Supporting Information for

"Detecting Urban Emissions Changes and Events with a Near-Real-Time-Capable Inversion System"

John Ware^{1,2}, Eric A. Kort², Riley Duren³, Kimberly L Mueller^{2,4}, Kristal Verhulst³, Vineet Yadav³

¹Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
²Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
³NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
⁴National Institute of Standards and Technology (NIST); Gaithersburg, MD, United States of America

Contents

- 1. Figures S1 to S3
- 2. Tables S1 to S2

Corresponding author: John Ware, johnware@umich.edu

Figure 1. Time series of bias and RMS errors in WRF-simulated 2 m temperature (bottom) and 10 m wind speed (top) as compared to surface station observations.

Figure 2. Availability of mole fraction data for each of the nine sites within the SOCAB domain used in this study.

Figure 3. Scatter plots of four-day methane flux estimates from the WRF-driven inversion as compared to the corresponding fluxes from the HRRR-, NARR-, and GDAS-driven inversions after applying calibration. The correlation coefficient between the calibrated fluxes and the WRF-derived fluxes is inset in each case.

Option	Description					
Land Surface	Noah land-surface model with Monin-Obukov (Janic) surface layer					
Urban Canopy	None					
PBL Package	MYNN 2.5-level scheme					
LW Radiation	RRTMG					
SW Radiation	RRTMG					
Microphysics	WSM 5-class scheme					
Convection	Grell-3d (in outer domains)					
Nesting	One-way					
Nudging	None					
Advection	5th-order horizontal, 3rd-order vertical, monotonic advection for moisture and scalars					
Diffusion	2nd-order horizontal diffusion using Smagorinsky first-order closure					
Table 1.Summary of WRF options used.						

	HRRR		NARR		GDAS	
Period	Predicted	Actual	Predicted	Actual	Predicted	Actual
1	106%*	70%	76%*	121%	158%*	194%
2	94%*	52%	64%*	91%	139%	154%
3	64%	60%	52%*	151%	122%*	176%
4	65%	55%	54%	52%	97%*	68%
5	66%*	43%	45%*	102%	71%*	113%
6	65%*	32%	45%*	68%	58%*	92%
7	71%	54%	42%	60%	67%	86%
8	83%*	46%	38%*	81%	62%*	100%
9	88%*	43%	37%*	82%	55%	73%
10	64%	56%	36%*	120%	59%*	174%
11	85%*	65%	54%*	110%	97%*	140%
12	76%	70%	60%*	81%	92%*	154%
13	93%*	62%	56%*	98%	104%*	135%
14	76%	80%	54%*	109%	116%*	184%
15	88%	81%	73%	78%	145%*	196%
16	81%	76%	54%*	116%	132%*	168%
17	110%*	57%	68%*	214%	113%	115%
18	88%*	51%	70%*	101%	89%	72%
19	86%*	56%	64%*	107%	70%*	140%

Table 2. Actual: total mean sensitivity of observations in each of nineteen 28-day periods according to

 STILT footprints driven by HRRR, NARR, and GDAS, relative to sensitivity according to footprints driven

 by WRF. Predicted: Sensitivity relative to WRF, over the same time period, predicted as in Equation 3 on

 the basis of residence time, near-surface fraction, and mixing height. Predicted values marked with asterisks

 differ from actual values by more than 20 percentage points.