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Abstract— As we incorporate more random renewable en-
ergy into the power grid, power system operators need to
ensure physical constraints, such as transmission line limits,
are not violated despite uncertainty. Risk-constrained optimal
power flow (RCOPF) based on the Conditional Value-at-Risk
(CVaR) is a convenient modeling tool, ensuring that these
constraints are satisfied with a high probability (e.g., 95%).
However, in practice, it is often difficult to perfectly estimate
the joint probability distribution of all uncertain variables,
including renewable energy production and load consumption.
In this paper, we propose a distributionally robust RCOPF
approach by considering all possible probability distributions
that share the same moment (e.g., mean and covariance) and
unimodality properties. Moment and unimodality information
can be estimated based on historical data, and so the proposed
approach can be applied in a data-driven manner. In view of
the computational challenges, we derive a conservative and a
relaxed approximation of the problem. We reformulate these
approximations as semidefinite programs (SDPs) facilitating the
use of highly efficient off-the-shelf optimization solvers (e.g.,
CVX). We demonstrate the proposed approach based on a
modified IEEE 9-bus power network.

I. INTRODUCTION

Chance-constrained optimization is widely used to solve
power system optimal power flow problems with uncertain
renewables and loads, e.g., [1]–[8]. This approach enables
physical constraints like line limits to be formulated as proba-
bilistic constraints that must be satisfied with high probability,
which avoids the over-conservativeness that results from ro-
bust formulations. To solve chance constrained optimal power
flow problems, researchers have applied the scenario approach
proposed in [9], e.g., [4], probabilistically robust methods
proposed in [10], e.g., [4], [7], and analytical reformulations,
e.g., [5], [6], [8]. The first approach requires large numbers of
scenarios and is generally conservative, producing high cost
solutions. The second requires a smaller number of scenarios
but is more conservative than the first. The third assumes
uncertainty distributions are known and, if actual uncertainty
distributions do not follow assumed distributions, often results
in low solution reliability.

Recent research proposed a distributionally robust chance-
constrained optimization formulation [11], which ensures that
chance constraints are satisfied at chosen probability levels
for any uncertainty distribution with known moments. In [12],
tractable semidefinite programming (SDP) approximations for
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distributionally robust individual and joint chance constraints
are proposed using only first and second order moment
information. Ref. [13] uses the SDP formulation proposed
in [14] to solve the optimal power flow problem, showing
that distributionally robust methods provide a good trade-
off between performance and computational tractability. In
practice, we often know more about the uncertainty distri-
butions than their first two moments, e.g., we may be able
to reasonably assume that the distribution is unimodal, and
including this information would result in a less conservative
solution. Recognizing this, in [15] and [16], analytical dis-
tributionally robust transformations are proposed considering
univariate structural properties such as unimodality. In [17]
and [18], the authors consider multivariate unimodality and
derive exact and tractable SDP formulations to evaluate the
worst-case probability bound and Conditional Value-at-Risk
(CVaR), assuming that the design variables are given and fixed.

Although chance-constrained approaches guarantee a low
probability of constraint violation, they do not capture the
magnitude of violations. In this paper, we employ CVaR [19]–
[21] to control both the probability and magnitude of constraint
violations. That is, we study risk-constrained optimal power
flow (RCOPF) based on CVaR. We develop a method to in-
corporate multivariate unimodality into the distributionally ro-
bust risk-constrained optimization formulation with adjustable
design variables, and we apply our results to the RCOPF
problem. To represent multivariate unimodality, we use α-
unimodality [22], where the value ofα determines the structure
and shape of the joint distribution. This concept has been
used in worst-case probability and expectation problems [17],
[18]. Using our results, we develop two tractable approximate
reformulations resulting in SDPs. The computational effort
required to solve these problems is similar to that of the original
problem without unimodality. We study the impact of the mode
location and the value of α on the objective function using a
modified IEEE 9-bus system with multiple wind power plants.

The remainder of the paper is organized as follows. The
RCOPF formulation is introduced in Section II. Section III
defines CVaR [19]–[21], its relationship to distributionally
robust optimization, and distributionally robust CVaR (DR-
CVaR) constraints [12]. Approximations using the tightest
piecewise linear bounding functions on the worst-case ex-
pectation problem are provided in Section IV. In Section V,
we give two tractable SDP reformulations based on the ap-
proximations. In Section VI, we test all the analytical results
on the RCOPF problem and briefly introduce an extension to
a multi-cut approximation with SDP reformulations. Finally,
Section VII summarizes the paper and gives potential future
research directions.
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II. RISK-CONSTRAINED OPTIMAL POWER FLOW

In this section, we formulate a simple single-period RCOPF
problem, based on [4], [6], assuming two wind power plants.

min
PG,d,Rup/dn

PTG [C1]PG + CT2 PG + CT3 (Rup +Rdn) (1)

s.t.− Pl ≤ AsPinj ≤ Pl (2)
Pinj = CG(PG +R) + CWPW − CLPL (3)
R = −d(w1 + w2) (4)

0 ≤ PG +R ≤ PG (5)

−Rdn ≤ R ≤ Rup (6)
11×NGd = 1 (7)

11×NB (CGPG + CWP
f
W − CLPL) = 0 (8)

PG ∈ R+
NG
, d ∈ R+

NG
, Rup,dn ∈ R+

NG
, (9)

where [C1], C2 are cost parameters for generation PG and
C3 is the unit cost for up/down reserve capacity Rup,dn.
Constraint (2) bounds the line flow, where Pl is the line
limit and As is a constant matrix that transforms the power
injection vectorPinj , defined in (3), into the power flow vector.
In (3), CG, CW , CL are constant matrices that contain the
bus indices for the generators, wind power plants, and loads,
respectively; PL is the load vector (which is assumed known
and certain); PW is the real wind generation vector; and R
is the reserve usage, which is defined in (4). In (4), w1, w2

are wind forecast errors corresponding to the two wind power
plants and d is the distribution vector that specifies the portions
of the total supply/demand mismatch that will be provided by
each generator. Constraint (5) limits the generator outputs to
within [0, PG] and (6) limits the reserve capacity. Constraint
(7) is the power balance requirement for reserves where NG
is the number of generators. Equation (8) is the power balance
requirement for generation/loads where NB is the number of
buses and P fW is the wind forecast vector. Equations (2), (5),
and (6) contain wind uncertainties and so we can employ risk
constraints to control the constraint violations. We consider a
class of risk constraints in this paper and introduce them in
the next section.

III. DISTRIBUTIONALLY ROBUST RISK CONSTRAINTS

A. Conditional Value-at-Risk (CVaR)
In this section, we briefly introduce the concept of CVaR

[19]–[21]. Consider a random function L(x, ξ) : Rn ×Rk →
R, where x represents an n-dimensional design variable and
ξ represents a k-dimensional random vector defined on a
probability space (Rk,B,P). In many applications, one wishes
to control the random function L(x, ξ) by formulating a
constraint in the form

L(x, ξ) ≤ 0. (10)

Unfortunately, (10) is subject to uncertainty and so difficult to
evaluate. One possible solution is to replace function L(x, ξ)
with a proxy that can appropriately evaluates its risk. CVaR
is a popular tool used in, e.g., engineering and portfolio man-
agement, to measure the risk level of randomness. Intuitively,
CVaR evaluates the conditional expectation of L(x, ξ) on a
tail part of its distribution.

Definition 3.1: CVaR. Given a random function L(x, ξ)
and a constant ε ∈ (0, 1), the CVaR of L(x, ξ) with violation
probability ε, denoted CVaRε(L(x, ξ)), is defined as

CVaRε(L(x, ξ)) = inf
β∈R

{
β +

1

ε
EP [L(x, ξ)− β]

+

}
, (11)

where EP[·]+ = EP [max(·, 0)].

In the above definition, the minimizer β∗ in (11) is called the
Value-at-Risk ofL(x, ξ). It can be shown that CVaRε(L(x, ξ))
is the conditional expectation of L(x, ξ) on interval L(x, ξ) ∈
[β∗,∞). An attractive feature of CVaR is that it guarantees
the satisfaction of constraint (10) with a high probability, i.e.,

CVaRε(L(x, ξ)) ≤ 0 ⇒ P{L(ξ) ≤ 0} ≥ 1− ε.

Hence, the risk constraint CVaRε(L(x, ξ)) ≤ 0 is an appro-
priate proxy for the random constraint (10).

B. Distributionally Robust CVaR Constraints
In practice, it is often difficult to accurately estimate the

probability distribution P of ξ. Usually, we only have some
domain knowledge and historical data of ξ. In this case, it
can be biased to estimate CVaRε(L(x, ξ)) by assuming that P
belongs to any parametric family of distributions (e.g., normal
or log-normal).

In this paper, we propose a distributionally robust approach
that does not rely on such parametric assumptions. Instead,
we assume that the moment and unimodality information of ξ
is available. More precisely, we denote µ := EP[ξ] and S :=
EP[ξξT ], and define the α-unimodality as follows.

Definition 3.2: α-Unimodality [22]. For any fixed α > 0,
a probability distribution P on Rk is called α-unimodal with
mode 0 if tαP(B/t) is non-decreasing in t > 0 for every Borel
set B ∈ B.

We let Pα represent the set of all α-unimodular probability
distributions. Note that the above definition is a generalization
of classical unimodality concept on the real line to Rk. Indeed,
when α = k = 1, it can be shown that α-unimodality
coincides with the classical unimodality. Also, ξ can be
assumed to have mode 0 without loss of generality, because
we can always replace ξ with ξ −m if ξ has a mode m 6= 0.
In this paper, we consider a set P of probability distributions
that share the moment and unimodality properties, i.e.,

P := {P ∈ Pα : EP[ξ] = µ,EP[ξξT ] = S}. (12)

In practice, µ and S can be estimated based on the historical
data of ξ. Meanwhile, α-unimodality can be estimated based
on the domain knowledge of ξ. For example, we can set α = 1
if each component of vector ξ has a unimodal distribution or
α = k for a multivariate unimodality. Based onP , we consider
a distributionally robust CVaR (DR-CVaR) constraint

sup
P∈P

CVaRε(L(x, ξ)) ≤ 0, (13)

where risk constraint CVaRε(L(x, ξ)) ≤ 0 is satisfied with
regard to all possible probability distributions P ∈ P . In this
sense, (13) is distributionally robust. Furthermore, note that
(13) implies that P{L(ξ) ≤ 0} ≥ 1− ε for all P ∈ P .

2426



IV. APPROXIMATIONS

In this section, we describe the solution methodology for
handling the DR-CVaR constraint (13). First, we specify the
random function L(x, ξ) as a bi-linear function of the design
variable x and uncertainty ξ, i.e., L(x, ξ) := y0(x) + y(x)T ξ,
where y0(x) : Rn → R and y(x) : Rn → Rk represent two
linear functions of x. Practical engineering constraints can be
reformulated to match the form of this function. Then, by the
definition of CVaR (11), we have

sup
P∈P

CVaRε(L(x, ξ))= sup
P∈P

inf
β∈R

{
β +

1

ε
EP [L(x, ξ)− β]

+

}
= inf
β∈R

{
β +

1

ε
sup
P∈P

EP [L(x, ξ)− β]
+

}
,

(14)

where the equality in (14) follows from a stochastic saddle
point theorem (see, e.g., [23]). Hence, the computation of the
DR-CVaR boils down to evaluating the worst-case expectation
supP∈P EP [L(x, ξ)− β]

+. We state the following result for
this evaluation.

Lemma 4.1: (Adapted from [18]) Let µ̃ := (α+1
α )µ and

S̃ := (α+2
α )S. For L(x, ξ) = y0(x) + y(x)T ξ, we define

a := y(x)T ξ and b := β − y0(x). Then,

sup
P∈P

EP [L(x, ξ)− β]
+

= sup
P∈P(µ̃,S̃)

EP

[
f̃(ξ)

]
, (15)

where P(µ̃, S̃) := {P : EP[ξ] = µ̃,EP[ξξT ] = S̃} and

f̃(ξ) :=

 −
(

b
α+1

) (
b
a

)α
if a ≤ b(

α
α+1

)
a− b, otherwise

(16)

if b ≤ 0 or, if b > 0,

f̃(ξ) :=

{
0 if a ≤ b(

α
α+1

)
a− b+

(
b

α+1

) (
b
a

)α
, otherwise

.

(17)

Lemma 4.1 indicates that computation of the DR-CVaR
can be difficult because we still need to evaluate the worst-
case expectation of a nonlinear function f̃(ξ). This renders
the worst-case CVaR constraint (13) computationally chal-
lenging. We hence resort to replacing f̃(ξ) with more concise
forms that facilitate tractable reformulations. In this paper,
we propose two approximations of f̃(ξ) from above (termed
f̃U (ξ)) and below (termed f̃L(ξ)). Both f̃U (ξ) and f̃L(ξ)
are convex and have two linear pieces (see Fig. 1). In fact,
they are the tightest convex and 2-piece approximations of
f̃(ξ) one can obtain. Accordingly, we obtain an upper bound
of supP∈P EP [L(x, ξ)− β]

+ based on f̃U (ξ), and a lower
bound based on f̃L(ξ). We formalize these conclusions in the
following two theorems.

Theorem 4.1: Let f̃U (ξ) = ( α
α+1 )[y(x)T ξ+y0(x)−β]++

( 1
α+1 )[y0(x)− β]+. Then,

sup
P∈P

EP [L(ξ)− β]
+ ≤ sup

P∈P(µ̃,S̃)
EP

[
f̃U (ξ)

]
. (18)

Proof: As in Lemma 4.1, we define a = y(x)T ξ and
b = β−y0(x). Hence, f̃U (ξ) = ( α

α+1 )(a−b)++( 1
α+1 )(−b)+.

We show f̃(ξ) ≤ f̃U (ξ) by discussing the following four cases:
1) If a ≤ b ≤ 0, then 0 ≤ (b/a) ≤ 1 and−b ≥ 0. It follows

that f̃(ξ) = −(b/(α + 1)) (b/a)
α ≤ ( 1

α+1 )(−b) ≤
f̃U (ξ).

2) If b ≤ 0 and a > b, then (a − b)+ = a − b and
(−b)+ = −b. It follows that f̃U (ξ) = ( α

α+1 )(a− b)+ +

( 1
α+1 )(−b)+ = ( α

α+1 )a− b = f̃(ξ).
3) If b > 0 and a ≤ b, then it is clear that f̃(ξ) = 0 ≤

f̃U (ξ).
4) If a > b > 0, then 0 < (b/a) < 1 and (a−b)+ = a−b.

It follows that f̃(ξ) = (α/(α + 1))a − b + (b/(α +
1))(b/a)α ≤ (α/(α+ 1))a− b+ b/(α+ 1) = f̃U (ξ).

As f̃(ξ) ≤ f̃U (ξ) for all ξ ∈ Rk, the inequality (18) holds
based on Lemma 4.1. �

Theorem 4.2: Let f̃L(ξ) = [( α
α+1 )y(x)T ξ + y0(x)− β]+.

Then,

sup
P∈P

EP [L(ξ)− β]
+ ≥ sup

P∈P(µ̃,S̃)
EP

[
f̃L(ξ)

]
. (19)

Proof: As in Lemma 4.1, we define a = y(x)T ξ and
b = β − y0(x). Hence, f̃L(ξ) = [( α

α+1 )a − b]+. We show
f̃(ξ) ≥ f̃L(ξ) by discussing the following four cases:

1) If a ≤ b ≤ 0, then 0 ≤ (b/a) ≤ 1 and (−b) ≥ 0.
It follows that f̃(ξ) = −(b/(α + 1)) (b/a)

α ≥ 0.
Meanwhile, as H(a) := −(b/(α + 1)) (b/a)

α is a
convex function of a on interval (−∞, b], we have
H(a) ≥ H ′(b)(a− b) +H(b), i.e.,

−
(

b

α+ 1

)(
b

a

)α
≥
(

α

α+ 1

)
(a− b)− b

α+ 1

=

(
α

α+ 1

)
a− b,

where the inequality is because H ′(a) = (α/(α +
1))(b/a)α+1 and H(b) = (−b/(α + 1)). Hence,
−(b/(α + 1)) (b/a)

α ≥ [( α
α+1 )a − b]+, i.e., f̃(ξ) ≥

f̃L(ξ).
2) If b ≤ 0 and a > b, then ( α

α+1 )a − b ≥ 0. It follows
that f̃L(ξ) = ( α

α+1 )a− b = f̃(ξ).
3) If b > 0 and a ≤ b, then ( α

α+1 )a − b < 0. It follows
that f̃L(ξ) = 0 = f̃(ξ).

4) If a > b > 0, then (b/a) > 0. It follows that f̃(ξ) =
(α/(α+ 1))a− b+ (b/(α+ 1))(b/a)α ≥ ( α

α+1 )a− b.
Meanwhile, as −a < −b < 0, from Case 1) we have

−
(
−b
α+ 1

)(
−b
−a

)α
≥
(

α

α+ 1

)
(−a)− (−b).

In other words, (α/(α+1))a−b+(b/(α+1))(b/a)α ≥
0. Hence, (α/(α + 1))a − b + (b/(α + 1))(b/a)α ≥
[( α
α+1 )a− b]+, i.e., f̃(ξ) ≥ f̃L(ξ).

As f̃(ξ) ≥ f̃L(ξ) for all ξ ∈ Rk, the inequality (19) holds
based on Lemma 4.1. �
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Fig. 1. f̃L,U (a) and f̃(a) for b = 1, α = 1 (left) and b = −1, α = 1
(right).

Figure 1 shows the relationship between functions f̃L,U (ξ)

and f̃(ξ). We can also observe that, asα→∞, all three curves
converge and the approximation errors shrink to zero.

V. SDP REFORMULATION

In this section, we reformulate the DR-CVaR constraint
(13) as an SDP based on the two approximations derived
in Section IV. More specifically, we obtain a conservative
approximation of (13) based on f̃U (ξ), and a relaxed one
based on f̃L(ξ). Before summarizing these results, we review
a celebrated reformulation result from the literature.

Lemma 5.1: (Adapted from [12]) For random function
L(ξ) = y0(x) + y(x)T ξ, supP∈P(µ,S) EP [L(ξ)− β]

+ equals
the optimal objective value of the following SDP.

inf
M∈S+k+1

Tr(Ω ·M)

s.t. M −
[

0 1
2y(x)

1
2y(x)T y0(x)− β

]
� 0, (20)

where S+k+1 represents the set of all (k+1)×(k+1) symmetric

and positive semidefinite matrices and Ω =

[
S µ
µT 1

]
.

We are now ready to state the SDP reformulations based on
the approximations in Section IV as follows.

Theorem 5.1: The DR-CVaR constraint (13) is implied by
the following SDP constraints:

β +

(
1

ε

)(
α

α+ 1

)
Tr(Ω̃ ·M) ≤ 0

β +
1

ε(α+ 1)
(y0(x)− β)+(

1

ε

)(
α

α+ 1

)
Tr(Ω̃ ·M) ≤ 0

M −
[

0 1
2y(x)

1
2y(x)T y0(x)− β

]
� 0, (21)

where Ω̃ =

[
S̃ µ̃
µ̃T 1

]
.

Proof: Based on Theorem 4.1, we have

inf
β∈R

{
β +

1

ε
sup
P

EP [L(ξ)− β]
+

}
≤ inf

β∈R

{
β +

1

ε(α+ 1)
(y0(x)− β)++(

1

ε

)(
α

α+ 1

)
sup

P∈P(µ̃,S̃)
EP [L(ξ)− β]

+

}
.

The proof is completed by rewriting the worst-case expectation
on the right-hand side using Lemma 5.1. �

Theorem 5.2: The DR-CVaR constraint (13) implies the
following SDP constraints:

β +
1

ε
Tr(Ω̃ ·M) ≤ 0

M −

 0 1
2

(
α
α+1

)
y(x)

1
2

(
α
α+1

)
y(x)T y0(x)− β

 � 0. (22)

Proof: Based on Theorem 4.2, we have

inf
β∈R

{
β +

1

ε
sup
P

EP [L(ξ)− β]
+

}
≥

inf
β∈R

{
β +

1

ε
sup

P∈P(µ̃,S̃)
EP [Ls(ξ)− β]

+

}
(23)

whereLs(ξ) = y0(x)+
(

α
α+1

)
y(x)T ξ. Based on Lemma 5.1,

the right-hand side can be further recast as

inf
β∈R,M∈S+k+1

β +
1

ε
Tr(Ω̃ ·M)

s.t. M −

 0 1
2

(
α
α+1

)
y(x)

1
2

(
α
α+1

)
y(x)T y0(x)− β

 � 0

The proof is completed. �

VI. CASE STUDY

A. Simulation Setup

The theoretical results are evaluated on a modified uncon-
gested IEEE 9-bus system [25]. We add two large wind power
plants on buses 1 and 2, and assume a wind power forecast at
each bus of 100 MW. We increase the total load consumption in
the system by 50%. We assume the wind forecast errors at each
wind power plant are independent, have standard deviations
of 10% of the forecast value, and modes at the origin (i.e.,
the wind forecast). For cost parameters, we assume C3 is 10
times C2, where C1 and C2 are defined in [25]. For violation
probability, we assume ε = 5%. All optimization problems
are solved by CVX with the Mosek solver [26] [27].

B. SDP Results

To check the performance of the reformulations in Theorem-
s 5.1 and 5.2, we compare the objective costs with that of the
original problem, specifically the conventional CVaR problem
without the assumption of α-unimodality. The computational
effort required by each approach is similar. For systematic
comparison, we fix the covariance matrix Γ = S − µµT and
sweep over feasible values for µ, which corresponds to the
means of the wind forecast errors w1 and w2. Feasibility can
be ensured if Ω̃ � 0 [17].

Figure 2 shows that the approximation in Theorem 5.1
provides conservative results when the means of w1 and w2

are both close to the origin. However, in this same case, the
approximation in Theorem 5.2 provides a lower bound, which
is close to the original cost. This means that, when the mean is
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Fig. 2. Objective value comparison between the approximations in
Theorems 5.1 and 5.2 with α = 1, and the original case without the
unimodality assumption.
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Fig. 3. When µ = [0; 0] and with increasing α, the original case without
the unimodality assumption and the approximations in Theorems 5.1 and
5.2 converge.

close to the mode, the mode does not have a large effect on the
worst-case distribution, which determines the cost. When the
means are further from the mode, both Theorems 5.1 and 5.2
give better objective values compared to the original cost. The
reason is that the mode at the origin restricts the worst-case
distribution to be less extreme than the worst-case distribution
without the unimodality assumption.

Figures 3 and 4 show that as α increases, the results of the
three approaches converge because the mode has less effect on
the cost. Figure 4 shows that when the mean and mode are far
apart andα ≤ k, the mode has a strong effect on the worst-case
distribution, resulting in lower cost. However, whenα > k, the
effect of the mode becomes weaker. The reason is that when α
increases, the feasible region Ω̃ � 0 will expand and the same
mean and mode will have less of an effect on the solution. As
α→∞, Ω̃→ Ω and, as we only fix the covariance matrix Γ,
the feasible region for µ becomes Rk. However, Theorem 5.1
can still provide better solution than that of the original case
when α is large if the mean is far from the mode.
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Fig. 5. Univariate objective cost comparison between the results of
Theorems 5.1 and 5.2 with α = 1, and the original case without the
unimodality assumption.

Fig. 6. Distribution with mean of w far from the mode.

1) Univariate Interpretation: From (4), another interpreta-
tion would be to treatw = w1+w2 as a univariate distribution.
Then, we use the following theorem.

Theorem 6.1: (Adapted from [22]). If random vector ξ ∈
Rk has aα-unimodal distribution with some fixedα, and A is a
linear mapping from Rk to Rq , then ξ̃ = Aξ has a α-unimodal
distribution with the same α.

Then, we have the following property.

inf
P∈Pαµ,S

P(L(Aξ) ≤ 0) = inf
P∈Pα

Aµ,ASAT

P(L(ξ̃) ≤ 0),

where Pαµ,S denotes the set of α-unimodal probability distri-
butions with first two moments µ and S, respectively. In our
case, A = [1 1] and so we can directly obtain results for the
univariate case. Figure 5 shows that when the mean of w is
further from the mode, the approximations in Theorems 5.1
and 5.2 provide better objective costs than the original case.
Additionally, the approximations become closer to one an-
other. With Theorems 5.1 and 5.2, the DR-CVaR is bounded
within the shaded region in Fig. 5. In the univariate case with
increasing α, similar results are observed to those in Figs. 3
and 4.

An empirical explanation for the influence of the mode is
as follows. In Fig. 6, assume we have a positive mean and a
mode at the origin. Using the location of the mean, we know the
cumulative probability below that will be limited. To choose
Rup, we want to estimate the largest possible magnitude of
negative total wind error. Due to the existence of the mode,
the tail region on the negative axis will be more restrictive
compared to the case without the mode assumption. Hence, we
require less up reserve capacity. This restriction will become
more severe as the mean becomes further from mode, as shown
in our previous results.
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Fig. 7. Upper bounds (UB) and lower bounds (LB) for different numbers
of as number of cuts (e.g., UB-8 refers to the upper bound with 8 cuts),
compared with original case without the unimodality assumption.

C. A Multi-Cut Approximation

We extend the 2-piece approximation described in Section
IV to a multi-cut one by approximating function f̃(ξ) with
multiple linear pieces. By increasing the number of approxi-
mation pieces, the approximation error reduces, leading to a
tighter confidence region for the real optimal value. The multi-
cut approximations can also be exactly reformulated as SDP
problems. The resulting SDP formulation and its proof are
similar to those of the 2-piece approximation and so omitted
here due to the space limit. Figure 7 shows that as we increase
the number of linear pieces in the multi-cut approximation,
better upper and lower bounds can be achieved. Additionally,
by comparing with Fig. 5, we observe that the approximation
quickly converges to the real optimal value as we increase the
number of linear pieces.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we included generalized α-unimodality in-
to the distributionally robust risk-constrained optimization
problem assuming known moment information. We proposed
two tractable approximate reformulations, an upper bound
and a lower bound, that we expressed as SDPs. While the
computational effort for the problems is similar to the original
problem, including the unimodality assumption results in less-
conservative, lower-cost solutions when the mode is far from
the mean. We also observe that the solutions generated under
the assumption of α-unimodality will converge to the solution
generated without assuming unimodality as α increases. Fi-
nally, we presented the results of a multi-cut approximation
which provides tighter bounds on the objective cost.

In the future, we will attempt to derive an exact reformu-
lation of the RCOPF. We will also develop approaches to
derive joint DR-CVaR constraints with unimodality, include
other properties like bounded supports and moment ambiguity,
and test the results on more realistic systems with higher
uncertainty dimensions and correlations to determine if the
performance of the theorems is case-dependent.
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