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Purpose: GRAPPA is a popular reconstruction method for Cartesian parallel imag-
ing, but is not easily extended to non‐Cartesian sampling. We introduce a general and 
practical GRAPPA algorithm for arbitrary non‐Cartesian imaging.
Methods: We formulate a general GRAPPA reconstruction by associating a unique ker-
nel with each unsampled k‐space location with a distinct constellation, that is, local sam-
pling pattern. We calibrate these generalized kernels using the Fourier transform phase 
shift property applied to fully gridded or separately acquired Cartesian Autocalibration 
signal (ACS) data. To handle the resulting large number of different kernels, we intro-
duce a fast calibration algorithm based on nonuniform FFT (NUFFT) and adoption of 
circulant ACS boundary conditions. We applied our method to retrospectively under‐
sampled rotated stack‐of‐stars/spirals in vivo datasets, and to a prospectively under‐ 
sampled rotated stack‐of‐spirals functional MRI acquisition with a finger‐tapping task.
Results: We reconstructed all datasets without performing any trajectory‐specific 
manual adaptation of the method. For the retrospectively under‐sampled experi-
ments, our method achieved image quality (i.e., error and g‐factor maps) compara-
ble to conjugate gradient SENSE (cg‐SENSE) and SPIRiT. Functional activation 
maps obtained from our method were in good agreement with those obtained using  
cg‐SENSE, but required a shorter total reconstruction time (for the whole time‐ 
series): 3 minutes (proposed) vs 15 minutes (cg‐SENSE).
Conclusions: This paper introduces a general 3D non‐Cartesian GRAPPA that is fast 
enough for practical use on today’s computers. It is a direct generalization of original  
GRAPPA to non‐Cartesian scenarios. The method should be particularly useful in  
dynamic imaging where a large number of frames are reconstructed from a single set 
of ACS data.
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1 |  INTRODUCTION

Multi‐shot 3D volumetric imaging is a potential alterna-
tive to single‐shot simultaneous multislice (SMS)1 imaging 

in, for example, fMRI.2 Compared to 2D (slice‐selective)  
acquisitions, 3D volumetric imaging is free from slice profile  
artifacts, has reduced spin‐history effects (due to, e.g., in‐flow 
or motion),3,4 and can provide improved image signal‐to‐noise 
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ratio (SNR).2,5 However, a drawback of multi‐shot acquisitions 
is increased susceptibility to physiological signal fluctuations 
between shots. To mitigate physiological noise artifacts, it is 
beneficial to accelerate the acquisition using parallel imaging 
(PI) such that the total acquisition time per volume is reduced 
(to, e.g., one‐half the heartbeat interval6,7). In addition, non‐
Cartesian readout trajectories are desirable due to their high 
sampling efficiency.

Iterative parallel imaging (PI) methods such as  
cg‐SENSE8,9 and SPIRiT10 are often chosen due to their abil-
ity to handle arbitrary readout trajectories. However, in appli-
cations such as fMRI where a time‐series of several hundred  
images must be reconstructed, the total reconstruction time 
using iterative methods can become prohibitive (since each 
image is reconstructed independently). To speed up recon-
struction, several groups have adopted dedicated computa-
tional hardware, for example, general purpose GPUs,11 but 
working with such hardware usually requires specialized 
programming expertise making such methods less widely 
transferable. Therefore, there is currently a need for an easy‐
to‐implement and robust reconstruction technique for arbitrary 
non‐Cartesian trajectories that scales well with the total num-
ber of image frames (i.e., short overall reconstruction time for 
a time‐series) even on common hardware (e.g., CPUs).

The foremost non‐iterative alternative to the above‐ 
mentioned techniques is GRAPPA,12-14 which (like SPIRiT) 
does not require explicit knowledge of receive coil sensitiv-
ity maps. Unfortunately, using GRAPPA with non‐Cartesian 
trajectories has so far been somewhat awkward. Incomplete 
remedies have been explored for certain kinds of readouts. 
For example,15,16 splits stack‐of‐stars or stack‐of‐spirals read-
outs into segments, and then performs conventional Cartesian 
GRAPPA within each segment. However, this procrustean 
approach cannot be used with arbitrary 3D non‐Cartesian tra-
jectories, and requires a large amount of ACS data for kernel 
estimation. In addition, a trade‐off must be made between tra-
jectory segmentation and reconstruction quality. Alternatively, 
one can grid a Cartesian dataset from a non‐Cartesian one and 
apply ordinary GRAPPA thereafter (based on GROG17,18). 
However, reliable and accurate gridding may be problematic 
for under‐sampled trajectories due to its 1D interpolation 
nature that limits its effectiveness for interpolation beyond 1  
k‐space sample distance. Another approach that has been used 
in some applications is through‐time GRAPPA,19 which alter-
nates sampling patterns along time and extends the reconstruc-
tion along the temporal dimension. However, its calibration 
may become ill‐conditioned when dynamic imaging contrast 
is predominantly stationary, for example, as in fMRI. Finally, 
PARS20 and kSPA21 are non‐iterative k‐space reconstruction 
methods that are closely related to GRAPPA, however, they 
both rely on explicit knowledge of receive coil sensitivity maps. 
PARS needs to calibrate a large number of kernels which can be 
time‐consuming in practice, while kSPA requires extra tuning 

of the order of its polynomial approximations. Neither of the  
approaches has become widely adopted.

We propose a conceptually simple method for generaliz-
ing GRAPPA to arbitrary 3D non‐Cartesian PI acquisitions, 
and provide an efficient algorithm for its calibration.22 For 
each unsampled k‐space location (with a distinct local sam-
pling constellation), our method assigns a unique GRAPPA 
kernel, whose calibration is efficiently implemented by uti-
lizing the phase‐shift property of the Fourier Transform (FT) 
and the NUFFT.23,24 Like Cartesian GRAPPA, our method 
does not require explicit coil sensitivity information, and re-
construction per image volume (once weights have been cal-
ibrated) is rapid. Apart from choice of GRAPPA kernel size 
and Tikhonov regularization coefficient (which is also typi-
cally used in conventional GRAPPA), our proposed method 
is fully automatic and does not require manual parameter  
selection based on, for example, segments or other trajectory‐
dependent aspects. Thus, our method (once coded) requires 
minimal user expertise and should be broadly applicable to 
arbitrary non‐Cartesian PI applications. We demonstrate 
our method in 3D rotated stack‐of‐stars25 and rotated stack‐ 
of‐spirals26 structural (T1‐weighted) imaging, and 3D  
rotated stack‐of‐spirals fMRI, using the same implementation  
parameters for all 3 cases.

2 |  METHODS

2.1 | Background: General principle of 
GRAPPA
It is helpful to consider 2 aspects of the GRAPPA kernel: 
the local sampling constellation, and the associated weights. 
The constellation captures the relative positions between the  
unsampled (“center”) location that we wish to reconstruct 
and its sampled local neighbors, and the weights are the coef-
ficients for later reconstruction. Depending on the sampling 
trajectory, there are usually many different constellations in 1 
dataset, and thus multiple sets of weights will be required for 
the reconstruction.

GRAPPA works by first identifying all distinct constel-
lations. Then, for each constellation, to solve for its weights, 
GRAPPA collects all combinations of data from the ACS 
region whose relative positions match that of the constel-
lation. Figure 1B shows a simple 2‐neighbor (upper‐left  
and lower‐right) illustrative example for reconstructing an 
unsampled (center) location. For each combination, the 
neighbors across Nc coils that surround its center form 
1 row of matrix Ã = [Ã1, … , ÃNc

], where the tilde indi-
cates that these signals reside in k‐space. The submatrix 
Ãc ∈ ℂ

Nk×Nn collects the neighbors from the cth coil. Here 
Nk is the number of combinations (within the ACS region) 
one can collect that match the constellation being calibrated, 
and Nn is the number of neighbors inside the constellation. 
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In addition, b̃c denotes the vector of center values from the 
 cth coil. The weights are obtained by solving the least square 
(LS) problem 

where wc ∈ ℂ
Nc⋅Nn denotes the vector of weights for reconstruct-

ing an unsampled value for the cth coil, and λ is the Tikhonov 
regularization coefficient.

When forming Ã and b̃c in this way, the columns of Ã 
contain the (vectorized) signals from partially overlapping 
rectangles, for example, as shown in Figure 1B. In the 
limit of a very large ACS region, these rectangles resemble 
shifted replicas of each other, apart from differences at the 
boundary.

2.2 | Proposed Non‐Cartesian GRAPPA
The procedure described above is well suited for Cartesian 
acquisitions, where all locations, whether sampled or not, are 
on a Cartesian grid. Hence, for any peripheral constellation, 
one can always find matching combinations within the ACS 
region, and arrange them into the LS form Equation (1). For 
non‐Cartesian sampling, given a fixed size, constellations 
can be efficiently identified using kd‐tree27: Specifically, 
this algorithm forms a tree‐structure given all k‐space points 
of interest; It returns all neighboring points within a given 
distance (i.e., prescribed GRAPPA kernel‐size) when que-
ried with a certain (unsampled) location. Following constel-
lation identification, the calibration can no longer be directly 
conducted in the conventional way. However, while there 

(1)argmin
wc

‖Ãwc− b̃c‖
2
2
+λ‖wc‖

2
2
⇒w⋆

c
= (ÃHÃ+λI)−1ÃHb̃c,

F I G U R E  1  Comparison of (B) conventional Cartesian GRAPPA, and (C,D) the proposed non‐Cartesian GRAPPA calibration. In both 
methods, the ACS region consists of densely (Nyquist) sampled (or gridded) Cartesian data, illustrated in (A). (B) Conventional (Cartesian) 
GRAPPA reconstruction using the constellation “α”, that is composed of 2 sampled neighbors and an unsampled center. Several “combinations” are 
identified from the ACS region that match the desired constellation (α); in (B), there are 8 such combinations, whose center points form the yellow 
rectangle in (B). Each combination gives rise to 1 row in Ã, and 1 element in b̃c (cf. Equation (1)). As a result, the orange and purple rectangles 
form columns of Ã (after vectorizing), and b̃c is formed from the yellow rectangle. (C,D) Proposed non‐Cartesian GRAPPA reconstruction. For a 
non‐Cartesian (local) constellation “β”, we synthesize off‐grid ACS data using the phase‐shift property of the Fourier transform (d). The GRAPPA 
weights for this constellation are then obtained as in conventional GRAPPA (cf. Equation (1))

(A)

(B)

(D)

(C)
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may be no direct match from the “on‐grid” (Cartesian) ACS  
region for an off‐grid non‐Cartesian GRAPPA constella-
tion, we propose to obtain such matches through the phase‐
shift property of the discrete Fourier transform (DFT). We 
first inverse FT the on‐grid ACS data, and then modulate the  
resulting image by a linear phase corresponding to the wanted 
off‐grid shift. This phase‐modulated image is then Fourier 
transformed back to k‐space. The whole procedure is equiva-
lent to a periodic sinc interpolation. A simple example of our 
approach is illustrated in Figure 1C, for a typical constellation 
β from a spiral readout, where 2 off‐grid (black) neighbors 
are assumed sampled and selected to reconstruct the unsam-
pled center. The key idea is to “synthesize” the corresponding 
non‐Cartesian (off‐grid) combinations from an on‐grid ACS 
dataset. These interpolated ACS data are again arranged as in 
Equation (1), yielding the associated GRAPPA weights.

Following the calibration phase, we use the GRAPPA 
weights (1 set for each unique constellation) to reconstruct 
unsampled k‐space coil data and restore a full non‐Cartesian 
k‐space. We then reconstruct coil images using the NUFFT 
adjoint method with Voronoi density compensation.23,28 Final 
images are obtained using sum‐of‐squares12 or linear29 coil 
image combinations.

2.3 | Efficient implementation of the 
proposed method
Our non‐Cartesian approach must calibrate a different set of 
GRAPPA weights for every distinct constellation. In the most 
general case, the number of distinct constellations equals the 
number of unsampled points. The workload for many applica-
tions may be less, since commonly used trajectories, such as 
rotated stack‐of‐stars, stack‐of‐spirals, and stack‐of‐cones,30 
often possess certain k‐space regularities (e.g., regular sam-
pling along kz) that reduce the number of distinct constel-
lations that must be calibrated. Nevertheless, depending on 
acquisition parameters, such as image matrix size and under‐
sampling factor, calibration can still be computationally  
demanding or even impractical. To address this, we propose 
the following approximate algorithm for efficient implemen-
tation of our method. Specifically, we accelerate calibration 
by avoiding any explicit interpolation to ACS datasets.

In the formation of Ã and b̃c in Equation (1), the signals 
at the boundary of the ACS region are normally excluded, as 
forming matching combinations for them would require sig-
nals residing outside the region. In our fast algorithm, bound-
aries are included, by adopting circulant boundary conditions. 
In other words, we allow the ACS region to wrap around as 
needed to complete a given constellation. The underlying  
assumption of this approach is that when the ACS region is 
sufficiently large, the impact of these wrap‐around combina-
tions is marginal. With the circulant boundary assumption, 
the rectangles described above are now fully overlapping in 

a circularly‐shifted manner, and the columns formed from 
them, that assemble the matrix Ãc and the center vector b̃c,  
are now circularly shifted replicates. This allows efficient 
calibration as follows.

Figure 2 illustrates our algorithm for efficient weight calibra-
tion. We denote unitary F ∈ ℂ

Nk ×Nk as the (2D or 3D) DFT of 
the ACS region size. The solution to (1) can now be written as: 

where A = [A1, … , ANc
] and bc are in the image domain (tilde 

symbol removed). In particular, bc is a low‐resolution coil 
image obtained by inverse FT of all of the ACS data. Then, we 
represent AHA and AHbc with block matrices:

Due to the circulant attribute, the columns in Ac are essentially 
bc modulated by different linear phases, that is, diag(�)bc,  
where � ∈ ℂ

Nk is a phase vector. Analytically, these phase 
vectors are formed following the Fourier relation. That is, for 
a k‐space neighbor at position p relative to its constellation 
center as origin, the qth element in its corresponding v, which 
modulates image domain location q, is [v]q = exp (1i ⋅2�pTq). 
Let m, n = 1, … , Nn. In MATLAB notation: 

where i, j = 1, … , Nc are coil indices. In other words. the  
elements of AH

i
Aj and AH

i
bj are inner products between various 

linear phases and fixed (low‐resolution) “coil product” images, 
that is, these elements are (spatial) frequency components of 
diag(bi)

Hbj. Analytically, that is, if for any image domain loca-
tion q, the element, [vm]q, can be expressed as exp (1i ⋅2�pTq) 
with the same p, then Ai(:, m)Hbj = [Fdiag(bj)

Hbj]p, the fre-
quency p component. An important property of this formalism 
is that bc, and hence all coil product images, are shared across 
all constellations; therefore we pre‐compute and cache the FT 
of diag(bi)

Hbj. For non‐Cartesian constellation calibration  
involving off‐grid frequency components of diag(bi)

Hbj, we 
prepare and cache the dense frequency spectrum of diag(bi)

Hbj 
by zero‐padding and Fourier transforming (which only needs 
to be done once), and then linearly interpolate to the desired 
off‐grid frequency (as commonly done in NUFFT23). This  
algorithm reduces the complexity of computing AHA and AHbc 
from Θ(NkN2

n
N2

c
+ NkNnNc) to Θ(N2

n
N2

c
+ NnNc), where Nk 

can reach several thousand (e.g., for a 3D ACS region of size 
20 × 20 × 20).

(2)
w⋆

c
= (ÃHÃ+λI)−1ÃHb̃c

= (AHFHFA+λI)−1AHFHFbc = (AHA+λI)−1AHbc,

(3)AHA=

⎛
⎜
⎜
⎜
⎝

AH
1

A1 ⋯ AH
1

ANc

⋮ ⋱ ⋮

AH
Nc

A1 ⋯ AH
Nc

ANc

⎞
⎟
⎟
⎟
⎠

, AHbc =

⎛
⎜
⎜
⎜
⎝

AH
1

bc

⋮

AH
Nc

bc

⎞
⎟
⎟
⎟
⎠

.

(4)
Ai(:,m)HAj(:,n)=bH

i
diag(�m)Hdiag(�n)bj

= (�H
m

diag(�n))(diag(bi)
Hbj)

Ai(:,m)Hbj = (�H
m

)(diag(bj)
Hbj),
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We implemented the proposed calibration in C as it  
requires efficient indexing for NUFFT interpolation. Com-
pared to the MATLAB inner‐product approach (Equation 
(4)), our NUFFT interpolation‐based approach can speed up 
the calibration about 20‐fold (results not shown). Once the 
calibration is done, the non‐iterative reconstruction stage for 
each image frame requires only a few seconds, as opposed to 
minutes using iterative methods.

2.4 | Algorithm and implementation details
The proposed non‐Cartesian GRAPPA reconstruction proce-
dure comprises the following list:

2.4.1 | Calibration
1. Prepare a Cartesian ACS dataset: This can be from either 

direct Cartesian acquisition at the center of the k‐space, 
or from gridding a Nyquist sampled non‐Cartesian k‐space 
center. An ACS dataset of size 20 × 20 × 20 × Nc has 
been found sufficiently large in this work. For consistent 

Tikhonov regularization behavior, normalize the ACS data-
set by the mean square root energy across coils.

2. Identify all the constellations for calibration: From the 
complete readout trajectories, build a kd‐tree including all 
sampled k‐space locations. For each un‐sampled k‐space 
point, query the kd‐tree with the prescribed distance (i.e., 
GRAPPA kernel size). This will identify all the neigh-
bors of each center, and constellations can then be formed 
with the relative positions between neighbors and cent-
ers. For the un‐sampled points located near the center of 
(the highly oversampled) k‐space, the signals from close 
neighbors are nearly linearly dependent, and can cause ill‐
conditioning in calibration when Tikhonov coefficient is 
not chosen carefully. It is hence helpful to sift the crowded 
neighbors, that is, by grouping the neighbors by Nyquist 
Δk rounded relative positions, and arbitrarily picking 
1 from each group to keep as a neighbor. By sifting the 
neighbors such that the relative distances of the remaining 
neighbors become sufficiently large, we avoid any linear‐
dependence issue in calibration. The unique constellations 
identified in this step are to be calibrated. The number of 

F I G U R E  2  Illustration of our method for fast computation of AHA (Equation (2)). (A) A (low‐resolution) coil image is reconstructed from 
the ACS data, and this image is then zero‐padded to increase the spatial frequency (Fourier) sampling density. (B,C) The (m, n)th element of AH

i
Aj 

is a pixel‐wise multiplication of coil images bi and bj, each modulated by a linear phase �m and �n, respectively. The result is a single “coil‐product” 
image bij modulated by the combined phase image vnm. (D) The frequency component corresponding to the combined linear phase is efficiently 
calculated by interpolating the Fourier transform of the zero‐padded coil‐product images, in NUFFT‐like fashion

(A)

(B)

(D)

(C)

FT
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neighboring points in each constellations varies from a 
few points (e.g., 3), when it is in the peripheral k‐space, 
to 5 × 5 × 5 = 125 capped by sifting with kernel size of 5, 
when it is in the center k‐space.

3. Maintain a table of un‐sampled points and the constella-
tions they correspond to. With the recorded relative posi-
tions, GRAPPA coefficients are calibrated by the algorithm  
described in Section 2.3. With a normalized ACS, Tikhonov 
coefficient λ = 5 × 10−7 is used in all experiments in the 
following sections, which was found to produce consistent 
reconstruction quality.

2.4.2 | Reconstruction
1. Index the un‐sampled points from the under‐sampled 

dataset by the table maintained in the calibration step. 
For each un‐sampled point, extract its sampled neighbors 

in the constellation it corresponds to, and reconstruct 
the missing signal using the calibrated coefficients.

2. Use NUFFT adjoint method to resolve the reconstructed 
coil images, and combine them using either sum‐of‐squares 
or linear combinations to yield the final images.

Matlab and C code are opensourced on GitHuba .

2.5 | Experiments
To evaluate our proposed algorithm from Section 2.3 in terms 
of reconstruction time and image quality, we first acquired 
3D fully sampled stack‐of‐stars and stack‐of‐spirals spoiled 
gradient echo (GRE) datasets in healthy volunteers on a GE 
3T scanner with an 8‐channel receive‐only head coil. Both the 
fully sampled stack‐of‐stars and stack‐of‐spirals readouts con-
tained 20 kz platters. For the stack‐of‐stars dataset, each platter 

F I G U R E  3  3D reconstruction comparison between the proposed non‐Cartesian GRAPPA and cg‐SENSE, from retrospectively under‐sampled 
rotated stack‐of‐stars dataset. One out of a total 20 slices are shown. Coil images reconstructed with the proposed method are linearly combined into final 
images. (a) (fully sampled) reference images and under‐sampled aliased images (acceleration factor R = 2, 3, 4) with zoom‐in details. The reference for 
the proposed method is reconstructed with NUFFT adjoint.23,28 (B) reconstructed under‐sampled images of our proposed method and cg‐SENSE. (C)  
g‐factor maps of the 2 methods. The reported numbers are “max/mean” g‐factors within the whole 3D head. (D) error map of the 2 methods. The 
reported numbers are “root mean squared error (RMSE)” within the whole 3D head. Our non‐Cartesian GRAPPA algorithm rivals cg‐SENSE in 
reconstruction quality. As expected, reconstruction error (gray‐scale windowed 12.5x) is largest near object edges, since there are fewer samples 
available for reconstruction at higher spatial frequencies. The g‐factor maps for the 2 methods are within a similar range, as observed in previous work29
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contained 315 spokes. Its image matrix size and field‐of‐view 
(FOV) were 200 × 200 × 20 and 24 × 24 × 10 cm3, respectively. 
For the stack‐of‐spirals dataset, each platter contained 12 inter-
leaves. The image matrix size and FOV were 240 × 240 × 20 
and 24 × 24 × 10 cm3, respectively. 8 out of 20 slices are aliased 
in z direction, due to the excitation profile being slightly larger 
than FOVz. Other acquisition parameters were: TR = 15 ms, 
minimum TE, and flip‐angle 8◦.

We retrospectively under‐sampled these 2 non‐Cartesian 
acquisitions. Spokes and interleaves in‐plane were regularly 
skipped to simulate different acceleration factors. For 3D 
reconstruction experiments, in the through‐plane direction, 
we rotated the under‐sampling pattern to improve recon-
struction quality.25,26 This rotation produces a through‐plane 
under‐sampling factor that is separately the same as the  
in‐plane and the overall under‐sampling factor. While this 
rotation may complicate existing non‐iterative methods 
(e.g.,26), it does not impact our proposed non‐Cartesian 
method (from the algorithmic viewpoint; it does of course 
impact the constellations that will be identified for a given 
kernel size). For 2D reconstruction experiments, prior to the 

in‐plane regular under‐sampling, an inverse Fourier trans-
form in kz is applied to convert the 3D k‐space into 2D.

To compare with iterative methods (cg‐SENSE), and eval-
uate the feasibility of reducing total reconstruction time for a 
non‐Cartesian time‐series acquisition, we acquired a prospec-
tively 3D under‐sampled (acceleration factor R  =  3) multi‐ 
interleaf rotated stack‐of‐spiral‐in fMRI dataset of the motor 
cortex, with finger tapping stimulus. The readout has 20 kz 
platters, each containing 9 interleaves (under‐sampled to 3 
interleaves). Other sequence parameters are: TR = 36.2 ms,  
TE = 26.3 ms, flip‐angle 8◦, image matrix size 88 × 88 × 20 
with 131 temporal frames, FOV 22 × 22 × 6 cm3. In this case, 
the excitation bandwidth was set to match FOVz. In13, it was 
suggested that GRAPPA kernels can be pre‐calibrated using a 
separate dataset with possibly different contrasts. Accordingly, 
in the subject undergoing fMRI we also acquired a fully sam-
pled stack‐of‐spiral‐out dataset with the same FOV as the fMRI  
acquisition but with a different contrast: TR = 30 ms, min-
imum TE, flip‐angle 8◦, image matrix size 220 × 220 × 20. 
Again, the experiments were conducted on a GE 3T scanner 
using an 8‐channel receive‐only head coil.

F I G U R E  4  A similar comparison as in Figure 3, but for a retrospectively under‐sampled rotated stack‐of‐spirals dataset. One slice out of 
20 is shown. Without modifying our algorithm and implementation from 3, our non‐Cartesian GRAPPA algorithm again achieves comparable 
reconstruction quality to cg‐SENSE (error images’ gray‐scale windowed 12.5x)
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In all experiments, our proposed non‐Cartesian GRAPPA 
only used the k‐space center data for autocalibration. 
With these data, we compute low‐resolution coil‐product  
images of size 20 × 20 × nz, (nz slices); and zero‐pad them 
to 128 × 128 × nz (∼5× larger than ACS size, rounded up to 
power of 2) to attain the dense frequency spectrum needed 
for our efficient algorithm. A smaller padding size suffers 
from reduced accuracy, and a larger padding size trades off 
efficiency for only marginal improvement in quality. The  
reconstructed coil images of our method are linearly com-
bined into final images. The sensitivity maps used in 
coil‐image linear combination, cg‐SENSE, and g‐factor 
simulations are estimated using the methods developed in31.  
cg‐SENSE reconstruction was implemented using MIRTb , 
and was preconditioned with density compensation function28 
for acceleration. A quadratic roughness penalization was 
used to avoid overfitting the readouts.9 SPIRiT reconstruc-
tion was done using its reference implementationc . We used 
the g‐factor to measure noise amplification. Since a direct 
g‐factor calculation for non‐Cartesian imaging is intractable,  
we pseudo‐replicated noisy reconstructions29 in simulation 

(1000 times) using coil noise covariance information mea-
sured in vivo.

3 |  RESULTS

Figures 3 and 4 compare our non‐Cartesian GRAPPA with 
cg‐SENSE on the retrospectively under‐sampled 3D rotated 
stack‐of‐stars and rotated stack‐of‐spiral spoiled GRE datasets, 
respectively. For each comparison, 1 slice that is rich in struc-
tural detail is displayed (out of total 20 slices). The GRAPPA 
kernel size is 5 × 5 × 5 in the units of the Nyquist sampling dis-
tance. Figures 5 and 6 compare our non‐Cartesian GRAPPA 
with SPIRiT on the retrospectively under‐sampled 2D star 
and spiral spoiled GRE datasets, respectively. The kernel  
size used in both non‐Cartesian GRAPPA and SPIRiT is 7 × 7. 
As shown in both sets of comparisons, our non‐Cartesian 
GRAPPA can rival cg‐SENSE and SPIRiT in reconstruction 
quality in terms of error map and g‐factor map. There is no 
modification to our algorithm or implementation across the 
comparisons, demonstrating the generality of our method.

F I G U R E  5  A similar comparison as in Figure 3, but in 2D, between the proposed non‐Cartesian GRAPPA and SPIRiT, with large 
retrospective undersampling factors (R = 3, 5, 7). Without modifying our algorithm and implementation, our method achivews comparable 
reconstruction quality to SPIRiT. The “max/mean” g‐factors, and RMSE are computed within the 2D head region
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From these 2 comparisons, besides noise, we observe edge‐
like (high‐frequency) reconstruction errors with our method, 
which is also the case for the cg‐SENSE and SPIRiT recon-
structed images. This error behavior is expected, since for 
high‐frequency (peripheral) k‐space regions the non‐Cartesian 
readout generally becomes sparser, such that fewer (sam-
pled) neighbors are available for reconstruction. In addition, 
Supporting Information Figure S1 shows that in our non‐
Cartesian GRAPPA calibration, the influence of adopting a 
circulant boundary condition on reconstructed image quality 
is small.

In the pseudo‐replica simulated g‐factor maps, we observe 
that there are regions in the non‐Cartesian GRAPPA case that 
fall below 1, as observed by others in Cartesian imaging.29 We 
do notice that certain regions for the cg‐SENSE case also fall 
below one. While Pruessmann et al8 have rigorously proven 
the g‐factor to always be greater than 1 for unfolding (non‐ 
iterative) SENSE, the derivation does not apply to non‐
Cartesian iterative SENSE (e.g., cg‐SENSE). Supporting 
Information Figure S2 addresses this “g‐factor smaller than 

one” behavior of cg‐SENSE by illustrating a simulated 2D 
SENSE example where the g‐factor falls below 1 analytically, 
obtained by calculating noise covariance directly. Basically, 
when under‐sampling improves sampling density uniformity 
(e.g., over‐sampled center k‐space from fully‐sampled trajec-
tory), it is possible for g‐factor to fall below 1.

Figure 7 compares the functional response obtained from the 
prospectively under‐sampled image time‐series reconstructed 
using our proposed algorithm, against that obtained from  
cg‐SENSE. Three slices out of 20 are displayed. For cg‐SENSE, 
different amounts of roughness penalization are evaluated. In 
this finger tapping experiment, as expected, we observe acti-
vations in the motor cortex, and, for cg‐SENSE, the activation 
maps become increasingly blurred as roughness penalization 
increases. While the ground truth activation map is unknown, 
in terms of Dice similarity coefficient (dsc) (computed from 
all active voxels), our result most resembles the outcome of  
cg‐SENSE at quadratic roughness penalty level λ  =  5. 
However, our method is considerably faster: for this dataset it 
required 1 minute for calibration and 2 minutes for time‐series 

F I G U R E  6  A similar comparison as in Figure 5, but for retrospectively under‐sampled spiral dataset, with retrospective under‐sampling 
acceleration factor (R = 2, 3, 4). Our proposed method still attains comparable quantities in terms of “max/mean” g‐factor, and RMSE within 2D 
head image support. The reconstruction errors still contains high‐frequency components as expected
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reconstruction, significantly shorter than the total cg‐SENSE re-
construction time (15 minutes) (timed using MATLAB R2016a 
on a RHEL7.4 server with 2 Intel E5‐2630V4 processors. The 
NUFFT operations of cg‐SENSE are also implemented in C 
subroutines.). Supporting Information Figure S3 presents the 
activation map reconstructed using GRAPPA kernels calibrated 
with the separate distinct‐contrast higher resolution dataset. As 
expected from,13 we obtain an essentially identical reconstruc-
tion compared to the reconstruction using the original GRAPPA 
kernels (obtained by combining 3 subsequent fMRI data frames 
to form a full‐sampled k‐space), with a dsc equal to 1. The image 
from the separate dataset is presented in Supporting Information 
Figure S3.

4 |  DISCUSSION

Our proposed non‐Cartesian GRAPPA reconstruction is gen-
eral and applicable to arbitrary readout trajectories, without 
modifying or adapting the code. Here, we demonstrated its 
use with rotated stack‐of‐stars and rotated stack‐of‐spirals, 
using 3D kernels. As stated above, a convenient feature of 
these trajectories in the context of the proposed method is that  
the under‐sampling pattern is regular along kz, which reduces 
the number of different (unique) constellations. However, in 

the extreme case, the number of different kernels can equal the 
number of unsampled k‐space points, which can require large 
computer memory. For instance, in 3D high‐resolution imaging 
with 32 receive coils, there are about 400 000 3D kernels to 
be calibrated, each of which could contain about 50 neighbors 
on average, resulting in approximately 76 GB memory/storage 
demand for the coefficients (for single float precision). Coil 
compression32,33 can reduce this demand. Another mitigating 
approach may be to “interleave” calibration with reconstruction 
of each distinct constellation in a time‐series; in other words, 
one can calibrate and cache the GRAPPA weights for a single 
constellation (or group of constellations) at a time, reconstruct 
all the data corresponding to this constellation throughout the 
whole time‐series, then discard these weights and move on to 
the next constellation.

We have shown that using circulant boundary conditions 
(concerning the ACS region) permits fast GRAPPA weight 
calibration, without degrading image quality. From our ret-
rospectively under‐sampled reconstruction experiments (in 
Supporting Information), we observe that for certain calibra-
tion set‐ups (e.g., ACS region size, GRAPPA kernel size, and 
Tikhonov regularizer coefficient), allowing the ACS to wrap 
around can sometimes even improve reconstruction quality 
slightly (in terms of image error and g‐factor). This behavior 
can be dependent on specific subjects and sampling trajectories. 

F I G U R E  7  Functional imaging results from a prospectively under‐sampled (R = 3) rotated stack‐of‐spirals 3D acquisition, (dsc: Dice 
coefficient). The volunteer performed a block (stimulus on/off) finger‐tapping task, that is known to reliably activate motor cortex. Shown are 
activation maps in 3 consecutive slices (out of 20) covering the active region of motor cortex. Images from left to right are reconstructed with: 
Proposed non‐Cartesian GRAPPA with kernels calibrated using the functional imaging ACS dataset (a fully sampled k‐space center was obtained 
by combining the first 3 under‐sampled frames of the fMRI time series); cg‐SENSE with different levels of l2‐roughness regularization parameter 
λ. While the ground truth activation map is unknown, in terms of Dice coefficient, our result most resembles the outcome of cg‐SENSE at quadratic 
roughness penalty level λ = 5; and the activity maps from these 2 sets matches well with our expectation (motor cortex), while other activity maps 
are either incomplete or blurred. Reconstruction times were 1 minute for calibration plus 2 minutes for reconstruction for the proposed method, and 
15 minutes for cg‐SENSE
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However, we certainly do not expect this behavior to be a gen-
eral features of our method; whether the image error is slightly 
improved or worsened may depend on various factors, such as 
the sampling trajectory used, or the subject or receive coil con-
figuration. Overall, the circulant boundary condition appears 
to have a marginal influence on reconstructed image quality.

We demonstrated our method by reconstructing retrospec-
tively unsampled k‐space locations. While these locations 
are a natural choice, our method is not limited to reconstruct 
only the “unsampled” locations; for example, one possibility 
would be to reconstruct points on a Cartesian grid. The opti-
mal choice of k‐space locations to reconstruct with respect to, 
for example, image quality and overall computation time, is an 
open problem.

k‐Space reconstruction methods, such as GRAPPA and 
SPIRiT, are known to be robust against aliasing when FOV 
is limited (i.e., smaller than the object being imaged). Our 
proposed non‐Cartesian GRAPPA is exactly equivalent to  
ordinary GRAPPA when the sampling is Cartesian; and hence 
would be expected to also be robust to limited FOV. In fMRI, 
limited‐FOV is usually not an issue, as brains are typically 
small enough to be fully covered in scanning. However, this 
issue could be significant in cardiac and other body imaging, 
where the region of interest is not that isolated from other parts 
of body. We will study the performance of our method in car-
diac imaging in the future.

5 |  CONCLUSION

This paper introduced a flexible and rapid non‐iterative 
reconstruction method that is a true non‐Cartesian gener-
alization of the canonical GRAPPA method. The method 
works with arbitrary sampling trajectories, and may be par-
ticularly beneficial in applications such as dynamic imag-
ing (e.g., fMRI) where a large number of images must be 
reconstructed.

NOTES
a Code available at https ://github.com/tianr luo/NonCr tGRAPPA. 
b Michigan Image Reconstruction Toolbox, available at http://web.eecs.

umich.edu/fessl er/code. 
c SPIRiT reference implementation, available at http://people.eecs.berke ley.

edu/mlust ig/Softw are.html. 
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SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article.

FIGURE S1 Reconstruction quality comparison of our non‐
Cartesian GRAPPA method using different ACS boundary 
conditions (circulant and trimmed), for 2D star (left pan-
els) and spiral (right panels) datasets. The top row plots the  
absolute error maps and the digits are their averages within the  
object support. The center row plots the g‐factor maps and 
the digits are their max/average g‐factors within the support. 
The bottom row plots the absolute error viewed from k‐space. 
We observe that circulant boundaries can produce similar 
reconstruction error as trimmed boundaries. Moreover, for 
certain Tikhonov regularization setups, circulant boundary 
outperforms trimmed boundaries
FIGURE S2 An illustration of a reconstruction with g‐factor 
smaller than one (in some regions of the image), using real-
istic (in vivo) sensitivity maps. Here, “full” sampling con-
sists of both blue and red locations, while “under‐sampling” 
only contains the blue locations. The central k‐space region 
is oversampled, as is typically the case in non‐Cartesian  
acquisitions. The center k‐space oversampling ratio 4.1 in 
this example produces off‐grid sampling. In this example, the 
g‐factor is just below 1.0 near the right and left parts of the 
image (white regions in the binary black/white image on the 
lower left) 
FIGURE S3 Reconstruction quality demonstration of 
GRAPPA kernel calibrated with ACS of a different con-
trast. Dice coefficients (dsc) are labeled for convenience 
of assessment. This figure is the same as Figure 7, except 
with 2 extra columns (from left to right): Proposed non‐
Cartesian GRAPPA with kernels calibrated using the struc-
tural imaging ACS dataset. The high‐resolution structural 
image of the same subject, acquired along with the fMRI 
scanning
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