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Figure S1 Absorption spectrum of SD-1 in water. 

 

1. Absorption Spectrum of SD-1 

The sulfuric dye 1 (SD-1) is a popular photoalignment material developed by Chigrinov et al.
[1,2]

 

To measure the absorption spectrum of SD-1, we dissolve it in DI water at 10
-5

 M concentration. 

Fig. S1 shows the absorption spectrum measured by using a PerkinElmer UV-VIS 

photospectrometer.  

 



2. Local Field Distribution for Parallelepiped Orientation  = 30 

 

3. Plasmonic Lattice Resonance 

With the couple dipole (CD) approach, the parallelepipeds can be treated as electrical dipoles. 

For the i-th parallelepiped at position   , the dipole moment can be expressed as:         , 

where    is the polarizability.
[3,4]

  The electric field acting on the dipole    equals the sum of the 

incident electrical field and the electrical fields generated by the other parallelpipeds:  
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   is the incident field. When the incident wave vector is perpendicular to the plane of the diple 

arrays, the electrical fields on different dipoles are the same, say          . Then all are equal, 

i.e.             . 

 

Figure S2 (a, b) Snapshots of the local electrical field distributions, at two resonant wavelengths, 

a) 375nm and b) 480 nm respectively. The incident polarization is along the y-axis, and l=180 nm, 

h=80 nm, w=50 nm, p=220 nm, =30. (c) Calculated local electric field enhancement as a function 

of wavelength at the top center of the gap between two neighboring parallelepipeds. Here p, h and   

are fixed at 220 nm, 80 nm and 30 respectively.  
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In this formula,     is the angle between the vector     and the electrical direction. By defining a 

retarded dipole sum S(k):
[3–5]
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the dipole moment Pi can be expressed as               , where 

         
  

     
 



A resonance emerges when            , and the resonant frequency is determined by the 

real part of the S parameter.
[3–5]

 Since the parallelepipes are positioned in a triangular lattice, we 

only need to study the cases with  varied between 0 and 30. We calculated the S-parameter by 

summing over     within a distance of 50p. The numerical results shown in Figure S2 indicate 

that the variations of  impacts little on S. As a result, the frequency of the lattice resonance is 

insensitive to .  

  

 

 

Figure S3 Calculated S parameter as a function of wavelength and 

orientational angles of parallelepipeds. 



 

4. Projection Photopatterning System 

 

Figure S4 Schematic setup for the projection photopatterning based on the PMM. LS: white 

non-polarized light source; Obj1: imaging objective; Obj2: projection objective. The sample 

substrate is coated with a thin layer of photoalignment material such as SD-1.  

 

 

 

Figure S5 Simulated transmission spectra for plasmonic metamasks based on rectangular 

nanoapertures. The length and width of the rectangular nano-apertures are fixed at 220 and 100 

nm. 

5. Transmission Spectra of the Nanoaperture-Based Plasmonic Metamasks 

Here we present simulation results for the optical transmission spectra of the plasmonic 

metamasks based on rectangular nanoapertures developed in our prior work.
[6]

 The optical 

efficiency is almost negligible in the UV wavelength range where the absorption bands of the 

SD-1 and PAAD-22 are located.   
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