid lattice, one
could easily write down an explicit presentation of a group of the form Λ1.

The first published examples of nonlinear hyperbolic groups are due to M. Kapovich [11].
Gromov [7] used small cancellation theory to show that suitable quotients of a lattice Γ as
above are infinite hyperbolic groups (see also [3, 5, 12]), and then Kapovich used superrigidity
results to show that any linear representation of these quotients has finite image. In particular,
these examples have Property (T), since they are quotients of Property (T) groups. It follows
that these groups are not large and hence are not abstractly commensurable with our examples.

The paper is organized as follows. In § 2, we give the details of our constructions and
show that our groups have the claimed group-theoretic properties. In § 3, we recall the
necessary consequences of superrigidity for lattices in Sp(m, 1), m � 2, or F(−20)

4 . The proofs
of nonlinearity are given in § 4.

2. The constructions

In this section, we give the details of the constructions described in the Introduction and
establish the group-theoretic properties claimed there. Throughout this paper G, will be either
Sp(m, 1) for m � 2 or F(−20)

4 , so G acts by isometries on a rank one symmetric space X, which
is quaternionic hyperbolic m-space or the Cayley hyperbolic plane, respectively. Then Γ will
always denote a torsion-free cocompact lattice in G. In particular, Γ is hyperbolic, admits a
finite K(π, 1), H1(Γ,R) = 0, and the cohomological dimension of Γ is the dimension of X.

We first construct the examples with nontrivial first betti number. If n � 2, let {γ1, . . . , γ2n}
be primitive elements of Γ with distinct translation lengths. The associated geodesics in X/Γ
are distinct, so no nontrivial power of γi is conjugate to a power of γj for i �= j. We define

Λn = 〈Γ, t1, . . . , tn | tiγit−1
i = γi+n〉

to be obtained by repeated HNN extensions.
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In order to construct examples which are large and have betti number zero and one, we
observe that Γ contains a free, quasiconvex, malnormal subgroup Δ of rank two so that Δ
is contained in a finite index, normal subgroup N of Γ of index at least three. We first note
that, since Γ is residually finite, it contains a finite index, normal subgroup N of index at
least three. I. Kapovich [9, Theorem 6.7] showed that every non-elementary hyperbolic group
contains a malnormal quasiconvex subgroup which is free of rank two. Let F be a free malnormal
quasiconvex subgroup of Γ of rank two, and let D be a subgroup of F ∩N which is free of
rank two. Since every finitely generated subgroup of a free group is quasiconvex and F is
quasiconvex in Γ, we see that D is quasiconvex in Γ. Kapovich’s proof actually first constructs
a free quasiconvex subgroup of rank two and then shows that this subgroup contains a free
subgroup of rank two which is malnormal in the entire group. Therefore, D, and hence N ,
contains a subgroup Δ which is free of rank two and malnormal and quasiconvex in Γ.

Let γ1 and γ2 be generators of Δ with distinct translation length. Since Δ is malnormal in
Γ, no nontrivial power of γ1 is conjugate to a power of γ2. Let Λ1 be the HNN extension of Γ
given by

Λ1 = 〈Γ, t | tγ1t
−1 = γ2〉.

(If we do not require Λ1 to be large, it would suffice to choose γ1 and γ2 to be primitive elements
with distinct translation length as in the construction of Λn when n � 2.)

We now construct the examples with trivial first betti number. Let α and β generate Δ, and
let φ : Δ → Δ be an isomorphism such that the ratio of the translation lengths of α and β is
different than the ratio of the translation lengths of φ(α) and φ(β). We define

Λ0 = Γ ∗φ Γ

to be obtained from two copies of Γ by identifying Δ in the first copy with Δ in the second
copy via the isomorphism φ. (If we do not require that Λ0 is large, it would suffice to choose
Δ to be the malnormal, quasiconvex subgroup of Γ guaranteed by I. Kapovich [9].)

Proposition 2.1. For all n, a group Λn constructed as above is hyperbolic, torsion-free,
large, one-ended, has a finite K(π, 1), has first betti number n, and its cohomological dimension
is the dimension of X. Moreover, if n � 1, Λn admits a surjective homomorphism to the free
group Fn of rank n.

Proof. That Λn is torsion-free, one-ended, has a finite K(π, 1), has first betti number n, and
has cohomological dimension equal to the dimension of X follows from standard facts about
graphs of groups (see, for example, Serre [15, Chaper 1] or Scott–Wall [13]). If n � 1, then
Λn clearly surjects onto the group freely generated by {t1, . . . , tn}. The fact that each Λn is
hyperbolic is a special case of the Bestvina–Feighn combination theorem [2], which is explicitly
stated in I. Kapovich [10, Example 1.3] as follows:

Theorem 2.2. (1) If A and B are hyperbolic groups and C is a quasiconvex subgroup of
both A and B that is malnormal in either A or B, then A ∗C B is hyperbolic.

(2) If A is a hyperbolic group and a1 and a2 are elements of A so that no nontrivial power
of a1 is conjugate to a power of a2, the HNN extension

〈A, t | ta1t
−1 = a2〉

is hyperbolic.

Part (1) immediately implies that Λ0 is hyperbolic, while part (2) gives that Λn is hyperbolic
if n � 1. Also, notice that normal form for words in the HNN extension Λn−1 (see [15, § I.5])
implies we still have that no power of γn is conjugate to a power of γ2n in Λn−1.
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We remarked above that Λn is large for n � 2, so it remains to prove that Λ1 and Λ0 are
also large. Suppose that n = 1. There is a surjective homomorphism

p1 : Λ1 → H1 = Γ/N ∗ Z

given by projecting Γ onto Γ/N and taking t to the generator of Z. Let J be a finite index
subgroup of H1 which is isomorphic to a free group of rank at least two, which exists, since
Γ/N has order at least three. Then p−1

1 (J) is a finite index subgroup of Λ1 and p1 restricts to
a surjection of p−1

1 (J) onto J , so Λ1 is large.
We now consider Λ0. There exists a surjective homomorphism

p0 : Λ0 → H0 = Γ/N ∗ Γ/N

given by projecting the first factor of Λ0 to the first factor of H0 and the second factor of Λ0

to the second factor of H0. Notice that this is well defined since Δ has trivial image in both
factors. As above, H0 contains a finite index subgroup which is isomorphic to a free group of
rank at least two, so Λ0 is large. �

Remarks. (1) I. Kapovich [9] further uses a malnormal quasiconvex free subgroup of a word
hyperbolic group G to construct a hyperbolic group G∗ which contains G as a non-quasiconvex
subgroup. We note that G∗ is a quotient of a group of the form Λ2, obtained by identifying
the two stable letters, so if G is a superrigid rank one lattice then G∗ can be chosen to be
nonlinear.

(2) We expect that the techniques of Belegradek–Osin [1], which also begin with quotients of
superrigid lattices and employ more powerful small cancellation theoretic results, also produce
large, one-ended, nonlinear hyperbolic groups (in particular, see [1, Theorem 3.1]).

(3) It is clear that one can construct infinitely many isomorphism classes of groups of the
form Λn, for each n, even if one begins with a fixed superrigid lattice Γ. For example, if n � 1, it
follows readily from the JSJ theory for hyperbolic groups (see Sela [14]) that the isomorphism
type of a group of the form Λ1 is determined, up to finite ambiguity, by the conjugacy class of
the pair {γ1, γ2} in Γ.

3. Superrigidity

In this section, we record a version of the superrigidity theorem of Corlette [4] and Gromov–
Schoen [8] that is crafted for our purposes. In our statement Yn will denote the symmetric
space

Yn = Z O(n)\GLn(R) = PO(n)\PGLn(R)

associated with GLn(R), where Z denotes the center of GLn(R).

Theorem 3.1. Suppose that Γ is a lattice in G, where G is either Sp(m, 1) or F(−20)
4 , F is

a field of characteristic zero, and ρ : Γ → GLd(F ) is a representation with infinite image.

(1) There exists a faithful representation τ : GLd(F ) → GLn(R) for some n such that
τ ◦ ρ(Γ) has noncompact Zariski closure.

(2) If F = R and ρ(Γ) has noncompact Zariski closure in GLd(R), then there exists a ρ-
equivariant totally geodesic map

fρ : X → Yd,

where X = K\G is the symmetric space associated with G.
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Proof. Since Γ is finitely generated we may assume that F is isomorphic to a subfield
of C. Moreover, GLd(C) is a subgroup of GL2d(R). It follows that there exists an injective
representation η : GLd(F ) → GLn(R) for some n, so we may assume that the original
representation maps into GLn(R).

Fisher and Hitchman [6, Theorem 3.7] then observe that the existing results on superrigidity
imply that one can factor ρ as two representations

ρi : Γ → GLni
(R) ⊆ GLn(R)

such that

(1) when ρ1 is nontrivial, there is a group G′ locally isomorphic to G, a continuous
representation ρ̂1 : G′ → GLn1(R), and an embedding ι : Γ ↪→ G′ of Γ as a lattice in
G′ such that ρ1 = ρ̂1 ◦ ι;

(2) the image of ρ2 is bounded, that is, has compact Zariski closure;
(3) the groups ρ1(Γ) and ρ2(Γ) commute, and ρ(γ) = ρ1(γ)ρ2(γ) for all γ ∈ Γ.

If ρ1 is nontrivial, the continuous embedding ρ̂1 : G′ → GLn1(R) determines a totally geodesic
embedding of X into Yn1 , hence into Yn. Since ρ1 and ρ2 commute, this is a ρ-equivariant map.

When ρ1 is trivial, we follow arguments in the proof of [11, Theorem 8.1]. Note that our
use of [6, Theorem 3.7] allows us to know beforehand that the solvable radical considered in
[11] is trivial. As in [11], the fact that Γ has Property (T) allows us to conclude that we may
conjugate ρ so that ρ(Γ) ⊆ GLn(k) for some number field k. Given an element σ ∈ Aut(k/Q),
we can choose an extension of σ to an element of Aut(C/Q), which we continue to denote by
σ. Applying σ to matrix entries induces an embedding τσ : GLn(F ) → GLn(C).

Following the adelic argument in [11], if ρ(Γ) were bounded for every valuation of k then
ρ(Γ) would be finite, which is a contradiction. Moreover, ρ(Γ) must be bounded for every
nonarchimedean valuation by nonarchimedean superrigidity [8]. Consequently, there exists
σ ∈ Aut(k/Q) such that τσ(ρ(Γ)) has noncompact Zariski closure in GLn(R) or GL2n(R),
according to whether σ(k) ⊗σ R is R or C. Applying the previous argument to τσ ◦ ρ, there
is a (τσ ◦ ρ)-equivariant totally geodesic embedding of X into Yn or Y2n, accordingly. This
completes the sketch of the proof. �

M. Kapovich [11] also points out that superrigidity rules out faithful representations of Γ
into linear groups of fields of positive characteristic. Briefly, one shows that the image of ρ
lies in GLn(k) where k is a finite extension of Fp(x1, . . . , xn). Then, applying Gromov–Schoen
superrigidity [8] to each valuation of k associated with some x±1

i , one sees that ρ(Γ) is bounded
in each field associated with such a valuation on k, as all valuations on k are nonarchimedean.
It follows that ρ(Γ) is bounded and hence finite. Thus we have:

Proposition 3.2. If Γ is a lattice in either Sp(m, 1) or F(−20)
4 and F is a field of

characteristic p > 0, then there does not exist a faithful representation of Γ into GLn(F ) for
any n.

4. Proofs of nonlinearity

To complete the proof of Theorem 1.1, it remains to prove:

Theorem 4.1. Groups of the form Λn constructed in § 2 are nonlinear.

Proof. We begin with a group of the form

Λ1 = 〈Γ, t | tγ1t
−1 = γ2〉
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constructed in § 2, where Γ is a cocompact lattice in G and G is either Sp(m, 1) or F(−20)
4 .

Recall that X is the symmetric space associated with G and that γ1 and γ2 are assumed to
have different translation lengths on X.

Suppose that F is a field and η : Λ1 → GLd(F ) is a faithful representation. Applying
Proposition 3.2 to the restriction ρ = η|Γ of η to Γ, we conclude that F has characteristic
zero. Theorem 3.1 implies that there exists a faithful representation τσ : GLd(F ) → GLn(R),
for some n and a (τσ ◦ ρ)-equivariant totally geodesic embedding f of X into Yn, where Yn is
the symmetric space associated with GLn(R).

Since τσ(ρ(γ1)) is conjugate to τσ(ρ(γ2)) in τσ(η(Λ1)), and hence in GLn(R), they have
the same translation length on Yn. However, since f is a (τσ ◦ ρ)-equivariant totally geodesic
embedding, this implies that γ1 and γ2 have the same translation length in X, which is a
contradiction, hence Λ1 is nonlinear. Notice that if n � 2, then any group of the form Λn

constructed in § 2 contains a subgroup of the form Λ1, so Λn is also nonlinear.
Now suppose we have a group of the form

Λ0 = 〈Γ1,Γ2 | α1 = φ(α)2, β1 = φ(β)2〉
where each Γi is a copy of Γ, Δ = 〈α, β〉 is a subgroup of Γ freely generated by α and β,
Δi is the copy of Δ in Γi and if δ ∈ Δ, then δi is the copy of δ in Δi. Moreover, φ is an
automorphism of Δ so that the ratio of the translation lengths of α and β on X differs from
the ratio of translation lengths of φ(α) and φ(β) on X.

Suppose that F is a field and η : Λ0 → GLd(F ) is a faithful representation. Let ρ1 = η|Γ1

and ρ2 = η|Γ2 We again apply Proposition 3.2 to conclude that F has characteristic zero,
Theorem 3.1 implies that there exists a faithful representation τσ : GLd(F ) → GLn(R), for
some n and a (τσ ◦ ρ1)-equivariant embedding f of X into Yn, where Yn is the symmetric
space associated with GLn(R). Since τσ(ρ1(Δ1)) = τσ(ρ2(Δ2)) has noncompact Zariski closure,
Theorem 3.1 implies that there exists a (τσ ◦ ρ2)-equivariant embedding g of X into Yn. Notice
that τσ(ρ1(α1)) = τσ(ρ2(φ(α)2)) and that τσ(ρ1(β1)) = τσ(ρ2(φ(β)2)).

Since f and g are equivariant totally geodesic embeddings, there exist positive constants
c1 and c2 so that if γ ∈ Γ, then the ratio of the translation length of τσ(ρi(γi)) on Yn and
the translation length of γ on X is ci. Indeed, the metrics on f(X) and g(X) differ by a
scalar multiple. It follows that the ratio of the translation lengths of α and β on X agrees
with the ratio of the translation lengths of φ(α) and φ(β) on X. However, this contradicts our
assumptions, so Λ0 is nonlinear. �
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