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 Abstract 

 

 Maternal diet during gestation is known to affect offspring phenotypes. The majority of dietary studies in 

pregnancy look at restriction of protein or exposure to high fat diet. Few concentrate on the critical macronutrient 

for fetal growth: carbohydrates (CHO). This study analyses both human and animal data for evidence of 

developmental programming of adiposity and dysmetabolism in adolescent offspring.  

 In 237 mother-child birth pairs in the human ELEMENT birth cohort, mother’s dietary carbohydrate 

intakes were assessed for association with child adiposity and metabolic health outcomes in peripuberty. Mothers 

with greater intakes of total and net CHO during pregnancy gave birth to children who had lower adiposity and 

lower metabolic risk during the peripubertal period. After accounting for maternal age, child age, sex, and 

pubertal status, children of women in the 4
th

 vs 1
st 

quartile of total CHO intake in the first trimester had 

a 0.12-unit lower BMIz score (95% CI -0.55, 0.31, p=0.10). Children of mothers in the 4
th

 quartile of total CHO 

intake also had a 0.07 unit (95% CI 0.28, 0.13, p=0.13) lower metabolic risk z score in peripuberty. Measures of c-

peptide followed a similar trend, such that the 4
th

 quartile of total CHO intake in the first trimester was associated 

with a 0.31-unit lower c-peptide score (95% CI -0.72, 0.11, p=0.05) compared to those whose mothers were in the 

1st quartile. These associations were not attributed to delivery method, child’s diet in peripuberty, or nutrient 

substitution with protein or fat.  

 This was further modeled in animals by exposing pregnant mice to 10% sucrose water or tap water during 

gestation. Sucrose exposed dams gave birth to offspring who had greater fat mass than dams exposed to water. 

Female pups of sucrose-exposed dams also had less fat free mass and better insulin tolerance in young adulthood. 

The mechanism for these effects is yet to be elucidated, but is not attributable to maternal weight during 

pregnancy, offspring food intakes, or offspring feeding efficiency. Further is necessary to highlight the mechanisms 

underlying these divergent results to two model systems.  
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1. Introduction 
 The incidence of obesity has markedly increased in the last three decades,

1
now pervading pediatric 

populations, with nearly 24 percent of children classified as overweight or obese worldwide in 2013.
2
 In parallel 

with the trends in childhood obesity, metabolic illnesses that have historically been confined to adult populations 

now afflict children and adolescents. For example, diagnoses of high blood pressure, non-alcoholic fatty liver 

disease (NAFLD), sleep apnea, cardiovascular risk, and type 2 diabetes have increased among children and 

adolescents in recent decades.
3
 The younger age of onset of such metabolic conditions not only increases 

economic and healthcare burden, but also has the potential to adversely affect the health of future generations.
4
 

 Gestation is a time when nutrition has the power to affect offspring phenotype and health in future life. 

Carbohydrates and their metabolic regulation are crucial to successful pregnancy. Glucose is the principal 

substrate provided by the mother that fuels the growth of the fetus.
5, 6

 It is well established that maternal diet 

during pregnancy can influence metabolic phenotype in the offspring.
7,8

Studies designed to evaluate the role of 

the gestational environment in offspring metabolic health have largely focused on low protein intake or increased 

fat intake during pregnancy; leaving the role of carbohydrate intake in gestation largely unstudied.
7, 9, 10

 To date, 

the few studies relating maternal carbohydrate intake to offspring health have focused on health outcomes during 

infancy or early childhood. In a study of 320 mother-child pairs in the Growing Up in Singapore Towards health 

Outcomes (GUSTO) cohort, Chen et al. examined associations of maternal macronutrient intake at 26-28 weeks’ 

gestation with offspring adiposity at birth.
11 

The researchers found that higher ratio carbohydrate-to-protein intake 

during pregnancy was related to greater neonatal adiposity – an association that was driven primarily by sugar 

intake.
11 

Some studies have also used the glycemic index as a proxy for the physiological effects of carbohydrate 

intake. For example, Scholl et al. found that greater consumption of low glycemic index foods during pregnancy 

was correlated with greater prevalence of small for gestational age infants in a prospective study of 1,802 mother-

infant pairs in Camden, NJ.
12

 Taken together, these studies indicate the relevance of both carbohydrate quantity 

and quality on offspring health outcomes. 

 Animal studies provide insight on mechanisms linking maternal carbohydrate intake to offspring health. In 

rodent models, maternal high carbohydrate intake during pregnancy has been related to hypertension, poor 
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glycemic control, inflammation, and increased adiposity in offspring.
7, 13, 14, 15, 16 

Some studies attribute these 

changes with an upregulation in appetitive signals and inflammation in the in the neonate.
15, 16, 17 

A more recent 

study identifies pancreatic islet size increases alongside exposure to a high carbohydrate diet in utero, possibly 

explaining both changes in metabolism and body fat storage in the offspring.
18

 Together, these findings indicate a 

lasting influence of maternal carbohydrate intake on offspring metabolic health. However, there exist limitations in 

the current literature.   

 Current literature demonstrates a few crucial limitations. In human studies, many analyses of maternal 

diet in pregnancy fail to measure intake over the duration of gestation, many rely on a single dietary questionnaire 

administered in mid or late pregnancy. The inclusion of additional measures of dietary intake during gestation may 

be more informative as maternal dietary patterns could vary during the pregnancy, and timing of dietary changes 

captured in additional questionnaires may occur concomitantly with critical periods of development in the fetus, 

affecting organ and tissue development as it occurs. The outcomes of studies that examine maternal diet in 

pregnancy often focus on infancy and early childhood. The exclusion of later periods of life, and critical ones such 

as adolescence, may result in limited knowledge of the more lasting consequences of maternal diet on child health. 

This is surprising, as adolescence is a life stage that is not only thought to be a sensitive period for development of 

obesity-related disease,
7
  but is also a time when many metabolic risk factors (e.g., obesity status,

14, 19
 lipid profile,

9
 

blood pressure
20

) may be set for life.
6, 21

 Therefore, identification of modifiable early-life determinants of obesity 

and metabolic risk during adolescence is critical.  

 Animal models have also evaluated the effect of high carbohydrate diets in pregnancy. These studies 

utilize numerous methods to deliver high carbohydrate to developing animals; from exposure of the mother to 

sucrose water, oral gavage of sweetened milk substitutes.
15

 The use of non-protein matched control diets,
14

 

making interpretation of the results difficult, as it is known that protein restriction is a factor in fetal growth 

restriction, and later adult obesity.
5
 There is also inconsistencies in the practices of maintaining pups on control 

diets or exposing them to further dietary insult, further complicating the analysis of the original maternal insult.  

Some studies utilize the reducing of litters to better correct for number of pups and abundance of dam’s milk in 
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lactation. This ultimately means many mechanisms are proposed to explain a variety of phenotypes; making 

recommendations for improving dietary practices difficult to generate.   

 

2. Specific Aims 
 To address the gaps in the literature, I examined associations of maternal carbohydrate intake during 

pregnancy with adiposity and metabolic health outcomes of adolescent offspring in the Early Life Exposure in 

Mexico to Environmental Toxicants (ELEMENT). This was then paralleled in an animal model. Because 

carbohydrates are necessary for accretion of tissue in the fetus and exposure to high levels of carbohydrates may 

program metabolic systems for greater presence of CHO, it is expected that carbohydrate intakes during 

pregnancy will be associated with greater metabolic health risk and higher adiposity in adolescence. This will be 

evaluated in the following specific aims: 

1. Examine the association of maternal carbohydrate intake during pregnancy with offspring adiposity according to 

body mass index (BMI) z score, waist circumference, skinfold thickness, and metabolic health as indicated by 

glycemia (fasting blood glucose and insulin), leptin, lipid profile (total cholesterol, low-density lipoprotein [LDL], 

high-density lipoprotein [HDL], and triglycerides), and blood pressure (systolic blood pressure [SBP], and diastolic 

blood pressure [DBP]). 

2. Investigate whether the relationship between maternal carbohydrate intake during pregnancy and offspring 

adiposity and health is modified by the child’s own carbohydrate intake during peri-puberty.  

3. Examine the effects of maternal exposure to high carbohydrate diet during pregnancy on offspring adiposity as 

indicated by indirect fat mass measurement, and metabolic health in a mouse model. 

3. Methods 

3.1 Human epidemiological methods 
Study population 

 Participants are part of the ongoing Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) 

cohort in Mexico City. Pregnant women in their first trimester were recruited in public maternity hospitals 
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between the years 1997 and 2004 to be included as mother-child pairs in the study. From 2011 to 2012, 250 

children of these mothers in the ELEMENT cohort were enrolled in the study to evaluate peri-pubertal outcomes. 

Mother’s consent and child’s assent were obtained. These children were between the ages of 8 and 14 and they 

completed anthropometric evaluation, a fasted blood draw, and questionnaires administers by an interviewer. All 

protocols were approved by the institutional review boards of the Mexico National Institute of Public Health and 

the University of Michigan.  

Dietary assessment 

 Dietary intake for mothers was collected during each trimester through use of a semi-quantitative food 

frequency questionnaire (FFQ) based on the 2006 Mexican Health and Nutrition Survey.
22

 The FFQ was 

administered during an interview and is designed to represent the previous month’s usual intake. The FFQ is 

composed of a list of 104 foods, validated as representative for the typical Mexican diet in 1983.
23

 Dietary 

information for the children was collected via self-reported semi-quantitative FFQ, developed in close relation to 

the 2006 Mexican health and nutrition survey.
22

 For children between the ages of 7 and 11, the FFQ was 

administered with the help of the mother.
24

 For children ages 12 and older, the FFQ was completed by the child. 

 Frequency of consuming a food was reported using a scale ranging from “never” to “6 times a day.” 

Nutrient content for the foods were verified by two of the following food database sources: Instituto Nacional de 

Salud Publica 2002, the United Stated Department of Agriculture, and the Mexican National Institute of Nutrition 

and Medical Services Salvador Zubiran.
24

The kilo-calories (kcals) for one portion size of the food was multiplied by 

its frequency of consumption and all foods were summed, to create a usual daily kcal intake. The food groups are 

total-energy adjusted using the residuals method. This analysis utilized 3 carbohydrate variables, total 

carbohydrate, net carbohydrate, and sugar. The net carbohydrate value was calculated as fiber intake subtracted 

from total carbohydrate intake and was then energy adjusted. The sugar variable represents total sugar consumed, 

and therefore does not differentiate between sugar from natural sources, such as fruits and vegetables, and added 

sugars supplied in processed foods.  

Adiposity 
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 Indicators of child adiposity was carried out by trained research staff. Weight was measured in kilograms 

on a digital scale. Height was measure in centimeters using a calibrated stadiometer. Waist circumference was 

measured using a non-stretchable measuring tape. The skinfold thicknesses of both sub-scapular and triceps were 

taken in millimeters using calibrated skin calipers. Each of these measures was completed twice, with the average 

of the two measures being using in the analysis. Using weight and height data collected, age and sex-specific Body 

Mass Index (BMI) z-scores were calculated for each participant using the WHO references 
25

 to indicate total body 

size and overall adiposity. Indicators of visceral adiposity include sub-scapular skinfold thickness and waist 

circumference. Triceps skinfold thickness indicates subcutaneous adiposity.
26

  

Metabolic Health 

 After an 8 hour fast, blood was collected from children by a trained research assistant. The fasted blood 

sample provided measures of glycemia, such as glucose, and C-peptide. Blood lipids were deduced from this 

sample including total cholesterol (mg/dL), triglyceride (mg/dL), and both HDL and LDL cholesterol (mg/dL). 

Systolic and Diastolic Blood pressure (mmHg) was assessed in the seated position by a research assistant in 

duplicate, with the average of the two used in the analysis. A summary risk variable (MetRiskz)was calculated using 

an aver of rive-internally standardized z scores for waist circumference, fasting blood glucose, fasting C-peptide (as 

a surrogate for insulin secretion), the ratio of triglyceride to HDL content, and the average of blood pressure 

measures.
27

  

Covariates 

 Upon recruitment, mothers provided information including current age, reproductive history, lifestyle 

factors, and information on socioeconomic status. During the adolescent research visit, a pediatrician examined 

each child and assigned a tanner stage of 1(no pubertal development) to 5(fully developed) based on testicles, 

breasts, and pubic hair.
27 

Data analysis 

 Data were analyzed using SAS ® software version 9.4. I first conducted a univariate analysis to interrogate 

the distributions of the variables of interest, which include: mother’s carbohydrate intake during each trimester of 

pregnancy and offspring adiposity and metabolic outcomes (table 1). Then I proceeded with bivariate analyses to 
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identify potential confounding variables to be included in later multivariable models. This was achieved by looking 

at adiposity (BMIz score) and metabolic risk (MetRiskz score) distributions in relation across categories of 

sociodemographic variables (table 2), and maternal and perinatal characteristics (table 3). Variables with a p trend 

less than 0.2 were considered for inclusion in further models. 

 I examined associations between child outcomes and quartiles of trimester-specific maternal 

carbohydrate intake (total CHO, net CHO, and sugar intake). The use of quartiles enabled discovery of non-linear 

associations. After primary analysis I utilized multivariable linear regression to assess the associations between 

maternal CHO intakes during pregnancy with the offspring adiposity and metabolic health outcomes using four 

models. The first was the unadjusted association between maternal intakes and child outcomes. The second, 

included maternal intakes, maternal age at enrollment, child’s age, and child’s sex. The third added child’s pubertal 

status, and the fourth included an interaction term between child’s carbohydrate intake in peri-puberty and 

maternal CHO intake in pregnancy to deduce if the associations between maternal intake and child outcomes were 

mediated by child diet. Tables reflect beta estimates with 95% confidence intervals (CIs). Because inclusion of the 

interaction term did not precipitously alter the beta estimates, results are shown for model 3. Analysis stratified by 

sex was evaluated, but was found not to differ, results are therefore not stratified by sex.  

 We also conducted further sensitivity analyses. First, we evaluated maternal carbohydrate intake using 

current recommendations for carbohydrate consumption. We coded trimester-specific intakes of total CHO into a 

three-level variable, to reflect the acceptable macronutrient distribution ratios (AMDR) for carbohydrate; 45-65 

percent of energy
28

, as well as a two-level variable for the sugar recommendation of less than 10 percent of energy 

from added sugar.
29

 Sugar intakes in ELEMENT are a reflection of total sugar intakes, and therefore are not a direct 

measure of this recommendation, but it is the closest approximation available in the ELEMENT dietary data. To 

attempt to parse apart the effects of added sugar from naturally occurring sugar, we conducted trimester-specific 

multivariable analyses using quartiles of sugar sweetened beverage and fruit intakes with child BMIz and MetRiskz 

scores. We also used nutrient substitution models to evaluate potential confounding by protein or fat intake. Here, 

we examined the effect of replacing total carbohydrate intake by a matched kcal portion of either fat or protein. 
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Finally, we further explored the impact of adjustment for additional covariates – namely, delivery method, and 

number of household possessions (an indicator of socioeconomic status) in lieu of maternal education. 

3.2 Basic science mouse model 
 
Animals 
 

 Male and Female NON/ShiLtJ mice (stock # 002423) were purchased from Jackson Laboratory (Bar 

Harbour, ME).
30

 This strain is characterized by low plasma insulin levels and are commonly used in studies for 

obesity outcomes.
30

 Mice are maintained on 12-hour light-dark cycle in a humidity and temperature-controlled 

facility in accordance with institutional animal care and use committee (IACUC) policy. Addition of sucrose to water 

was approved by the University of Michigan Institutional Animal Care and Use Committee (IACUC). 

 

Breeding 
 

 Virgin female NON/ShiLtJ mice were bred with male NON/ShiLtJ in monogamous pairs. Females carried 

their first litter to parturition and nursed pups for 3 weeks to allow for development of maternal instinct and 

proper mammary gland function. Prior to the second mating of these females, half (n=8) were exposed to 10 

percent (w/v) sucrose in water ad libitum for two weeks, whereas the other half (n=8) received water ad libitum. 

Food intake, and liquid intake were measured weekly. Body weight was measured, and MRIs were taken of dams 

during each week of exposure and of pregnancy. After two weeks of sucrose exposure, males were reintroduced 

for breeding as monogamous pairs. The offspring of the second pregnancy were enrolled in the study. After post-

natal day (PND) 3, litters were standardized to 4 pups, 2 females and 2 males. The pups that were kept were the 

closest to the mean weight for each sex at PND 3. Due to mis-assignment as male or female, future litters are to be 

sexed and reduced at PND 4. At birth, water bottles were taken away and regained access to automated water 

supply. Litters nursed normally until weaning, and food was weighed weekly. Due to a lower than expected 

number of litters born during the first round of breeding, a second cohort has begun exposure to increase sample 

size.  

 

Offspring 
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 On PND 21, mice were weaned by sex and had ad libitum access to chow and water. Offspring were 

maintained in this way into young adulthood (PND 109). Food and water intake was measured weekly. Total body 

weight, fat mass, and lean mass was measured indirectly through weekly Echo MRI scan beginning PND 21. Once 

pups reached adolescence (PND 50), pups were subjected to an insulin tolerance test (ITT) to assess insulin 

sensitivity. This was conducted after a 6-hour by intraperitoneal injection of Humulin (0.75uL/kg body weight). The 

day before sacrifice, PND 108, pups were subjected to a two-hour preference test where in the first two hours of 

the dark cycle they were denied water, and in the following two hours were provided two bottles; one filled with 

10% sucrose, the other water. Volume consumed of both water and sucrose was recorded and analyzed for 

evidence of differential sweet taste preference. Following taste preference testing, animals were fasted for 16 

hours and sacrificed. At sacrifice, blood glucose levels were assessed by glucometer, and serum was collected by 

cold centrifugation of whole blood at 12000 rpm for twenty minutes. Liver, inguinal white adipose tissue, and 

gonadal white adipose tissue were collected and snap frozen using liquid nitrogen and maintained in -80 degrees F.  

Data analysis 
 
 Statistical analyses and data visualization were completed using R version 3.3.2. Two-way ANOVA was 

utilized to compare effects of maternal treatment group, sex, and their interaction. The current analysis represents 

seven total litters born to date (sucrose n=2, water n=5). Due the small sample size of the current treatment 

groups, the current analysis reflects only preliminary results. Resulting p-values are from a two-way ANOVA 

following the sacrifice of the animals at PND 109. A p-value of 0.05 or less is significant. Upon completion of 

additional litters in the study, mixed linear modeling will be employed to assess the significance of treatment 

group, sex, and control for collinearity of repeated measures.  

4. Results 
4.1 Human epidemiological results 
 
 Energy-adjusted carbohydrate(CHO) intakes in pregnancy are shown in Table 1, values are 

shown as total CHO, net CHO (total CHO minus fiber), and sugar intakes for each trimester. Total CHO 

intakes meet the recommendation of 175 gram per day during pregnancy for each trimester.6 Net CHO 



10 

 

intakes and total CHO demonstrate similar variance. Sugar intakes in all three trimesters show the 

greatest variance, with as little as 10.7 grams per day and as many as 108.4 grams.  

 Table 2 displays the associations between maternal and child participant characteristics and child 

BMIz and MetRiskz scores. Delivery method appeared to be associated with both BMI and MetRiskz 

scores (p= 0.06, 0.10 respectively); with vaginal birth being associated with lower risk. For this reason, we 

evaluated including birth method in the multivariate model. The inclusion of birthing method failed to 

change z score estimates, and as a result was excluded in the final models. Child’s age was associated 

with differential adiposity and metabolic risk, and for this reason was included in the model. Pubertal 

status was associated with differential metabolic risk. With those males and females who had not begun 

puberty having lower metabolic risk z scores. For this reason, pubertal status was included in the model.  

 Carbohydrate intakes in each trimester was assessed for maternal and child characteristics in 

Table 3. Although higher parity in the first trimester was associated with greater total CHO intakes 

(p=0.004), it was not considered for inclusion in the model, as it was not associated with CHO intakes in 

later trimesters.  

 Adiposity measures were assessed, and the trend of greater intakes of total and net CHO in the 

first trimester was associated with lower adiposity in peripuberty. characteristics. Table 4 shows the 

maternal intakes of carbohydrate during each trimester in quartiles with indicators of adolescent adiposity. 

In the first and third trimesters, greater intakes of total CHO are associated with lower BMIz, waist 

circumference, and skinfold thicknesses. The same trend appears for net carbohydrate intakes and for 

total CHO in the third trimester, with sub-scapular to triceps skinfold thickness ratio reaching statistical 

significance (p=0.05). Sugar; however, does not have a linear association. Redistribution of sugar intakes 

into quintiles did not clarify the directionality and strength of the trend, so further analyses were left as 

quartiles. Analyses using SSB and fruit intake did not result in consistent trends for either BMIz or 

MetRiskz outcomes and are therefore not shown. This analysis failed to clarify the effect of sugar intakes 

one offspring health and adiposity outcomes. 

 Associations of Glycemia and adipokine (leptin) levels with maternal intakes in CHO are shown in 

Table 5. Total and net CHO intakes in the first and third trimesters were associated with lower c-peptide 
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levels and c-peptide IR. The trends in glucose and leptin levels were inconsistent, as were those 

associations with all glycemia measures and sugar intakes.  

 Blood lipid levels and their associations with maternal carbohydrate intakes are shown in Table 6. 

Although in the second trimester greater total and net CHO intakes appear to be associated with greater 

total cholesterol in peripuberty, large CIs indicate these estimates are not a sensitive reflection of the true 

association. The same trend appears in the second trimester for LDL cholesterol, with u-shaped 

associations and wide confidence intervals.  

 Table 7 shows associations with metabolic risk and blood pressure. There appear to be no 

significant trends in direction or magnitude for blood pressure and maternal CHO intakes in pregnancy. In 

MetRiskz scores, there is a non-significant trend in the first and third trimesters for greater total and net 

CHO intakes conferring lower risk z scores. However, these associations failed to reach statistical 

significance.  

Sensitivity analyses 

 Evaluation of sugar and total carbohydrate intake recommendations were completed and are 

shown in Table 8. For both BMIz and MetRiskz scores, consuming more sugar than is recommended is 

associated with having lower z scores. These associations failed to reach statistical significance. The 

associations of BMIz in relation to the AMDR for carbohydrate were inconsistent in direction. This is 

evidenced by the lowest BMIz score being associated with below recommended intakes in the first and 

third trimester, and with greater than recommended intakes in the second trimester. Similar 

inconsistencies are evident in MetRiskz; the lowest risk was associated with greater than recommended 

intakes of CHO in the first, and second trimester, and with lower than recommended intakes in the third 

trimester. Neither the associations for BMIz nor MetRiskz were significant. The study of nutrient 

substitution shown in Table 9 suggests that substitution of either protein or fat for total carbohydrate was 

neither protective nor detrimental for child adiposity and metabolic risk, as the CI were very large.  

4.2 Basic Science Results.  
 Dams who had ad libitum access to sucrose and chow consumed fewer kcals from chow (figure 

1A), but more kcals overall (figure 1B); with the remaining energy coming from sucrose. The large 

differences in macronutrient intakes came from carbohydrate intakes, with the greatest differences in 
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refined carbohydrates between groups (figure 2A and 2B, respectively). Maternal body weight did not 

differ by exposure group (figure 3) and the mean differences in gestational weight gain were not 

significantly different (11.3g±2.70 and 11.4g±1.94 for sucrose and water respectively). Fed blood glucose 

differed between treatment groups in dams as shown in figure 4 (p=0.02). Dams who were exposed to 

sucrose treatment had greater fed blood glucose than those in the water group. 

 Offspring outcomes were heavily influenced by sex and were therefore separately analyzed. After 

PND 30, male and female bodyweights diverged, with males weighing more than females (figure 5A). 

Beginning PND 80, males from the sucrose group developed greater bodyweight than their water treated 

counterparts. By the time of sacrifice, bodyweight was not statistically different by treatment as 

demonstrated in figure 5B (p=0.24, but was by sex, p=0.001). Offspring fat mass begins to diverge 

between groups at PND 50, with both male and female sucrose groups having greater fat mass than 

those exposed to water (figure 6). Fat mass as measured at sacrifice by both inguinal and gonadal fat 

pats normalized to bodyweight were not significantly different between treatment groups (p=0.60 and 

p=0.73, respectively). Offspring fat free mass differed in trend by sex. Female sucrose exposed mice had 

lower fat free mass than water exposed females, and this persisted from PND 30 to sacrifice. In males, 

sucrose exposed mice had greater fat free mass than those exposed to water beginning PND 70, which 

became more divergent over time (figure 7). As muscle mass was not evaluated in sacrifice, no p value is 

available for this measure. Insulin tolerance was improved in females exposed to sucrose (figure 8A), but 

not males (figure 8B).  

 Offspring food intake patterns also differed by sex, with males of both sucrose and water groups 

eating similar cumulative number of kcals and females exposed to sucrose consuming fewer kcals than 

those exposed to water (figure 9). Feeding efficiency was explored as a possible mechanism for differing 

body compositions between groups and sexes (figure 10). It was found that in general, males have 

greater feeding efficiency (p=0.03) than females and that group assignment did not explain the 

differences in feeding efficiency (p=0.17). After exposure to a dark cycle sucrose preference test, it was 

found that there was no difference in preference to sucrose based on maternal exposure group or sex of 

offspring (figure 11). 
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5.Discussion 
 Here, we showed that maternal carbohydrate intakes were related to offspring phenotype in two 

models with diverging results. In humans, we found that higher intake of total carbohydrates and sugar 

during pregnancy was associated with lower adiposity and metabolic risk among 237 mother-child pairs in 

Mexico City. In the rodent model, we found that maternal sucrose exposure during pregnancy resulted in 

greater adiposity in both males and females, greater body weights in adult males, and reduced fat free 

mass in females throughout the life course. 

Findings from the human epidemiological study 

 There are many factors that could contribute to the reduced adiposity associated with greater 

carbohydrate intakes. One of the most likely contributors to these associations could have been 

measures of maternal physiology; including maternal pre-pregnancy BMI and a reliable measure of 

maternal glycemia in pregnancy. Both weight status and hyperglycemia have been found to be 

associated with nutrient sensing in development, which resulted in a larger birth weights in those infants 

exposed to both gestational diabetes and obesity.31 It is possible that maternal glycemia could have 

confounded the analysis because we did not have information on gestational diabetes(GD) collected in 

ELEMENT. If this were true, women who had GD may still have been diagnosed by their physician and 

counseled in executing a carbohydrate-controlled diet, which is known to result in more healthful 

outcomes for children at birth. The presence of this scenario without the availability of the GD variable to 

control for in the analysis may have led to a masking of the effects of a carbohydrate controlled dietary 

counseling intervention. Gestational weight gain is much more complex than simply the weight gained 

during the course of pregnancy. There is evidence that individual macronutrients may have the propensity 

to accrete gestational fat tissue.8 Whisner and colleagues found that carbohydrate intakes in pregnant 

adolescents were positively associated with an increase in abdominal fat.8 This effect was driven by 

added sugar intakes. If more gestational weight gain occurred as a result of carbohydrates intakes, it is 

possible that there was more abundant substrate (adipose tissue) for maternal gluconeogenesis, 

providing more glucose to the fetus.  

 Another plausible explanation of these results could be that exposure to high carbohydrate diet in 

utero programmed the offspring for a metabolic efficiency in metabolizing glucose. This could manifest in 
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greater utilization of glucose by lean mass during adolescence resulting controlled blood glucose levels 

without additional fat tissue deposition, as seen in the ELEMENT cohort with lower glycemia and less 

adiposity. There is also the possibility that the effects of fetal programming changes overtime and may 

result in a worsening of phenotype as the children age. Programming may occur many way, one such 

proposed method is through the microbiome, whose diversity can vary greatly on many factors, including 

birthing method. It has been noted that the odds of overweight and obesity in childhood are increased in 

those who were delivered via cesarean section.32 This is usually thought to be a result of unique flora 

associated with either colonization by vaginal or skin related micro-organisms during the birthing process. 

In the present study, it is not evident that the associations are attributable to the proxy measure we have 

available, delivery method.  

 In any longitudinal analysis, there is potential bias and error. In this study, there are two factors 

that may be the result of error in measurement. Firstly, capturing complex physiological processes can be 

difficult. This is true of puberty as it is measured in the ELEMENT analyses. As the pubertal transition is a 

phenomenon that occurs on a continuous spectrum, it can hard to categorize children into one of five 

stages. Thus, our results may still be vulnerable to residual confounding in tempo of sexual maturation 

that was not captured by Tanner stage. Another difficult area to accurately measure in subjects 

longitudinally is that of the habitual diet. The accuracy of the estimates based on analysis of the 

questionnaire depend on participants to accurately recall and report usual intakes, which can be a 

daunting task. This may result in participants underreporting their nutrient intakes. It may also manifest as 

reporting bias, in that participants may overreport foods they deem to be healthful and underreport foods 

they see as nutrient poor. If reporting bias was present, and was systemic in nature, it could not be 

corrected for in linear regression. Furthermore, food lists and options included food frequency 

questionnaires may not be exhaustive, and therefore could miss portions of the individual’s usual diet in 

the analysis. In general, though FFQs are imperfect and are subject to recall and reporting biases, they 

are one of the best measures available to deduce habitual diet, especially after total energy intake 

adjustment of nutrients.33 The U-shaped associations may have been driven by women who reported the 

lowest intakes of total carbohydrate also being among those who reported the lowest energy intake. The 

frequencies of persons reporting both lowest intakes of total carbohydrate and of energy were assessed 
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for each trimester and they did not outnumber individuals in other intake quartiles; therefore, this is 

unlikely to be what contributed to U-shaped associations. 

 After examination of current literature, no other study to date has demonstrated that greater 

maternal carbohydrate intakes in pregnancy is associated with lower adiposity and metabolic risk 

parameters. Somewhat similar studies that have focused on glycemic index found that mothers who 

consumed more carbohydrate low in glycemic index were more likely to deliver children that were small 

for gestational age.12 The lack of metabolic dysregulation and adiposity may be a result of the child’s in 

utero programmed environment matching the environment they live in daily, one that is rich in 

carbohydrates. If this is the case, it would take a mismatch of environment to stimulate disease 

phenotypes and obesity.34 Still other studies have published findings discordant to these, such as Chen 

and colleagues, who found that increased carbohydrate intakes in maternal diet during pregnancy was 

found to be associated with both greater BMI in childhood, but also earlier BMI peak velocity.34 

Inconsistencies in the literature about the effects of high carbohydrate diets in pregnancy with offspring 

health, and a lack of evidence for the microbiome, nutrient substitution, and sugar intake as a mechanism 

demonstrates a need for further study. It is still unclear what the true associations for this exposure are, 

and what biological mechanisms underpin them.  

Findings from the animal model 

 In the animal model, the results are a better reflection of the current literature. Toop et al found 

similar associated of body weight in early postnatal rats who were prenatally exposed to 10 percent 

sucrose. Pups were weaned onto chow diet and no differences in body weight were present at 3 weeks 

between males or females of groups. Unlike this study; however, once these pups reached 12 weeks of 

age, the lack of differences in body weight persisted including in gonadal fat masses in.35 Toop and 

colleagues also found a reduction in relative pancreas weight, which merits further analysis as the 

mechanism of action at play in the current study. Further evidence for pancreatic alteration driving 

changes in the offspring was offered when Zhang and colleagues,18 found that prenatal sucrose exposure 

in rats increased islet area in offspring which did not result in changes in insulin resistance measure by 

HOMA-IR. This would likely mean that timing of the exposure in utero is related to organogenesis, and 

more specifically, timing of exposure specific to the development of the pancreas. Because the sample 
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size is small, analysis of animal tissues collected; including serum, adipose tissue, and liver has not been 

completed. As a result of the preliminary findings, the next cohort of pups will undergo additional analysis 

of the pancreas, both at PND 4 in those pups who will be sacrificed to standardize milk supply and at 

PND 109 at sacrifice. This may perhaps provide better evidence for the mechanism whereby adiposity is 

greater with sucrose exposure and differing tolerance to insulin is seen when stratified by sex.   

Strengths and Limitations of the study 

 The current study has several strengths, namely the duality in models for assessing the effects of 

carbohydrates in utero. Few studies evaluate the same exposure in both humans and animals. In the 

human analysis, trimester-specific associations allow for more detailed understanding of critical periods 

within gestation. The use of multiple adiposity outcomes in children also strengthens this analysis. 

Subcutaneous and central measures of adiposity having been included allow for more sensitivity and may 

even facilitate inference of compartmentalization of fat tissue during development. The use of multiple 

measures of metabolic health, encompassing the whole range of metabolic risk- from hypertensive 

markers, to lipid markers, and glycemia- to the use of the MetRiskz score provided a detailed picture of 

adolescent metabolic health. Another benefit is the location of the sample, Mexico City. Mexico is one of 

the most heavily burdened nations in the world with both adult and childhood obesity.37,38 Studying the 

etiology of obesity in a nation that is heavily burdened may elucidate what makes certain nations or 

individuals a higher risk for development of obesity and comorbid illness and provide optimal opportunity 

for intervention and prevention.  

 It is well-established that murine models are highly valuable in understanding the etiology of 

obesity as a disease,39 especially as this method enables correction for varying environmental exposures 

constant across treatment groups and controls for genetic heterogeneity usually observed in human 

obesity. The use of 10 percent sucrose water was meant to model the habitual consumption sugar 

sweetened beverages in humans, and therefore represents a physiological dose of high carbohydrate 

exposure. This study was designed to protein-match control and experimental groups to control for 

confounding by protein restriction resulting in intrauterine growth restriction (IUGR). Protein restriction 

was not evident, as the sucrose group consumed 16.7±0.35 percent of energy from protein, and the water 

group consumed 24±0.00 percent of energy from protein. The sucrose group, although it had lower intake 
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of protein, did not reach the level of protein intake characteristic of restriction in IUGR studies, usually 

between 6-8 percent of energy from protein.40,41 As the timing of exposure being contained to only 

gestation, and not lactation, allowed us to narrow the timepoint of dietary programming to only effects 

having happened in the womb, and not confounded by offspring exposure to sucrose through use of 

water bottles and mother’s milk. The ability to monitor weekly changes in both fat and lean masses 

elucidated differences in body composition before changes in weight were noted.  

 Despite the careful design and execution of this study, there still exist limitations. In the human 

analysis, measures of maternal glycemia and of pre-gravid BMI would have been valuable tools. The 

inclusion of maternal glycemia and therefore gestational diabetes status may have helped to elucidate if 

the associations of higher carbohydrate intake relating to lower adiposity and metabolic risk z scores was 

at least, in part, attributable to hyperglycemia. As in any epidemiological study, it is possible that the 

method of recruiting mothers in health centers may have introduced selection bias, as those who choose 

to participate in a research study on health may be more invested in their health and take greater care in 

executing health behaviors characteristic of a healthful pregnancy. The composition of the sugar variable, 

being representative of total sugar and not added sugar, also created difficulty in comparing this sample 

to the recommendation for sugar intake given by the Institute of Medicine. Most importantly, a noted 

limitation of the human analysis is a potential lack of generalizability. The ELEMENT population is largely 

comprised of low to middle socioeconomic status and Hispanic individuals and therefore confines the 

generalizability of results to women and children of similar background and financial status.  

 There are limitations in the animal model as well, as murine models are not a perfect microcosm 

of human physiology. Because of the level of control of the design, the results are not widely applicable to 

humans directly. The findings may only become applicable if the driving factor for changes in offspring 

phenotype turn out to be conserved metabolic systems in both humans and mice. The analysis of 

individual mechanisms in a mouse model also fail to fully capture the complex milieu of human obesity. 

Most notably, the low birth rates experienced after the first round of exposure limit the statistical power to 

observe the true effects manifested in the offspring. Thankfully, with continued breeding and further 

analysis of offspring tissues, this may be remedied.   
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 The reasons for conflicting results in the two models could be attributable to many things. First, 

the human analysis analyzed carbohydrate intakes as a whole, whereas in the animal model the effects 

of refined sugar only was evaluated. The opposing directions of the associations with body composition 

could be a reflection of the quality of the carbohydrate exposure. There is also the possibility that there 

exist differences in underlying genetic, physiologic, or environmental factors between the two organisms 

that were not either held constant in the animal design or were not adjusted for in the multivariable model 

in the human analysis.    

 The results of this analysis are valuable in both models, as the murine model will aid in 

elucidating targets for treatment and prevention, and the human model demonstrates the synergistic 

effects that the biological mechanism exerts in a very specific population, adolescents in Mexico City. 

Both are informative and incomplete without the other. In the future, more stringent research is merited to 

further isolate the reason for departure of results in these two models.  

6. Conclusion and Public Health Relevance 
  It is clearly evidenced in the current study that maternal carbohydrate intakes in pregnancy can 

potently alter both adiposity and metabolic health parameters in mice and in human children. The effects 

on offspring in the mouse model are not attributable to maternal body weight, offspring food intakes, 

feeding efficiency, or preference to hyperpalatable sucrose. The associations of lower adiposity and 

metabolic risk in human children is not mediated by child intake of carbohydrate in peripuberty and is not 

explained by maternal adherence to pertinent carbohydrate recommendations.  

 These findings add to the body of evidence demonstrating the long-term influence of maternal 

diet in pregnancy, specifically with respect to the differing carbohydrate types and the timing of their 

consumption, on offspring adiposity and metabolic risk in adolescence. Given the importance of maternal 

diet during pregnancy, the findings from the present analysis, and in conjunction with the scant and 

discrepant existing literature, indicate the need for additional research in this area. Further study is 

required to replicate findings in human epidemiologic studies, and to elucidate mechanisms driving the 

detected associations, in order to provide expectant mothers with realistic and attainable 

recommendations to optimize child health outcomes with maternal carbohydrate intake.  
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Table 1 Distribution of total energy adjusted carbohydrate intake (grams/day) during pregnancy among 237 
ELEMENT mothers. 
 

N Mean ± SD 
 Percentile 

  5th 25th 50th 75th 95th Max 
          

1st trimester           

Total carbohydrate intake (g/day) 228 266.9 ± 33.0  212.2 245.3 266.1 288.5 322.4 363.2 
Net carbohydrate intake (g/day) 228 243.6 ± 31.0  194.4 223.2 243.1 265.9 293.9 343.0 
Sugar intake (g/day) 228 34.2 ± 16.4  12.3 22.2 31.6 44.6 62.2 89.2 

          

2nd trimester          

Total carbohydrate intake (g/day) 235 269.8 ± 33.5  212.2 248.7 268.3 293.4 323.5 379.1 
Net carbohydrate intake (g/day) 235 246.9 ± 31.6  194.0 226.0 246.0 267.9 299.9 351.9 
Sugar intake (g/day) 235 36.4 ± 17.8  11.9 23.3 33.8 46.2 71.4 89.3 

          

3rd trimester          

Total carbohydrate intake (g/day) 236 269.7 ± 35.1  213.7 244.6 269.6 293.8 333.4 366.7 
Net carbohydrate intake (g/day) 236 247.4 ± 33.1   196.9 223.5 245.6 269.7 305.9 337.0 
Sugar intake (g/day) 236 37.3 ± 18.6   10.7 25.1 34.1 46.4 71.9 108.4 

Totals are energy adjusted using the residuals method 
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Table 2 Distribution of BMI z-score and metabolic risk phenotype risk z-score ("MetRisk z-score") across 
characteristics of 237 ELEMENT mother-child pairs. 

 
N 

BMI z-score   
N 

MetRisk z-score 
 Mean ± SD  Pa  Mean ± SD  Pa 

Overall 237 0.87 ± 1.24   235 0.00 ± 0.63  

Maternal characteristics            

Age at enrollment     0.99      0.89 
15-24 y 87 0.95 ± 1.33   87 0.05 ± 0.59  

25-34 y 117 0.75 ± 1.16   117 -0.08 ± 0.60  

35-44 y 32 1.10 ± 1.25   32 0.16 ± 0.75  

Marital status     0.73      0.24 
Married 168 0.85 ± 1.22   166 -0.3 ± 0.65  

Single 69 0.92 ± 1.27   69 0.07 ± 0.56  

Maternal education     0.93      0.80 
< 10 years 85 0.87 ± 1.24   84 -0.01 ± 0.60  

10 - 12 years 116 0.88 ± 1.27   115 0.002 ± 0.64  

≥ 13 years 34 0.89 ± 1.15   34 0.03 ± 0.64  

Parity     0.23      0.32 
0 84 0.92 ± 1.26   83 0.03 ± 0.60  

1 to 2 139 0.91 ± 1.19   138 0.01 ± 0.62  

≥ 3 14 0.21 ± 1.38   14 -0.22 ± 0.78  

Smoking during pregnancy    0.97      0.17 
Yes 3 0.85 ± 0.62   3 -0.50 ± 0.14  

No 234 0.87 ± 1.24   232 0.01 ± 0.63  

Delivery method     0.06      0.10 
C-section 101 1.05 ± 1.26   101 0.08 ± 0.64  

Vaginal 134 0.75 ± 1.21   132 -0.06 ± 0.61  

Delivery weight     0.23      0.40 
<3100 grams 111 0.97 ± 1.19   109 0.04 ± 0.59  

>3100 grams 125 0.78 ± 1.27   125  -
0.03 ±  -0.66 

Child characteristics             

Sex     0.86      0.99 
Male 112 0.89 ± 1.19   111 0.00 ± 0.65  

Female 125 0.86 ± 1.28   124 0.00 ± 0.61  

Child's age     0.11      <0.0001 
<10 y 124 0.99 ± 1.21   123 -0.15 ± 0.64  

10 to 12 y 63 0.78 ± 1.25   62 0.09 ± 0.57  

> 12 y 50 0.69 ± 1.27   50 0.26 ± 0.57  
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Carbohydrate intake     0.57      0.96 
Q1 (lowest) 59 1.09 ± 1.40   59 0.02 ± 0.64  

Q2 59 0.65 ± 1.30   59 -0.07 ± 0.59  

Q3 59 0.89 ± 1.25   57 0.06 ± 0.66  

Q4 (highest) 59 0.87 ± 0.94   59 -0.01 ± 0.62  

Physical activity (h/day)     0.58      0.17 
Q1 (lowest) 33 0.88 ± 1.27   33 0.15 ± 0.66  

Q2 70 0.93 ± 1.36   70 -0.08 ± 0.64  

Q3 59 0.91 ± 1.20   57 0.03 ± 0.61  

Q4 (highest) 75 0.78 ± 1.14   75 -0.02 ± 0.60  

Time spent watching TV (h/day)    0.68      0.17 
Q1 (lowest) 55 0.93 ± 1.04   53 -0.14 ± 0.52  

Q2 57 0.92 ± 1.25   57 0.05 ± 0.70  

Q3 59 0.76 ± 1.27   59 0.02 ± 0.66  

Q4 (highest) 66 0.88 ± 1.36   66 0.05 ± 0.60  

Pubertal status: Malesa     0.92      0.01 
Prepubertal 56 0.92 ± 1.28   55 -0.16 ± 0.59  

Pubertal 52 0.90 ± 1.11   52 0.15 ± 0.68  

Pubertal status: Femalesb     0.65      0.01 

Prepubertal 85 0.82 ± 1.31   84 -0.10 ± 0.64  

Pubertal 40 0.93 ± 1.24     40 0.22 ± 0.46   

a Represents a test for linear trend where an ordinal indicator is entered into the model as continuous variable, with the 
exception of binary variables (Wald test). 
b Puberty was defined as Tanner stage 3-5 (vs. 1-2) for breast (girls), testicular (boys), and pubic hair (both) 
development.  
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Table 3 Distribution of total carbohydrate intake during pregnancy across characteristics of 237 ELEMENT mother-child pairs. 
 1st trimester   2nd Trimester   3rd Trimester 

 N Mean ± SD  Pa  N Mean ± SD  Pa  N Mean ± SD  Pa 
Overall 228 266.9 ± 33.0   235 269.8 ± 33.5   236 269.7 ± 35.1  

Maternal characteristics                  

Age at enrollment     0.41      0.80      0.15 
15-24 y 84 268.7 ± 33.3   86 269.0 ± 31.5   86 273.4 ± 35.2  

25-34 y 111 266.0 ± 33.5   116 270.2 ± 34.6   117 268.8 ± 34.7  

35-44 y 32 263.6 ± 30.3   32 270.4 ± 36.1   32 263.4 ± 36.5  

Marital status     0.99      0.47      0.22 
Married 165 266.9 ± 33.2   166 268.8 ± 32.9   168 267.9 ± 33.8  

Single 63 266.9 ± 32.8   69 272.3 ± 35.0   68 274.1 ± 38.0  

Maternal education     0.94      0.91      0.80 
< 10 years 81 265.0 ± 33.9   84 268.5 ± 35.5   85 268.2 ± 36.0  

10 - 12 years 112 269.1 ± 31.8   115 271.6 ± 30.4   115 270.8 ± 34.3  

≥ 13 years 33 261.9 ± 34.5   34 265.8 ± 39.0   34 268.9 ± 36.2  

Parity     0.004      0.31      0.99 
0 79 260.9 ± 28.9   83 272.1 ± 34.0   83 270.6 ± 36.9  

1 to 2 135 268.0 ± 33.8   138 269.2 ± 34.0   139 268.6 ± 34.1  

≥ 3 14 290.5 ± 37.5   14 262.5 ± 24.3   14 275.4 ± 35.2  

Smoking during pregnancy    0.55      0.35      0.58 
Yes 3 255.6 ± 25.1   3 251.8 ± 36.1   3 280.8 ± 54.0  

No 225 267.1 ± 33.1   232 270.1 ± 33.5   233 269.5 ± 34.9  

Delivery type     0.11      0.90      0.17 
C-Section 98 263.0 ± 32.9   99 269.6 ± 34.0   101 266.1 ± 34.3  

Vaginal 129 269.9 ± 33.1   134 270.1 ± 33.4   133 272.5 ± 35.6  

a Represents a test for linear trend where an ordinal indicator is entered into the model as continuous variable, with the exception of binary variables (Wald 
test). 
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Table 4 Associations between trimester-specific maternal carbohydrate intake and offspring indicators of adiposity 
during peripuberty 
  β (95% CI) in offspring adipositya 
Quartile of intake 
(median g/day) BMIzb WC SS+TR  SS:TR 
1st trimester          
Total carbohydrate      

Q1  (228.2) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (258.7) 0.29 (-0.14, 0.73) 3.33 (-0.21, 6.87) 3.83 (-0.25, 7.92) 0.06 (-0.02, 0.14) 
Q3  (275.8) 0.36 (-0.07, 0.80) 2.62 (-0.90, 6.14) 2.63 (-1.43, 6.69) 0.003 (-0.08, 0.08) 
Q4  (306.9) -0.12 (-0.55, 0.31)  -0.25 (-3.76, 3.27) -0.25 (-4.30, 3.81) -0.03 (-0.12, 0.05) 
P-differencec 0.10 0.13 0.16 0.18 

Net carbohydrate     
Q1  (206.3) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (233.2) 0.32 (-0.12, 0.76) 3.58 (0.03, 7.14) 4.01 (-0.09, 8.11) 0.07 (-0.01, 0.15) 
Q3  (251.6) 0.17 (-0.27, 0.60) 1.22 (-2.31, 4.75) 1.14 (-2.93, 5.20) -0.01 (-0.09, 0.07) 
Q4  (282.0) -0.11 (-0.55, 0.32) 0.09 (-3.44, 3.61) -0.40 (-4.46, 3.66) -0.04 (-0.12, 0.04) 
P-differencec 0.26 0.20 0.17 0.07 

Sugar     
Q1  (16.3) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (26.5) -0.18 (-0.62, 0.26)  -1.08 (-4.65, 2.49) -1.94 (-6.04, 2.17) -0.01 (-0.09, 0.08) 
Q3  (36.0) -0.18 (-0.62, 0.26)  -1.31 (-4.90, 2.28) 0.50 (-3.64, 4.63) -0.02 (-0.10, 0.07) 
Q4  (54.8) 0.004 (-0.45, 0.44)  -1.03 (-4.65, 2.58) -1.00 (-5.16, 3.16) -0.04 (-0.12, 0.05) 
P-differencec 0.76 0.81 0.61 0.68 

2nd trimester      
Total carbohydrate     

Q1  (232.9) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (258.7) -0.25 (-0.69, 0.19)  -1.81 (-5.37, 1.75) -2.74 (-6.88, 1.40) -0.05 (-0.13, 0.04) 
Q3  (279.7) 0.04 (-0.40, 0.49) 1.50 (-2.09, 5.10) -1.26 (-5.45, 2.92) 0.03 (-0.05, 0.12) 
Q4  (308.7) -0.33 (-0.78, 0.12)  -2.73 (-6.37, 0.90) -2.23 (-6.46, 2.00) -0.03 (-0.11, 0.06) 
P-differencec 0.33 0.11 0.68 0.28 

Net carbohydrate     
Q1  (213.7) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (235.7) 0.07 (-0.52, 0.37)  -0.55 (-4.15, 3.05) -0.59 (-4.75, 3.58) 0.004 (-0.08, 0.09) 
Q3  (254.5) -0.05 (-0.50, 0.40) 0.77 (-2.86, 4.40) -1.67 (-5.87, 2.52) 0.05 (-0.04, 0.13) 
Q4  (284.4) -0.19 (-0.65, 0.27)  -2.07 (-5.77, 1.64) -1.26 (-5.55, 3.03) 0.01 (-0.07, 0.10) 
P-differencec 0.93 0.51 0.92 0.60 

Sugar     
Q1  (16.7) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (29.1) -0.01 (-0.46, 0.44)  -0.03 (-3.67, 3.61) -0.47 (-4.67, 3.74) 0.02 (-0.06, 0.11) 
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Q3  (39.8) -0.17 (-0.62, 0.28)  -1.35 (-5.00, 2.30) -0.81 (-5.03, 3.41) -0.03 (-0.11, 0.06) 
Q4  (58.6) -0.03 (-0.50, 0.44)  -1.64 (-5.43, 2.15) -0.61 (-4.99, 3.77) -0.04 (-0.12, 0.05) 
P-differencec 0.90 0.80 0.99 0.55 

3rd trimester      
Total carbohydrate     

Q1  (230.2) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (255.7) 0.11 (-0.34, 0.56) 1.79 (-1.87, 5.45) 2.37 (-1.84, 6.58) 0.09 (0.01, 0.17) 
Q3  (280.6) -0.16 (-0.59, 0.28) 0.45 (-3.12, 4.02) -0.003 (-4.11, 4.10) 0.05 (-0.03, 0.13) 
Q4  (311.7) -0.41 (-0.85, 0.04)  -1.82 (-5.46, 1.82) -2.33 (-6.52, 1.86) -0.02 (-0.10, 0.06) 
P-differencec 0.14 0.29 0.21 0.05 

Net carbohydrate     
Q1  (212.6) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (235.4) 0.09 (-0.36, 0.53) 1.60 (-2.02, 5.23) 1.19 (-2.99, 5.37) 0.06 (-0.03, 0.14) 
Q3  (258.4) -0.02 (-0.46, 0.41) 1.64 (-1.87, 5.15) 1.52 (-2.52, 5.57) 0.04 (-0.04, 0.12) 
Q4  (288.5) -0.37 (-0.81, 0.06)  -1.40 (-4.91, 2.12) -2.24 (-6.29, 1.81) -0.02 (-0.10, 0.07) 
P-differencec 0.22 0.32 0.30 0.32 

Sugar     
Q1  (18.4) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (30.4) -0.57 (-1.01, -0.13)  -3.97 (-7.55, -0.39) -4.27 (-8.40, -0.15) -0.10 (-0.18, -0.01) 
Q3  (38.8) -0.44 (-0.88, 0.01)  -2.56 (-6.17, 1.05) -1.78 (-5.94, 2.38) -0.02 (-0.10, 0.07) 
Q4  (57.7) -0.44 (-0.89, 0.01)  -3.45 (-7.12, 0.22) -4.07 (-8.30, 0.16) -0.04 (-0.13, 0.04) 
P-differencec 0.07 0.12 0.13 0.14 

a Model is adjusted for maternal carbohydrate intake, child sex, child age, and pubertal status 
b Body Mass Index z score (BMIz) is calculated according to the WHO growth reference for children ages 5-19. 
WC: waist circumference (cm) 
SS: Sub-scapular skinfold thickness (mm)  TR: Triceps Skinfold thickness (mm) 
SS + TR: the sum of sub-scapular and triceps skinfolds in mm 
SS:TR: the ratio of sub-scapular to triceps skinfold thickness 
c P-difference is the result of a Wald Chi Square test 
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Table 5 Associations between trimester-specific maternal carbohydrate intake and offspring biomarkers of glycemia 
during peripuberty 
  β (95% CI) in offspring measures of glycemiaa 
Quartile of intake (median 
g/day) 

Glucose 
(mg/dL) 

C-peptide 
(ng/mL) CP- IRb Leptin (ng/mL) 

1st trimester         
Total carbohydrate      

Q1  (228.2) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (258.7) 1.40 (-1.95, 4.75) 0.26 (-0.15, 0.68) 0.07 (-0.05, 0.19) 1.14 (-1.90, 4.19) 
Q3  (275.8) 2.58 (-0.73 (5.90) 0.20 (-0.21, 0.61) 0.07 (-0.05, 0.18) 2.06 (-0.95, 5.08) 
Q4  (306.9) -0.30 (-3.63, 3.03) -0.31 (-0.72, 0.11) -0.07 (-0.19, 0.05)  -1.03 (-4.06, 1.99) 
P-differencec 0.38 0.05 0.08 0.13 

Net carbohydrate     
Q1  (206.3) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (233.2) 2.99 (-0.34, 6.32) 0.46 (0.05, 0.88) 0.14 (0.02, 0.25) 1.61 (-1.44, 4.65) 
Q3  (251.6) 0.24 (-3.07, 3.56) 0.08 (-0.33, 0.49) 0.01 (-0.10, 0.13) 1.24 (-1.79, 4.28) 
Q4  (282.0) -1.08 (-4.40, 2.23) -0.29 (-0.70, 0.12) -0.07 (-0.18, 0.05)  -0.91 (-3.94, 2.12) 
P-differencec 0.13 0.01 0.01 0.23 

Sugar     
Q1  (16.3) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (26.5) 4.51 (1.21, 7,81) 0.31 (-0.11, 0.73) 0.11 (-0.00, 0.23)  -1.31 (-4.36, 1.75) 
Q3  (36.0) 3.17 (-0.17, 6.51) 0.14 (-0.28, 0.57) 0.05 (-0.07, 0.16)  -0.29 (-3.38, 2.79) 
Q4  (54.8) 0.93 (-2.41, 4.27) -0.04 (-0.46, 0.39) -0.00 (-0.12, 0.12)  -1.13 (-4.22, 1.97) 
P-differencec 0.06 0.43 0.22 0.90 

2nd trimester      
Total carbohydrate     

Q1  (232.9) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (258.7) 2.23 (-1.14, 5.59) 0.14 (-0.29, 0.56) 0.07 (-0.05, 0.19)  -2.12 (-5.19, 0.95) 
Q3  (279.7) 0.28 (-3.10, 3.67) 0.12 (-0.31, 0.55) 0.03 (-0.09, 0.15) 0.31 (-2.77, 3.39) 
Q4  (308.7) 3.74 (0.31, 7.16) -0.26 (-0.69, 0.17) -0.04 (-0.16, 0.08)  -2.66 (-5.78, 0.46) 
P-differencec 0.14 0.23 0.33 0.18 

Net carbohydrate     
Q1  (213.7) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (235.7) 3.41 (0.04, 6.79) 0.29 (-0.13, 0.72) 0.07 (-0.05, 0.19)  -1.39 (-4.48, 1.70) 
Q3  (254.5) 1.93 (-1.44, 5.30) 0.14 (-0.29, 0.56) -0.01 (-0.13, 0.11) 0.63 (-2.45, 3.72) 
Q4  (284.4) 4.38 (0.94, 7.82) -0.12 (-0.56, 0.31) -0.04 (-0.16, 0.09)  -2.32 (-5.47, 0.84) 
P-differencec 0.09 0.22 0.31 0.27 

Sugar     
Q1  (16.7) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (29.1) -0.63 (-4.04, 2.79) 0.33 (-0.09, 0.76) 0.11 (-0.01, 0.23)  -0.36 (-3.48, 2.76) 
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Q3  (39.8) 1.62 (-1.83, 5.06) -0.05 (-0.48, 0.38) 0.04 (-0.08, 0.16)  -1.16 (-4.30, 1.99) 
Q4  (58.6) 1.34 (-2.22, 4.89) -0.16 (-0.60, 0.29) -0.00 (-0.12, 0.12)  -0.79 (-4.04, 2.45) 
P-differencec 0.56 0.11 0.17 0.95 

3rd trimester      
Total carbohydrate     

Q1  (230.2) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (255.7) 0.43 (-3.03, 3.88) 0.18 (-0.24, 0.61) 0.05 (-0.07, 0.16) 1.83 (-1.24, 4.91) 
Q3  (280.6) -0.35, -3.73, 3.04) -0.15 (-0.57, 0.27) -0.05 (-0.16, 0.07) 2.11 (-0.90, 5.13) 
Q4  (311.7) 0.76 (-2.70, 4.21) -0.42 (-0.85, 0.01) -0.10 (-0.22, 0.02)  -2.52 (-5.60, 0.56) 
P-differencec 0.94 0.04 0.10 0.01 

Net carbohydrate     
Q1  (212.6) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 

Q2  (235.4) 
-3.77 (-7.16, -

0.38) -0.27 (-0.69, 0.16) -0.10 (-0.22, 0.02) 1.51 (-1.57, 4.58) 
Q3  (258.4) -0.58 (-3.88, 2.71) -0.38 (-0.79, 0.03) -0.11 (-0.23, 0.00) 2.24 (-0.75, 5.23) 

Q4  (288.5) -0.93 (-4.23, 2.37) -0.54 (-0.96, -0.13) 
-0.15 (-0.26, -

0.03)  -1.63 (-4.62, 1.36) 
P-differencec 0.15 0.05 0.06 0.08 

Sugar     
Q1  (18.4) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 

Q2  (30.4) -2.54 (-5.93, 0.86) -0.48 (-0.90, -0.05) 
-0.14 (-0.26, -

0.02) 
 -3.10 (-6.18, -

0.02) 
Q3  (38.8) -0.17 (-3.58, 3.23) -0.21 (-0.64, 0.21) -0.07 (-0.19, 0.05)  -1.38 (-4.47, 1.71) 
Q4  (57.7) -0.89 (-4.38, 2.59) -0.41 (-0.84, 0.03) -0.12 (-0.24, 0.00)  -1.58 (-4.74, 1.58) 
P-differencec 0.43 0.10 0.07 0.23 

a Model is adjusted for maternal carbohydrate intake, child sex, child age, and pubertal status 
b CP-IR: C-peptide associated insulin resistance score  
c P-difference is the result of a Wald Chi Square test   
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Table 6 Associations between trimester-specific carbohydrate intakes and offspring lipid profile during peripuberty 

  β (95% CI) in offspring measures of blood lipidsa 
Quartile of intake 
(median g/day) 

Total Cholesterol 
(mg/dL) 

Triglycerides 
(mg/dL) HDL (mg/dL) LDL (mg/dL) 

1st trimester      
Total carbohydrate      

Q1  (228.2) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (258.7) 5.03 (-4.77, 14.83)  -2.57 (-18.77, 13.62) 1.58 (-2.66, 5.82) 3.97 (-4.05, 11.99) 
Q3  (275.8) 7.41 (-2.28, 17.11) 9.89 (-6.13, 25.91) 1.95 (-2.25, 6.15) 3.48 (-4.45, 11.42) 
Q4  (306.9) 4.11 (-5.63, 13.84) 7.11 (-8.98, 23.20) 3.56 (-0.65, 7.78) -0.88 (-8.85, 7.09) 
P-differenceb 0.58 0.54 0.36 0.59 

Net carbohydrate     
Q1  (206.3) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (233.2) 1.34 (-8.38, 11.05) 1.85 (-14.23, 17.94) 2.08 (-2.16, 6.32) -1.12 (-9.07, 6.84) 
Q3  (251.6) 10.84 (1.17, 20.52) 16.77 (0.75, 32.79) 1.52 (-2.70, 5.74) 5.97 (-1.95, 13.89) 
Q4  (282.0) 2.24 (-7.43, 11.92) 10.61 (-5.41, 26.62) 3.21 (-1.01, 7.43) -3.09 (-11.01, 4.83) 
P-differenceb 0.17 0.28 0.44 0.18 

Sugar     
Q1  (16.3) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (26.5) 3.54 (-6.17, 13.25) 5.16 (-10.93, 21.25) 2.52 (-1.68, 6.73) -0.01 (-8.02, 7.99) 
Q3  (36.0) 10.85 (1.04, 20.67) 15.93 (-0.34, 32.20) 4.60 (0.35, 8.86) 3.07 (-5.03, 11.16) 
Q4  (54.8) 6.74 (-3.09, 16.57) 10.97 (-5.32, 27.27) 1.03 (-3.23, 5.29) 3.51 (-4.59, 11.62) 
P-differenceb 0.21 0.43 0.14 0.78 

2nd trimester      
Total carbohydrate     

Q1  (232.9) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (258.7)  -11.16 (-20.91, -1.41)  -9.49 (-25.68, 6.70) -0.81 (-5.12, 3.49) -8.45 (-16.45, -0.45) 
Q3  (279.7) 3.54 (-6.27, 13.34) 11.07 (-5.21, 27.35) -0.53 (-4.86, 3.80) 1.86 (-6.19, 9.90) 
Q4  (308.7)  -3.46 (-13.38, 6.45) 9.32 (-7.14, 25.78) -0.04 (-4.42, 4.34) -5.28 (-13.42, 2.85) 
P-differenceb 0.03 0.06 0.95 0.05 

Net carbohydrate     
Q1  (213.7) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (235.7)  -13.66 (-23.35, -3.97)  -4.62 (-20.93, 11.69) -4.42 (-8.69, -0.15) -8.31 (-16.35, -0.27) 
Q3  (254.5) 4.58 (-5.10, 14.26) 10.71 (-5.58, 27.00) 0.32 (-3.95, 4.58) 2.13 (-5.90, 10.15) 
Q4  (284.4)  -3.53 (-13.42, 6.36) 13.44 (-3.20, 30.08) -1.90 (-6.26, 2.46) -4.32 (-12.52, 3.89) 
P-differenceb 0.003 0.10 0.10 0.06 

Sugar     
Q1  (16.7) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (29.1)  -5.12 (-15.09, 4.84)  -0.87 (-17.32, 15.58) 0.23 (-4.10, 4.56) -5.17 (-13.32, 2.97) 
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Q3  (39.8)  -2.46 (-12.51, 7.59)  -11.89 (-28.48, 4.70) -0.21 (-4.57, 4.16) 0.13 (-8.09, 8.34) 
Q4  (58.6) 2.11 (-8.27, 12.49) 2.46 (-14.67, 19.58) 1.78 (-2.73, 6.28) -0.16 (-8.64, 8.33) 
P-differenceb 0.52 0.36 0.85 0.50 

3rd trimester      
Total carbohydrate     

Q1  (230.2) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (255.7) 5.73 (-4.29, 15.76) 16.68 (0.21, 33.16) -2.10 (-6.42, 2.22) 4.50 (-3.67, 12.67) 
Q3  (280.6)  -1.84 (-11.67, 7.98) 6.51 (-9.63, 22.66) -1.83 (-6.06, 2.40) -1.32 (-9.33, 6.69) 
Q4  (311.7)  -2.16 (-12.19, 7.87)  -2.57 (-19.05, 13.91) 2.62 (-1.70, 6.94) -4.27 (-12.44, 3.91) 
P-differenceb 0.40 0.11 0.14 0.23 

Net carbohydrate     
Q1  (212.6) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (235.4)  -0.06 (-10.05, 9.93) 21.80 (5.60, 38.01) -4.19 (-8.46, 0.09) -0.23 (-8.38, 7.92) 
Q3  (258.4)  -3.02 (-12.73, 6.70)  -2.93 (-18.68, 12.83) -1.53 (-5.68, 2.63) -0.90 (-8.82, 7.02) 
Q4  (288.5)  -2.35 (-12.08, 7.37) 5.89 (-9.88, 21.67) 1.30 (-2.86, 5.46) -4.83 (-12.77, 3.10) 
P-differenceb 0.91 0.02 0.10 0.65 

Sugar     
Q1  (18.4) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (30.4) 1.91 (-7.97, 11.79) 7.54 (-8.83, 23.91) 1.98 (-2.32, 6.29) -1.58 (-9.65, 6.48) 
Q3  (38.8)  -6.83 (-16.73, 3.08)  -2.86 (-19.28, 13.55) 1.32 (-2.99, 5.63) -7.57 (-15.66, 0.51) 
Q4  (57.7)  -5.54 (-15.67, 4.59)  -7.31 (-24.10, 9.48) 2.57 (-1.84, 6.98) -6.65 (-14.92, 1.62) 

P-differenceb 0.26 0.37 0.75 0.21 
a Model is adjusted for maternal carbohydrate intake, child sex, child age, and pubertal status 
HDL: High density Lipoprotein    
LDL: Low density Lipoprotein    
b P-difference is the result of a Wald Chi Square test 
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Table 7 Associations between trimester specific intakes of carbohydrate in pregnancy and offspring blood pressure 
and metabolic risk in peripuberty 

 
β (95% CI) in offspring measures of blood pressure and metabolic 

riska 
Quartile of intake (median 
g/day) SBP DBP MetRiskzb 
1st trimester     
Total carbohydrate     

Q1  (228.2) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (258.7) 1.89 (-1.61, 5.39) 1.18 (-1.37, 3.72) 0.17 (-0.05, 0.38) 
Q3  (275.8)  -1.23 (-4.71, 2.25) 0.25 (-2.28, 2.78) 0.15 (-0.06, 0.36) 
Q4  (306.9)  -1.52 (-4.99, 1.96)  -0.12 (-2.65, 2.41) -0.07 (-0.28, 0.15) 
P-differencec 0.27 0.72 0.13 

Net carbohydrate    
Q1  (206.3) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (233.2) 1.90 (-1.61, 5.42) 1.25 ( -1.30, 3.80) 0.25 (0.03, 0.46) 
Q3  (251.6)  -1.50 (-4.98, 1.99)  -0.56 (-3.09, 1.97) 0.07 (-0.14, 0.29) 
Q4  (282.0)  -0.75 (-4.23, 2.73) 0.16 (-2.37, 2.68) -0.05 (-0.26, 0.17) 
P-differencec 0.33 0.59 0.07 

Sugar    
Q1  (16.3) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (26.5)  -1.83 (-5.32, 1.67)  -0.55 (-3.07, 1.98) 0.10 (-0.11, 0.32) 
Q3  (36.0)  -2.15 (-6.67, 0.37)  -2.22 (-4.77, 0.32) 0.04 (-0.18, 0.26) 
Q4  (54.8)  -0.78 (-4.32, 2.76)  -1.28 (-3.84, 1.28) -0.002 (-0.22, 0.22) 
P-differencec 0.43 0.43 0.81 

2nd trimester     
Total carbohydrate    

Q1  (232.9) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (258.7)  -2.13 (-5.66, 1.41)  -1.25 (-3.80, 1.31) -0.05 (-0.27, 0.17) 
Q3  (279.7)  -1.81 (-5.39, 1.76)  -0.86 (-3.44, 1.72) 0.04 (-0.18, 0.26) 
Q4  (308.7)  -0.05 (-3.66, 3.56) 0.84 (-1.77, 3.44) 0.04 (-0.18, 0.27) 
P-differencec 0.53 0.36 0.84 

Net carbohydrate    
Q1  (213.7) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (235.7)  -1.96 (-5.52, 1.59)  -1.55 (-4.10, 1.01) 0.05 (-0.17, 0.27) 
Q3  (254.5)  -0.68 (-4.26, 2.90)  -0.71 (-3.29, 1.87) 0.08 (-0.14, 0.30) 
Q4  (284.4) 0.14 (-3.52, 3.80) 0.77 (-1.86, 3.40) 0.11 (-0.11, 0.34) 
P-differencec 0.67 0.31 0.74 

Sugar    
Q1  (16.7) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
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Q2  (29.1) 1.12 (-2.44, 4.69) 0.72 (-1.87, 3.32) 0.05 (-0.17, 0.27) 
Q3  (39.8) 0.44 (-3.14, 4.03) 0.72 (-1.88, 3.32) -0.06 (-0.28, 0.17) 
Q4  (58.6) 3.25 (-0.47, 6.97) 1.07 (-1.63, 3.77) 0.04 (-0.19, 0.27) 
P-differencec 0.33 0.95 0.80 

3rd trimester     
Total carbohydrate    

Q1  (230.2) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (255.7) 0.54 (-3.06, 4.13) 0.62 (-1.99, 3.24) 0.15 (-0.07, 0.37) 
Q3  (280.6) 2.67 (-0.84, 6.18) 1.21 (-1.34, 3.76) 0.05 (-0.17, 0.26) 
Q4  (311.7)  -1.37 (-4.95, 2.20)  -0.40 (-3.00, 2.21) -0.13 (-0.35, 0.09) 
P-differencec 0.17 0.65 0.12 

Net carbohydrate    
Q1  (212.6) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (235.4) 0.80 (-2.76, 4.36) 0.61 (-1.98, 3.20) 0.01 (-0.21, 0.23) 
Q3  (258.4) 3.67 (0.23, 7.11) 2.00 (-0.50, 4.50) 0.02 (-0.19, 0.23) 
Q4  (288.5)  -0.33 (-3.77, 3.11) 0.28 (-2.23, 2.78) -0.12 (-0.33, 0.10) 
P-differencec 0.12 0.45 0.58 

Sugar    
Q1  (18.4) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference) 
Q2  (30.4)  -0.30 (-3.87, 3.26) 0.55 (-2.03, 3.12) -0.18 (-0.40, 0.04) 
Q3  (38.8)  -0.79 (-4.39, 2.80) 0.22 (-2.38, 2.81) -0.09 (-0.31, 0.12) 
Q4  (57.7)  -0.08 (-3.73, 3.58)  -0.50 (-3.14, 2.14) -0.17 (-0.40, 0.05) 
P-differencec 0.95 0.88 0.31 

a Model is adjusted for maternal carbohydrate intake, child sex, child age, and pubertal status 
b MetRiskz: a cumulative z score calculated by taking the average of 5 internally- standardized z-scores for waist 
circumference, blood glucose, c-peptide, triglyceride/(high density lipoprotein), and (systolic +diastolic blood 
pressure)/2 
SBP: Systolic Blood Pressure (mmHg)   
DBP: Diastolic Blood Pressure (mmHg)   
cP-difference is the result of a Wald Chi Square test 
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Table 8 Associations of maternal Intakes during pregnancy in relation to nutritional 
recommendations and child adiposity and metabolic risk in peripuberty 
Sugar Recommendations β (95% CI)a 
Trimester 1 (N) BMIzb MetRiskzc 

Sugar<10% energy (142) 0.00 (reference) 0.00 (reference) 
Sugar>10%  energy (66)  -0.12 (-0.49, 0.25)  -0.03 (-0.22, 0.15) 

P-differenced 0.52 0.74 
Trimester 2 (N)   

Sugar<10% energy (160) 0.00 (reference) 0.00 (reference) 
Sugar>10%  energy (59)  -0.16 (-0.54, 0.21)  -0.07 (-0.26, 0.11) 

P-differenced 0.39 0.44 
Trimester 3 (N)   

Sugar<10% energy (149) 0.00 (reference) 0.00 (reference) 
Sugar>10%  energy (72)  -0.09 (-0.44, 0.27)  -0.07 (-0.24, 0.10) 

P-differenced 0.63 0.42 
AMDR Recommendationse   
Trimester 1 (N)   

<45% energy (64) -0.06(-0.47, 0.36) 0.03 (-0.18, 0.23) 
45-65% energy (54) 0.00 (reference) 0.00 (reference) 
>65% energy (90) 0.06 (-0.38, 0.39)  -0.05 (-0.24, 0.14) 

P-differenced 0.73 0.45 
Trimester 2 (N)   

<45% energy (67)  -0.28 (-0.68, 0.12)  -0.08 (-0.28, 0.12) 
45-65% energy (64) 0.00 (reference) 0.00 (reference) 
>65% energy (88)  -0.42 (-0.79, -0.05)  -0.19 (-0.38, -0.01) 

P-differenced 0.44 0.25 
Trimester 3 (N)   

<45% energy (61)  -0.41 (-0.80, -0.01)  -0.14 (-0.33, 0.06) 
45-65% energy (76) 0.00 (reference) 0.00 (reference) 
>65% energy (84)  -0.18 (-0.55, 0.18)  -0.12 (-0.30, 0.06) 

P-differenced 0.33 0.94 
a Model is adjusted for maternal carbohydrate intake, child sex, child age, and pubertal status     
bBody Mass Index z score (BMIz) is calculated according to the WHO growth reference for children 
ages 5-19. 
c MetRiskz: a cumulative z score calculated by taking the average of 5 internally- standardized z-scores 
for waist circumference, blood glucose, c-peptide, triglyceride/(high density lipoprotein), and (systolic 
plus diastolic blood pressure) divided by 2. 
d P-difference is the result of a Wald Chi Square test 
e AMDR: acceptable macronutrient distribution range 
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Table 9 Associations of maternal raw protein and fat intakes substituted for raw total carbohydrate intakes with 
metabolic risk and adiposity in peripuberty 
  β (95% CI)a 
  BMIzb MetRiskzc 
Trimester 1    

Protein 11.40 (-18.40, 41.21)  -3.06 (-18.17, 12.05) 
Fat  -10.87 (-40.87, 19.12) 2.18 (-13.03, 17.38) 

   
Trimester 2   

Protein 5.92 (-23.92, 35.77)  -7.89 (-22.55, 6.78) 
Fat  -6.43 (-36.81, 23.94) 7.23 (-7.72, 22.19) 

   
Trimester 3   

Protein  -13.14 (-38.71, 12.42)  -14.22 (-26.61, -1.83) 
Fat 12.15 (-14.28, 38.58) 12.28 (-0.52, 25.07) 

a Model is adjusted for maternal carbohydrate intake, child sex, child age, and pubertal status     
bBody Mass Index z score (BMIz) is calculated according to the WHO growth reference for children ages 5-19. 
c MetRiskz: a cumulative z score calculated by taking the average of 5 internally- standardized z-scores for waist 
circumference, blood glucose, c-peptide, triglyceride/(high density lipoprotein), and (systolic plus diastolic blood 
pressure) divided by 2. 
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Figure 1 A 

 

Cumulative food intake of dam is shown in kcals. Dams randomized to sucrose exposure consumed fewer kcals 
from food than those randomized to water exposure.  
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Figure 1 B 

 
Cumulative food intake of dams is shown in kcals. Dams randomized to sucrose exposure consumed more kcals 
than those exposed to water, the additional kcals are from sucrose water consumption. 
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Figure 2 A 

 
Sucrose exposed dams consumed significantly more calories from carbohydrate than did the water exposed dams.  
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Figure 2 B 

 
Sucrose exposed dams consumed significantly more calories from refined carbohydrate than did the water 
exposed dams. 
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Figure 3 

 
Maternal body weight is displayed in grams over days of exposure. Sucrose exposed dams have greater body 
weight, but confidence intervals overlap, meaning the differences are not statistically significant. 
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Figure 4 

 
Fed blood glucose was taken during the third week of pregnancy via tail clip and read with a glucometer. Results 
are in mg/dL. 
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Figure 5 A 

 
Offspring body weight in grams stratified by sex from weaning PND 21 to sacrifice PND 109. M denotes male sex 
and F denotes female sex.  
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Figure 5 B 

 
Offspring body weight at time of sacrifice PND 109, stratified by sex. Males exposed to sucrose had greater body 
weight than those exposed to water. Females had no differences in body weight by exposure group.  
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Figure 6 

 
 
Offspring fat mass stratified by sex. M denotes male sex, and F denotes female sex.
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Figure 7 

 

Offspring fat free mass stratified by sex. M denotes male sex and F denotes female sex.  
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Figure 8 A 

 
 
Insulin tolerance test (ITT) conducted after a 6 hour fast. An intraperitoneal injection of insulin was administered, 
then blood glucose was monitored every 15 minutes with glucometer. Results were normalized to blood glucose 
level at baseline. Females whose mothers were exposed to sucrose exhibit greater insulin tolerance beginning 45 
minutes after administration of insulin. 
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Figure 8 B 
 

 
 
Insulin tolerance test (ITT) conducted after a 6 hour fast. An intraperitoneal injection of insulin was administered, 
then blood glucose was monitored every 15 minutes with glucometer. Results were normalized to blood glucose 
level at baseline. Males exhibit no differences in insulin tolerance between treatment groups. 
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Figure 9 

 
Cumulative food intake of offspring in kcals stratified by sex. There are exposure differences in food intake in 
males. Females exposed to sucrose consumed fewer calories than those exposed to water. Male food intake did 
not differ between treatment groups. 
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Figure 10 

 
Feeding efficiency (FE), expressed as a percent, was calculated as FE= (Fat mass(g)*9kcal/g)+(lean 
mass(g)*4kcal/g)/(kcals consumed in study period)*100. Males exhibited greater FE than females. There were no 
differences in feeding efficiency by treatment group. 
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Figure 11 

 
Animals were individually housed and deprived of water for the first 2 hours of the dark cycle. The next two hours 
of the dark cycle, animals were provided with two bottles; one containing water, another 10% sucrose. Results are 
grams of liquid consumed during 2-hour taste preference by maternal exposure group. There is no difference in 
sucrose taste preference between maternal exposure groups, or by sex.
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