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Abstract In situ observing networks are increasingly being used to study greenhouse gas emissions in
urban environments. While the need for sufficiently dense observations has often been discussed, density
requirements depend on the question posed and interact with other choices made in the analysis. Focusing
on the interaction of network density with varied meteorological information used to drive atmospheric
transport, we perform geostatistical inversions of methane flux in the South Coast Air Basin, California, in
2015–2016 using transport driven by a locally tuned Weather Research and Forecasting configuration as
well as by operationally available meteorological products. We find total-basin flux estimates vary by as
much as a factor of two between inversions, but the spread can be greatly reduced by calibrating the
estimates to account for modeled sensitivity. Using observations from the full Los Angeles Megacities
Carbon Project observing network, inversions driven by low-resolution generic wind fields are robustly
sensitive (p < 0.05) to seasonal differences in methane flux and to the increase in emissions caused by the
2015 Aliso Canyon natural gas leak. When the number of observing sites is reduced, the basin-wide
sensitivity degrades, but flux events can be detected by testing for changes in flux variance, and even a
single site can robustly detect basin-wide seasonal flux variations. Overall, an urban monitoring system
using an operational methane observing network and off-the-shelf meteorology could detect many
seasonal or event-driven changes in near real time—and, if calibrated to a model chosen as a transfer
standard, could also quantify absolute emissions.

1. Introduction
Recent years have seen increased efforts to quantify greenhouse gas emissions at or below the scale of indi-
vidual cities. In complement to process-based inventories (Gurney et al., 2012), aircraft campaigns (Mays
et al., 2009; Wecht et al., 2014), and analysis of satellite data (Kort et al., 2012; Ye et al., 2017) among other
methods, a common approach has been to deploy a network of sensors within and around a city (Breon et al.,
2014; McKain et al., 2015, 2012; Pugliese, 2017; Richardson et al., 2016; Shusterman et al., 2016; Verhulst
et al., 2017). The density and placement of sensors within a network, together with the local meteorology and
the spatiotemporal pattern of emissions, determines the extent to which the network is reliably sensitive to
emissions over the whole region of interest and within the relevant time scale. Prospective network design
studies (e.g., Kort et al., 2013; Lopez-Coto et al., 2017; Turner et al., 2016) have attempted to ensure adequate
sensitivity, but the standard of adequacy is necessarily relative to some particular purpose or question.

Much urban monitoring work focuses on improving the precision of absolute flux estimates, setting goals
such as “to quantify CO2 and CH4 emission rates at 1-km2 resolution with a 10% or better accuracy and
precision” (Davis et al., 2017). Such precision may be a long way off or may not be achievable in every
setting; however, a variety of other questions of interest can be answered without precisely constraining the
absolute fluxes. For example, what seasonal variations and/or year-over-year trends exist in emissions rates,
and what fraction of emissions can be attributed to the urban biosphere or to specific anthropogenic source
sectors? An operational monitoring system might be able to detect an unusual excursion in the urban flux
and even to suggest a source location, even if the baseline flux is not known accurately.

In addition, network density interacts with a host of other factors that also impact the precision and
confidence with which the above questions can be answered, including representation of background
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concentrations and of the biosphere flux contribution, the statistical method to be used and the choices
made in implementing that method (such as the specification of covariance parameters and the choice of
a prior), and modeling of meteorology and of transport processes. This complex web of factors, and their
interactions and contributions to the overall uncertainty in modeled posterior fluxes, is only beginning to be
understood, especially in the urban setting. In this study, we focus on the meteorological driver of transport
and how it impacts the inverse results. Future work should consider other factors, including the interaction
of data density and driving meteorology with the choice of inversion methodology.

Representation of atmospheric transport is believed to be an important source of error in estimating green-
house gas fluxes using atmospheric (in situ or column) observations (Feng et al., 2016; McKain et al., 2012).
However, there is no generally adopted scheme for quantifying the effects of transport error. In inversions,
some authors simply increase the model-data mismatch covariance across the board to account for transport
error (e.g., Breon et al., 2014). Lin and Gerbig (2005) proposed using the increase in the variance of modeled
concentrations when the observed error statistics of the wind components are incorporated as additional
stochastic variability in the transport model. Recently, Gourdji et al. (2018) showed that some of the effects of
wind speed error could be mitigated by specifying an additional covariance proportional to the discrepancy
in wind speed between model and observations.

Along with quantifying transport error, it is difficult to validate transport models or meteorological models in
their role as drivers of transport in estimating fluxes for a particular question. On their own, meteorological
models can be validated against point observations, most commonly of wind speed and direction and/or
mixing depth. Validation of this kind is often used to tune model parameters or to choose a boundary-layer
physics scheme or other model configuration (e.g., Feng et al., 2016; Nehrkorn et al., 2013) but does not
directly address the fidelity of the transport or the impact on flux estimation. Deng et al. (2017) performed a
semidirect evaluation of coupled weather-transport models by comparing the marginal posterior likelihoods
of the resulting CO2 flux estimates. Direct validation of transport using controlled release of an inert tracer
is also possible (e.g., Harrison et al., 2012) but rarely included in urban studies.

In this study, rather than focus on the optimization of meteorological representation to achieve the highest
accuracy, highest resolution inversion results, we instead assess whether nonoptimized, rapidly available
meteorological products can successfully underpin an atmospheric inversion system. We focus on questions
of whether such a system can detect anomalous high emissions events and whether seasonal flux behaviors
can be robustly inferred. If a rapidly available meteorological product can successfully underpin such a
system, this indicates near-real-time inversions driven by such a product could be conducted and expected
to produce statistically useful results in near-real time.

To pursue such an approach, we consider Los Angeles as an ideal test case. California has had extensive
study and validation of transport models (Angevine et al., 2013, 2012; Bagley et al., 2017; Zhao et al., 2009).
A statewide assessment of transport is summarized in Bagley et al. (2017), and a regional assessment in the
greater Los Angeles area in this study indicated little seasonally dependent bias. For Los Angeles specifi-
cally, previous work has assessed meteorological representation, determining what could be considered an
optimal approach to high-resolution simulations and performing substantive validation (Angevine et al.,
2013; Feng et al., 2016).

With this meteorological underpinning, Yadav et al. (2019) performs inversions in Los Angeles evaluating
what can be learned with such an optimized system. In this study, rather than focusing on developing and
validating an optimal transport representation, we use the Yadav et al. (2019) results as a “base” case. We
compare estimated fluxes from geostatistical inversions driven by this optimized base system with fluxes
estimated from geostatistical inversions driven by three broadly available models or reanalysis products:
High-Resolution Rapid Refresh (HRRR), North American Regional Reanalysis (NARR), and the Global Data
Assimilation System (GDAS). We evaluate how these different inversions perform at determining the abso-
lute flux, detecting both anomalous high emissions events and seasonal flux variance across the basin, and
evaluate the role of observation site density is achieving these objectives. Los Angeles provides an oppor-
tunistic location for these tests as the large leak from the Aliso Canyon storage facility, which released an
estimated 97,100 Mg over 4 months beginning in October 2015 (Conley et al., 2016), and provides what could
be considered a tracer release experiment for our purposes. Additionally, seasonal variation in methane
emissions has been previously observed and reported (Yadav et al., 2019) and also provides a challenge test
case for our nonoptimized meteorological drivers.
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Figure 1. (colors) Elevation map of the study domain. (circles) Locations of observing sites. The three sites included in
the reduced network are indicated by their three-letter codes. The star in the western part of the domain indicates the
location of the Aliso Canyon facility. Scale bars indicate the grid sizes for the Weather Research and Forecasting
(1.3 km), High-Resolution Rapid Refresh (3 km), North American Regional Reanalysis (32 km), and Global Data
Assimilation System (0.5◦) meteorological fields, showing the coarse resolution of the latter fields relative to the
domain. GRA =Granada Hills; USC = downtown LA at the University of Southern California; FUL = CSU Fullerton;
ASL = above sea level.

2. Approach
We perform geostatistical inversions of methane flux between 1 July 2015 and 31 December 2016, using
transport driven by each of four meteorological models or reanalysis products: Weather Research and Fore-
casting (WRF), HRRR, NARR, and GDAS. Each product is used to drive the Lagrangian transport model
Stochastic Time-Inverted Lagrangian Transport (STILT) (Lin et al., 2003; Nehrkorn et al., 2010) in order to
estimate the sensitivity of in situ CH4 mole fraction measurements to emissions fluxes. We estimate fluxes
using a geostatistical inversion system based on that developed by Yadav et al. (2019), with a spatial reso-
lution of 0.03◦ within the South Coast Air Basin and at a temporal resolution of 4 days. The study domain
along the coast of Southern California, along with the locations of the observing sites and the Aliso Canyon
gas storage facility, is shown in Figure 1.

One of the four meteorological drivers we consider, the WRF model as configured by Feng et al. (2016),
has been extensively validated by those authors against observations of wind speed and direction and of
Planetary Boundary Layer height in the Los Angeles area, as well as by comparing forward-modeled CO2
emissions from the detailed Hestia inventory to in situ and flask mole fraction observations. That validation
provided the basis for the WRF runs used in Yadav et al. (2019), which are the same ones we use here. The
inner WRF domain, which includes the region considered here, has a spatial resolution of 1.3 km and a time
step of less than 1 min. More details of the WRF setup are given in supporting information Table S1.

To verify that this WRF configuration makes a reasonable base case for a locally tuned driver of transport,
we supplement the existing validation by Feng et al. (2016) by directly testing observable meteorological
variables in the WRF configuration against those measured at 42 surface observation sites. Agreement is
generally good. Across 4-day periods between January 2015 and March 2016 (overlapping but not identi-
cally with our inversion time frame), 10-m wind speed bias errors are below 0.5 m/s in 87% of cases, with
root-mean-square errors generally in the 1.5- to 2.0-m/s range. Bias errors in 2-m temperature are below
1 K in 92% of cases with RMS errors generally around 1.5 to 2.0 m/s. Despite strong seasonal variation in
meteorology in Southern California, we find no discernible seasonality in RMS or bias errors of temperature
or wind speed; see Figure S1. While future improvements of transport representation are always possible,
the combination of past validation and the meteorological comparison presented here establish that it is
reasonable for us to treat the WRF system as a representative base case for a locally tuned driver of transport.

In contrast, the HRRR model (Benjamin et al., 2016) has a resolution of 3 km over the continental United
States and uses a WRF physics model assimilating radar data every 15 min but is not optimized for the local
environment. HRRR output is available as of mid-2015, albeit with some gaps, most notably in August 2016
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when the model was upgraded to version 2. In addition, some STILT runs driven by HRRR fail before the
full prescribed simulation period is complete. We exclude from the HRRR inversions any observations for
which the necessary HRRR fields are not available or for which the HRRR-STILT sensitivity calculations
cover 12 hr or less due to gaps in STILT-HRRR. The latter condition excludes 4.2% of observations, spanning
every month of the study period but especially concentrated (6.9%) in November 2015 through March 2016.
Although the increased failure rate coincides with the Aliso Canyon gas leak, we judge that it remains low
enough to permit evaluation of the HRRR-STILT inversion.

The NARR (Mesinger et al., 2006) and the GDAS are much coarser, with resolutions of 32 km and 0.5◦,
respectively, and time steps of 3 hr but cover larger areas (North America and the whole globe). An advan-
tage to using HRRR, NARR, and GDAS is that all are run in a routine operational mode; output can be
downloaded from the NOAA READY archive in a format immediately suitable for transport modeling. For
low cost, low latency flux estimation in any urban environment, these products are available off-the-shelf.

We would not expect coarse products like NARR and GDAS to accurately represent conditions on fine spa-
tial scales within our estimation domain, which spans only about 200 km from east to west. The complex
topography and sea breeze circulation pattern of the LA basin (Lu & Turco, 1994, 1995) further complicate
the environment for transport modeling. Lin et al. (2017) emphasize the failure of transport driven by coarse
meteorology to reproduce the diurnal cycle of CO2 mole fraction in mountainous terrain. However, sev-
eral factors may mitigate the effect of poorly resolved topography: While the South Coast Air Basin domain
includes significant elevation changes, most of the observing sites are located in the valley; CH4 flux gener-
ally has a less pronounced diurnal cycle than does CO2 flux; and as recommended by Lin et al. (2017) for
coarse meteorology, we use only observations taken between 12:00 and 16:00 local time, when the terrain
effects are minimized and the representation of vertical mixing is believed to be most reliable.

Driven by each meteorological product, STILT simulates the transport of 800 particles 60 hr back in time
from each observation. The 60-hr simulation time was chosen conservatively to ensure that all recent
within-domain influences on the particles are captured. In addition to advection, STILT includes a stochastic
component that can simulate particle motion on spatial and temporal scales shorter than that of the driving
meteorology, which may help mitigate the effect of using temporally coarse products like NARR and GDAS.

Our inversions process data from the surface monitoring network maintained by the LA Megacities Carbon
Project, which measures CH4 mole fractions at nine locations within our domain: Granada Hills, Mount
Wilson Observatory, Pasadena/Caltech (CIT), downtown LA at the University of Southern California (USC),
Compton, CSU Fullerton, UC Irvine, Ontario, and San Bernardino. Detailed information about each site is
given in Verhulst et al. (2017). Data availability for each site during the study period is shown in Figure S2;
an additional site at Canoga Park was not used here because it came online only in October 2016, at the end
of our study period. Background concentrations are estimated as in Verhulst et al. (2017).

In order to test the impact of network density, we also perform inversions using a reduced network and using
a single observing site (in addition to the background site). The single-site inversions use the network's most
centrally located site, at the USC site. The USC site was chosen to reflect a plausible design for a network
consisting of only a single site, which would likely be designed to be sensitive to as much of the domain as
possible at least part of the time. The reduced-network inversions use the sites at Fullerton, in the eastern
part of the domain, and at Granada Hills, in the northwest near the Aliso Canyon facility, in addition to the
USC site. These sites are selected to cover a broad domain in the basin and because observations are available
for these three sites for the vast majority of the study period. In both the single-site and reduced-network
cases, we would expect inversion performance to suffer if sites covering less of the domain were chosen. A
complete description of the observing network is available in Verhulst et al. (2017).

In all inversions, we employ the geostatistical inversion methodology developed by Yadav et al. (2019). In
addition to a model linearly proportional to the distribution of emissions in the California Greenhouse Gas
Emissions Measurement (CALGEM) inventory (Jeong et al., 2012; Zhao et al., 2009), we include a spatially
constant model component, since we expect that the inversions using coarse meteorology may be unable to
resolve the location of detected fluxes. Note that no input singles out either the location or the time period
of the Aliso Canyon natural gas leak. In other words, this inversion makes use of no prior knowledge of the
leak. We constrain the methane fluxes to nonnegative values using a bounded version of limited memory
Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization (Byrd et al., 1995), which is well suited to rapidly
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Figure 2. (points) Estimated total CH4 flux time series for the SoCAB, at 4-day time intervals, according to inversions using transport driven by each of four
meteorological models and using the full observing network (nine sites), a reduced network (three sites), or a single observing site. (curves) The 28-day running
means of each time series for visual reference (not used in the analysis). The shaded band indicates the typical range of estimates in past studies. The dashed
vertical lines indicate the start and end dates of the Aliso Canyon natural gas leak. SoCAB = South Coast Air Basin; WRF = Weather Research and Forecasting;
HRRR = High-Resolution Rapid Refresh; NARR = North American Regional Reanalysis; GDAS = Global Data Assimilation System.

minimizing functions of many variables and thus facilitates rapid, near-real-time calculations. This is differ-
ent from the Lagrange multiplier approach used in Yadav et al. (2019). Additional subtle differences between
the WRF inversion case here and that of Yadav et al. (2019) are that we exclude periods in which STILT trans-
port fails using any of our meteorological products (as described above), our focused time series is slightly
different, and we do not include the Canoga Park site when it comes online late in the time period. These
differences are driven by either the motivation to construct a fast, operational system or to ensure we make
fair 1:1 comparisons across meteorological products.

The nonnegativity constraint on fluxes makes the posterior emissions probability non-Gaussian, which pre-
vents us from calculating posterior uncertainties analytically. Uncertainties can be computed as in Yadav
et al. (2019) by generating realizations from the posterior covariance distribution. However, each inversion
covers only two consecutive 4-day periods, the first of which is discarded as a spin-up window. As a result,
the posterior uncertainty may not fully account for variation due to changes in the (actual or modeled) sensi-
tivity of the observations to localized surface fluxes. That variation is especially important for our purposes,
since we test the detectability of localized flux events and since we use coarse meteorological products in
which the footprint of sensitivity may be misplaced even when its magnitude is correct. We therefore rely on
the spread of flux estimates across a number of consecutive 4-day periods, rather than a calculated uncer-
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tainty for any given period, as an estimate of variance when testing for flux changes (see section 3.2). For
future near-real-time applications, this method has the additional advantage of saving the computing time
needed to generate the realizations.

3. Analysis
3.1. Basin Total Flux
Estimated whole-basin methane fluxes from each of the four inversions are shown in Figure 2. The Aliso
Canyon event and seasonal cycle, known features we are using to test operational meteorologies, appear
evident in all inversions, and we assess this statistically in section 3.2. All inversions show emissions up-ticks
prior to the start of the Aliso Canyon event, which could be indicative of the leak beginning before the noted
start date, or part of the seasonal increase in emissions. While this study does not attribute this feature, note
that it is not explained by the timing of the 1-day periods used in the inversion, since the increase begins in
periods which do not overlap the reported leak. Considering emissions magnitudes, when the full observing
network is included, estimates using transport driven by WRF and NARR average 53 and 47 Mg/hr outside
the Aliso Canyon leak period, respectively, in broad agreement with the 35- to 50-Mg/hr range of baseline
emissions estimates in other studies (e.g., Peischl et al., 2013; Wecht et al., 2014; Wennberg et al., 2012; Wong
et al., 2015). That our estimates fall at the upper end of that range is not surprising given that much of the
previous work relied on observations taken in May–June 2010, not during the peak of the seasonal emissions
cycle (see section 3.2). Estimates using HRRR are considerably higher than those using WRF, by about 96%
on average over the 18-month study period, and estimates using GDAS are somewhat lower, by about 16%
on average.

Much of the difference in estimated flux is explained by the difference in overall mean total sensitivity
assigned by each model to the measurement network. We compute the mean total sensitivity Hmean for
each model over the 18-month period of the study by summing the sensitivity of the nine measurement
sites and then taking the mean over spatial flux grid cells and over observation times. In order to make a
direct comparison, we exclude (for all models) observations for which HRRR fields are missing or for which
HRRR-STILT runs failed; see section 2. Treating WRF as a transfer standard, we perform an empirical cali-
bration, scaling the posterior fluxes sj from the NARR, HRRR, and GDAS-driven inversions (j) by the ratios
of the sensitivities computed using those models relative to those using WRF:

scal ,𝑗 =
Hmean ,𝑗

Hmean,WRF
× s. (1)

After calibration, the mean posterior emissions scal,j come into much closer alignment overall. The difference
in mean flux over the full 18-month study period relative to the WRF inversion is reduced to 17% with
HRRR and 1% with GDAS and increases modestly to 3% with NARR. The scaled time series are shown
in Figure 3. As we look at increasingly shorter time scales, more scatter remains between the calibrated
flux estimates. The mean residual difference between monthly mean fluxes from the WRF inversion and
calibrated estimates over the same periods from the other inversions is about 20% with HRRR and NARR
and about 25% with GDAS. Individual 4-day flux estimates after calibration are moderately well correlated
overall, r = 0.47 to 0.50, but often diverge (see Figure S3).

If the sensitivity bias could be corrected using direct observations, our results suggest that accurate flux esti-
mates might be possible, at least 1-monthly and longer time scales, using more widely available models than
is generally assumed. However, several of the meteorological factors most clearly linked to the sensitivity
fail to explain the difference. STILT computes sensitivity to surface fluxes by tracking the amount of time
simulated air parcels spend in contact with the surface. The sensitivity Hij of the ith observation to the jth
flux region is given by (Lin et al., 2003)

Hi𝑗 =
mair

𝜌𝑗

𝜏

z𝑗
; 𝜏 = 1

Ni

Ni∑

pi=1
Δtpi ,𝑗

, (2)

where zj is the mixing depth, accounting for the effect of dilution, and 𝜏 is the average time spent by the
parcels within the bottom one half of the mixing layer above the flux region. The average is taken over Ni
simular parcels released backward from the ith observation and indexed by pi. On the basis of these relations,
we would expect the intermodel differences in sensitivity to be explained by systematic differences either
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Figure 3. Estimated SoCAB total CH4 flux time series in inversions using the full observing network after calibration
by scaling the fluxes by the relative total sensitivity assigned to the observing network by each driver of the transport
model. The calibration brings the estimates into close agreement overall. (curves) The 28-day running means of each
time series for visual reference (not used in the analysis). The shaded band indicates the typical range of estimates in
past studies. The dashed vertical lines indicate the start and end dates of the Aliso Canyon natural gas leak.
SoCAB = South Coast Air Basin; WRF = Weather Research and Forecasting; HRRR = High-Resolution Rapid Refresh;
NARR = North American Regional Reanalysis; GDAS = Global Data Assimilation System.

in the mixing height or in the residence time, that is, the time for air to travel from the edge of the study
domain to the observing site, as driven by the wind speed.

In the STILT runs driven by each model or reanalysis product, we computed the mean time spent in the
domain by measured air parcels before encountering an observation site (residence time) as well as
the time-averaged mixing depth along the parcel's path. The same filtering was applied as in computing the
mean sensitivities. As shown in Table 1, the results do not explain the differences in sensitivity. On aver-
age, mixing depths in HRRR are almost the same as those in WRF, and residence times are only modestly
shorter—yet the sensitivity is much less. On the contrary, mixing depths in NARR are 80% higher on average
than those in WRF, yet the sensitivity is very similar.

Since parcels may be within the horizontal extent of the domain but above the bottom half of the mixing
layer (and therefore considered by STILT to be insensitive to surface fluxes), we also computed the fraction
of their residence time that measured parcels spent near the surface. As shown in Table 1, this “near-surface

Table 1
Comparison of Relative Sensitivity With Mean Meteorological Variables Across Driving
Meteorological Products

WRF HRRR NARR GDAS
Mixing depth (m) 615 612/99% 1,109/180% 573/93%
Residence time (min) 315 278/88% 250/79% 308/98%
Near-surface fraction 0.57 0.49/87% 0.65/115% 0.45/80%
Predicted relative sensitivity — /77% /51% /84%
Actual relative sensitivity — /53% /96% /120%

Note. First three rows: Mean values of meteorological variables expected to contribute
to sensitivity, for STILT driven by each of four models or reanalysis products. These
variables are described in section 3.1, and percentages are relative to the same variables
in WRF. Fourth row: Expected ratios of the sensitivity in HRRR, NARR, and GDAS,
relative to that in WRF, given the above variables. Fifth row: Actual ratios of the sentivity
in HRRR, NARR, and GDAS to that in WRF. The actual relative sensitivities are not
accurately predicted on the basis of the mean meteorological variables. WRF = Weather
Research and Forecasting; HRRR = High-Resolution Rapid Refresh; NARR = North
American Regional Reanalysis; GDAS = Global Data Assimilation System.
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fraction” differs from WRF by no more than 13% in any of the other models. The expected combined effect
of the mixing depth, residence time, and near-surface fraction is summarized on the fourth line of Table 1,
in which we compute the relative sensitivity predicted by those mean variables according to

Hmean

Hmean,WRF
=

zWRF

z
× 𝜏

𝜏WRF
× 𝑓

𝑓WRF
(predicted), (3)

where f is the near-surface fraction. The resulting prediction fails to capture the actual differences in total
mean sensitivity, which are given on the last line of Table 1.

Therefore, although basin-wide, 18-month-average sensitivity explains the gross differences in estimated
flux between the inversions, the basin-wide, 18-month-average differences in the relevant underlying mete-
orological variables do not control the sensitivity in the same way. In the transport model, the whole basin
is not treated as a single region; rather, equation (2) applies separately in each 0.03◦ grid cell and for each
4-day period, and the fine-scale interactions between the variables have a substantial effect.

An important implication is that our modeled average sensitivities could not be calibrated to ground truth
by debiasing the underlying meteorological variables in a basin-averaged manner. For example, using lidar
observations in Pasadena, California (colocated with one of the LA Megacities observing sites), Ware et al.
(2016) showed that NARR persistently overestimates the mixing depth at that location, by more than a factor
of two on average, and that any local mixing depth bias in WRF was likely much smaller. Indeed, we can
see in Table 1 that mixing depths in NARR are very high on average over the whole domain. However, if the
estimated fluxes in the NARR inversion were scaled to correct for this bias as suggested by Ware et al. (2016),
the result would be to introduce a large positive bias into the fluxes. Of course, wind speed and mixing depth
observations can be used to evaluate and improve meteorological drivers of transport, as was done for the
WRF configuration employed here by Feng et al. (2016)—but our results show that a mean calibration factor
constructed from those observations could not be reliably correct.

We might expect that the mean meteorological variables would better predict the total sensitivity over shorter
time periods, since correlations between the variables might be less important. However, we find that this
is not the case on monthly time scales (see Table S2) nor do calibration factors constructed from monthly
average total sensitivities perform as well as the calibration factors calculated over the full 18-month study
period. Calibration factors computed seasonally do somewhat better, but in most cases, seasonal mean
fluxes come into closer agreement after applying the full 18-month calibration than after applying seasonal
calibration. Overall, the calibration method seems to be most effective when applied over a year or more.

One alternative to computing calibration factors from meteorological observations could be to run a trusted
custom model for a limited period, compute a calibration using the mean sensitivity for that period, and
then continue estimating fluxes using an operational product. Though the time period of our study is too
limited for a conclusive demonstration, our experience suggests that this approach could be successful. We
computed calibration factors for each of HRRR, NARR, and GDAS based on the first 12 months of the study
period and then applied those factors to the flux estimates for the last 6 months, July–December 2016. That
calibration reduced the difference in mean flux between HRRR- and WRF-driven inversions from 103%
to 2% and between GDAS- and WRF-driven inversions from 15% to 6%, though it increased the difference
between NARR- and WRF-driven inversions modestly, from 16% to 22%.

3.2. Anomaly and Trend Detection
We evaluate the ability of each inversion system to detect changes in the total basin flux, both seasonally
and due to an unusual event or change. We test significance using Welch's unequal-variances t test, which
has similar power to a standard t test and is appropriate whether or not the samples to be compared have
the same variance. The significances (p values) for all the tests described in this section are given in Table 2.

In all of the inversions using the full observing network, we observe a seasonal trend in CH4 emissions.
Emissions in November–December 2016 are estimated to be 38% (NARR inversion) to 83% (GDAS inversion)
higher than those in July–August. These periods were selected so as not to overlap the time frame of the Aliso
Canyon leak, in order to isolate the “normal” seasonal difference. The estimated difference is significant at
the 95% level or better in all four inversions. The consistent detection and timing of the seasonal change,
regardless of the meteorology used to drive transport, reinforce its status as a robust and substantial feature
of Los Angeles methane emissions.
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Table 2
Summary of p Values of Two-Sided Tests for Changes in Mean Emissions (a and b)
or Variance of Emissions (c), Comparing Summer to Winter of 2016 (a) or the First
64 Days of the Aliso Canyon Gas Leak in 2015 to the Equivalent Period in 2016 (b
and c)

Case WRF HRRR NARR GDAS
(a) Seasonal difference, Welch's t test

Full network 0.047* <0.001* 0.048* 0.012*
Reduced network 0.024* <0.001* 0.075 <0.001*
USC site only 0.53 0.0012* 0.025* 0.015*

(b) Aliso Canyon period, Welch's t test
Full network 0.17 0.025* 0.016* 0.039*
Reduced network 0.63 0.004* 0.051 0.30
USC site only 0.15 0.39 0.24 0.89

(c) Aliso Canyon period, F test for difference of variance
Full network 0.32 <0.001* <0.001* 0.044*
Reduced network 0.60 0.056 0.016* 0.021*
USC site only 0.45 0.21 0.36 0.82

Note. Tests significant at the 95% level are indicated with an asterisk. Seasonal
flux differences are detected in most cases even with reduced observations; the
Aliso Canyon leak is detected with the full network in the non-WRF inversions
and with the reduced network in some cases using the test of difference of vari-
ance. WRF = Weather Research and Forecasting; HRRR = High-Resolution
Rapid Refresh; NARR = North American Regional Reanalysis; GDAS = Global
Data Assimilation System; USC = downtown LA at the University of Southern
California.

We also test the detectability of the increase in flux during the Aliso Canyon leak period. To remove the
impact of the seasonal dependence, we compare the period 24 October through 27 December 2015 to the cor-
responding period in 2016 (in an operational setting, the comparison would generally be to previous years).
The difference is significant at the 95% level in Welch's t test in the HRRR, NARR, and GDAS inversions but
much less significant (p = 0.17) in the WRF inversion. Note that this test of event detectability is distinct
from quantifying the rate of a known leak as in Yadav et al. (2019).

Our ability to observe the Aliso Canyon gas leak using the LA Megacities observing network is limited by
its position near the edge of the inversion domain, such that its emissions are observable only intermit-
tently. However, as is apparent in Figure 2, this intermittency can result in an increase in the variance of the
retrieved fluxes, which may be significant even, or indeed especially, when the change in mean is not. In
fact, in an F-test for difference of variance comparing October–December 2015 to 2016 as above, the increase
in retrieved flux variance during the Aliso Canyon period is nearly as significant or more significant than
the change in mean flux in the inversions driven by HRRR, NARR, and GDAS. The increase in variance is
not significant (p = 0.32) in the inversion driven by WRF, which shows the least variability relative to the
estimated flux values. These results highlight the complimentary value of the two approaches, particularly
for less-optimized meteorology.

That the inversion driven by WRF does not significantly detect the Aliso Canyon event using our tests may be
surprising. One plausible explanation is that, during the leak period, the WRF inversion produces consistent
but only moderately elevated flux estimates. This moderate increase is not sufficient to distinguish itself
from the corresponding increase in late 2016. By contrast, the other inversions produce exceptionally high
estimates for some 4-day periods. Even though estimates for other periods are not elevated, the average
increase is sufficient for detection.

The difference in variability between the WRF inversion and the others may be due to the assignment of
covariance parameters according to Restricted Maximum Likelihood (RML) analysis. Rather than assign
prior uncertainties by expert judgment, RML finds the combination of covariances that make the actual
observations most likely, given the sensitivity footprints computed by the transport (Michalak et al., 2004).
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Figure 4. Sensitivity (p values) of inversions using each meteorological driver to hypothetical flux events occurring between 4 September and 26 October 2017
as a function of the change in mean flux and variance relative to the same period in 2016. The inversions shown here use the full observing network (nine
sites). Changes in mean flux are less significant when accompanied by high variance, but sufficiently large variance increases are themselves significant in an F
test. WRF = Weather Research and Forecasting; HRRR = High-Resolution Rapid Refresh; NARR = North American Regional Reanalysis; GDAS = Global Data
Assimilation System.

The variances of the observations and the spatial pattern of prior covariance are therefore intermediate
statistical quantities which are calculated during the course of the inversion. In our WRF-driven inversion,
RML assigns most of the prior covariance to the spatially constant pattern. The result is that the cost of
attributing an observed excess mole fraction to a flux is mostly insensitive to the spatial distribution of the
observation's sensitivity footprint. In the other inversions, although the magnitude of prior covariance is
similar on average, RML assigns more weight to the spatial pattern proportional to the CALGEM inventory,
so the penalty for assigning an excess flux is more spatially variable. This would tend to make the inversion
more sensitive to the modeled wind direction, which may not be accurate. If the footprint of a high observed
mole fraction falls over a source known to CALGEM, the flux estimate can increased a great deal at little
cost; but if the footprint falls over an area without sources in CALGEM, increasing the flux estimate is costly.

In general, the threshold for a flux event to be detectable by a given observing and inversion system depends
not only on the magnitude of the event but also on its duration and variance. It also depends on the even-
t's timing, because the mean flux and variance during the reference period used for comparison will vary
according to the seasonal cycle. By way of an example, for a hypothetical event persisting at least from 4
September to 26 October 2017 (and compared to the corresponding period in 2016), we compute the sensi-
tivity according to the better of Welch's t test and the F test for difference of variance for a range of estimated
flux increases and variances. The results are shown in Figure 4 for the inversions driven by each of the four
meteorological products. In this example, a flux increase estimated at 30–40% above the baseline by an inver-
sion using WRF or NARR would be detected as significant if the variance were approximately unchanged.
The same is true for an increase estimated at 20–30% by the inversion using GDAS or estimated at about
20% by the inversion using HRRR. Note, however, that the same thresholds do not persist at other times and
that the threshold for the actual flux increase due to an event may be higher if the event is not consistently
upwind of the observing sites.
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Figure 5. (heat map) Sensitivity of the full observing network (nine sites), a reduced network (three sites), and the USC site alone to fluxes within the South
Coast Air Basin during the first 4 days of the Aliso Canyon natural gas leak, 24–27 October 2015, as computed by STILT driven by each of four meteorological
products. (circles) Locations of observing sites. The three sites included in the reduced network are indicated by their three-letter codes. The star near the
western edge of the domain indicates the location of the Aliso Canyon facility. The breadth and magnitude of sensitivity degrade as measuring locations are
removed. WRF = Weather Research and Forecasting; HRRR = High-Resolution Rapid Refresh; NARR = North American Regional Reanalysis; GDAS = Global
Data Assimilation System; USC = downtown LA at the University of Southern California; GRA =Granada Hills; FUL = CSU Fullerton.

3.3. Network Density
As the number of observing sites is reduced, the methane flux retrievals generally become noisier, exhibit-
ing greater variance even in the absence of any known flux event. In almost all cases, robustly detecting
the Aliso Canyon leak event is more difficult with only three observing sites than with the full network.
However, the HRRR-driven inversion remains sensitive to the change in mean flux (p = 0.004), and the
NARR- and GDAS-driven inversions remain sensitive to the increase in variance (p = 0.016 and p = 0.021,
respectively).

With only a single observing location, none of our inversions can detect a significant change either in the
mean or in the variance of the fluxes during the Aliso Canyon leak. The USC site alone can constrain only
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a small part of the study domain and even that part only inconsistently. Figure 5 illustrates the decrease in
measurement constraint when the number of the number of observing sites is reduced.

By contrast, even a single measurement location is sufficient in most of our inversions (excepting that using
WRF) to observe the seasonal cycle. Broad and consistent sensitivity may be less critical for this purpose
than for detecting a point source event because the seasonal difference is likely to be widely distributed
throughout the domain. Although our study period is too short to observe it, we might expect the same to
apply to year-over-year secular changes.

4. Conclusions
Our results suggest that the ability of an in situ observing network to detect changes in emissions may be less
sensitive to the choice of transport driver than are estimates of the absolute total flux. Much of the difference
in absolute flux estimates between inversions driven by divergent meteorology seems to be attributable to
biases in long-term sensitivity, which can be calibrated by comparison to a trusted model chosen as a trans-
fer standard. Debiasing with weather observations (e.g., scaling results by observed bias in mixing depth)
would not be successful as the sensitivity bias is not predicted by the mean values of the relevant underlying
meteorological variables. However, an accurate total estimate is not a prerequisite for observing changes,
including seasonally or in the case of leaks or other large anomalies. Although our study period is not long
enough to directly observe, trends over the course of years could likely be characterized in the same way. We
find that even with only a single observing site, seasonal flux changes emerge as robustly detectable with
operational meteorology supporting an inversion, suggesting sparse urban networks can potentially provide
valuable, rapid information.

The ability of a surface network to detect flux changes contributes to the functioning of a “tiered” observing
system (Duren & Miller, 2012) for megacities carbon emissions, which includes continuous monitoring at
the urban scale, targeted deployments to characterize significant individual sources, and regional or bound-
ary condition data from aircraft and satellites, as well as bottom-up inventories. A flux inversion system run
operationally could provide the first notice of events worthy of more detailed investigation by other meth-
ods. The more quickly these events can be identified, the better opportunity we will have to quantify and
characterize them as well as to inform stakeholders.

So far, the ability to usefully detect emissions events using urban concentration measurements has been
limited by the long time delay, typically measured in years, between collecting initial data and producing a
flux estimate. (An exception was the near-real-time monitoring performed by Lauvaux et al., 2013, in Davos,
Switzerland in 2011–2012.) One major source of latency is the time, expense, and computational resources
involved in meteorological modeling for transport. Others have begun demonstrating forward model sim-
ulations using operational meteorology (Pugliese, 2017). We now have demonstrated that at least some
operational monitoring goals utilizing atmospheric inversions can be met using a variety of meteorological
products, including several that are made available on a routine basis and nearly in real time. Output from
HRRR is posted on the NOAA READY archive each day, covering the previous day. Continuous archival of
GDAS has recently been supplanted by Global Forecast System (GFS) short-term forecasts, which are ini-
tialized with GDAS but have twice the resolution both in space (0.25◦) and in time (3 hr). GFS 0-hr forecasts
are finalized the same day, and since GFS covers the whole globe, they can be retrieved for the vicinity of
any major city or other area of interest. Our work shows that the coarse spatial resolution of these products
does not necessarily limit their utility in an urban setting.

Once the meteorological fields are ready, the remaining computational requirements can be modest. For
this study, calculating influence footprints with STILT using HRRR meteorology took about 15 min for each
observation on a 2.2-GHz CPU with 128 GB of RAM. In total, running footprints for up to 16 observations
in parallel, the footprints for a single inversion covering two consecutive 4-day periods took about 5.5 hr to
calculate. In an operational mode, each day's footprints could be run the next day, taking less than 1 hr. The
geostatistical inversions themselves each took only about 2 min, although that time would be longer if we
computed posterior covariances as in Yadav et al. (2019) or, especially, if we allowed off-diagonal terms in
the prior covariances.

This suggests that the remaining obstacle for an operational near-real-time inversion system lies not in
latency of meteorological drivers, flux priors, or inversion calculation but instead on the rapid collection of
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QA/QC'd network observations, and in cases where global models are used for background concentrations,
the latency of those global model runs. Given that this work suggests fluxes can be estimated rapidly once
concentration data are collected and quality-controlled, accelerating this step could see a near-real-time
system actually implemented.
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