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Background: Chance Constrained Optimization

e Widely used in different problems with uncertainty

e But hard to accurately estimate uncertainty distributions with
historical data

e Example: Physical constraints should be satisfied for most of the
possible realizations of renewable/load uncertainty in power
systems planning problems

e Solving methodologies

e Scenario approach: large number of scenarios/constraints
o Probabilistically robust method: overconservativeness
e Analytical reformulation: case dependent reliability

o General formulation

P(L(x,£) <0)>1—¢
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Background: Distributionally Robust Optimization [1]

e Key properties

o A probabilistic constraint is satisfied within an ambiguity set of distributions
e The ambiguity set can be calibrated using the following information
o Moment-based information: mean, covariance, higher-order moments
o Density-based information: likelihood of a known probability density
o Distribution structure: unimodality, support, smoothness, symmetry

o Good trade-off between performance and computational tractability

o Example: distributionally robust chance constraint (DRCC)

inf P(L <0)>1-
inf B(L(x ) <0) 21—

pY — {Unimodal, Ep(€) = p, Ep(é€™) = S}

[1] E. Delage and Y. Ye, “Distributionally Robust Optimization under Moment Uncertainty with Application to
Data-driven problems,” Operations Research, vol. 58, no. 3, pp. 595-612, 2010
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Multivariate Unimodality

e Univariate unimodal distribution
o For an univariate random variable, the probability density/mass function
(pdf/pmf) f(£) has its maximum value at the location of mode, m

o The pdf/pmf is non-decreasing when & < m and non-increasing when £ > m

o a-unimodality [2]
o A generalised multivariate unimodality whose distribution structure is
regulated by parameter «
o With a random vector of size k, we have the following special features
e When a = k = 1, a-unimodality coincides with univariate unimodality
o When a = k, a-unimodality coincides with star unimodality such that
the pdf/pmf is non-increasing along the ray from the mode to any other
point in the space

m 82 a 06

0% Nomalized wind aror
[2] S.W. Dharmadhikari and K. Joat-Dev, “Unimodality, Convexity and Application,” Probability and
Mathematical Statistics, vol. 27. Academic Press, 1988
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Conditional Value-at-Risk (CVaR)

Definition: CVaR

Given a random function L(x,&) and a constant € € (0,1), the CVaR of L(x, &)
with confidence level (1 — €), denoted CVaR(L(x,&)), is defined as

CVaR(L(x, €)) = inf {6 + %Eﬂ» [L(x,€) — B]" } (1)

where Ep[-]T = Ep [max(-, 0)].

@ CVaR [3, 4] is a popular tool used to measure the risk level of randomness
@ CVaR evaluates the conditional expectation of L(x, &) on the tail of its distribution

@ Risk constraints (RC) imply chance constraints (CC) as below

CVaRe(L(x,€)) <0 = P{L(x,£) <0} >1—e¢.

[3] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, “Coherent Measures of Risk,” Mathematical Finance, 9:
203228, 1999

[4] R.T. Rockfellar and S. Uryasev, “Optimization of conditional value-at-risk,” J.Risk 2, 21-41, 2002
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Distributionally Robust Risk Constraints (DRRC)

Definition: DRRC
With the definition of RC and the ambiguity set P, DRRC is defined as

sup CVaR(L(x,£)) <0, (2)
PeP

@ Similarly, DRRC imply distributionally robust chance constraints (DRCC) as below
sup CVaRc(L(x,£)) <0 = inf P(L(x,§) <0)>1—¢
PeP PeP

@ In this work, we use the ambiguity set P := {P € P~ : Ep[¢] = p, Ep[¢€T] = S}

where 1 and S can be estimated based on the historical data of £

@ P represents all of the a-unimodal distributions with mode at the origin
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Objective and Contributions

o Objective
e Previous work on distributionally robust optimization (DRO) either does not
consider unimodality in the ambiguity set or assumes fixed variables
e We want to include multivariate unimodality into the ambiguity set of DRO
problems and give tractable reformulations

o Contribution of this work

o We use risk constraints (CVaR) to control both the probability and magnitude
of constraint violations

e We incorporate multivariate unimodality into the distributionally robust
risk-constrained optimization (DRRCO) problem with adjustable design
variables and obtain two tractable approximate semidefinite programming
(SDP) reformulations

o We study the impact of the mode location and the value of the unimodality
parameter o on the optimal solution
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Previous Results

Lemma (adapted from [5])

Let i := (%L and S := (2£2)S. For P := {P € P* : Ep[¢] = 11, Ep[¢€T] = S}
as assumed, we have

sup Bp [L(x,6) — A" = sup e [F(x,€)|, (3)
PeP PeP(i,S)

where P([i, S) := {P : Ep[¢] = [i, Ep[¢¢T] = S} and 8 as a constant

We assume L(x,&) = yo(x) + y(x)T€& where where yo(x) and y(x) represent two
affine functions of x

[5] B. Van Parys, P. Goulart and M. Morari, “Distributionally Robust Expectation Inequalities for Structured
distributions,” Optimization Online 2015
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Previous Results

@ The transformation in the lemma above does not include the unimodality
assumption in the ambiguity set

o If we define a:= y(x)7¢ and b := 3 — yo(x), we have f(x,&) as below

@ Evaluating the expectation of F(f) is computationally challenging

Lemma (cont'd)

= —(=25) (&) ifa<b
if b<0  f(¢):= (aﬂ) (3)° ifa< j @)
((ﬁl) a—b, otherwise

. - 0 ifa<b
if b>0 (&)= { (ﬁ) A b (a%l) (2)", otherwise
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Sandwich Approximation

@ To reduce the computational challenge, we replace f(x, &) with a sandwich
approximation of fy(x, &) and f.(x, &)

@ Both approximations are the tightest 2-piecewise linear approximations of f(x, &)

Theorem: Approximations

o) = (257 ) T+ o0 = A1 + (7 ) Dob0 — A1 )
_ aF
i 9 = | (557 ) 7€+ (0 - 5] )
For given x,  fi(x,€) < f(x,&) < fy(x,§) VEER (8)
o 1.5—— o 15—
z | f@ 2 [Tl
> 1—~(a) > 11— f(a)
2 oo 212 20 i fila)] /
"% P 2 % 2 o 2

a
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Semidefinite Programming (SDP) Reformulation

@ With the sandwich approximation, we obtain two tractable SDP reformulations
using f.,u(x, &) respectively

@ Both approximations will provide upper and lower bounds on real objective value

@ The idea can be extended using multiple piecewise linear approximations

Example: SDP reformulation using FL(X,f)

1 .
B+-Tr(@-M)<0, MesSf,

_ 0 : (a) 00 6_[ S 7
L) m we-s |50 .
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Simulation Setup

@ Objective: Evaluate the performance of the approximate SDP reformulations of the
DRRCO problem and compare to that without the assumption of unimodality

@ Problem: Optimal power flow to schedule generation and reserve capacities under
wind power production uncertainty
e Uncongested modified IEEE 9-bus power system
o Assume two independent wind farms
o Confidence level 95%
e Assume the mode of wind production uncertainty is at the origin

@ Case studies
o Case study 1: Fixing the covariance matrix of the random vector, analyze the
optimal solution with different mean vectors
o Case study 2: Fixing both mean and covariance, analyze the influence of
unimodality parameter «
e For the above two tests, compare the performance for different number of
approximation pieces

University of Michigan November 2016 12 /17




Simulation

Results: Case Study 1
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Simulation Results: Case Study 2

4600
4400¢
e
42000 o/ * UB-4
LB-4
‘g 2000 —Original | |
O o UB-3
LB-3
3800 ¥ « UB—2 |
LB-2
3600 —uB-8 |
LB-8
3400 : ‘

0 5 10 15 20

University of Michigan November 2016 14 /17



Conclusion

e Including unimodality assumption within DRRCO problems leads
to better objective values as our ambiguity set is more practical
and better defined

o When mode moves further from mean, the skewness effect on the
distribution will result in less conservative results

o When « increases, the impact of unimodality gets weaker and the
solution will converge to that without assuming unimodality

e Multi-cut approximations provide tighter bounds on objective
value as cut number increases

o Future work

e Joint risk/chance constraints; Other structural features; More realistic case
studies
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Summary of All Completed Extensions

e Distributionally Robust Chance-Constrained Optimization

e Sandwich approximation with a second-order cone programming (SOCP)
formulation

e Exact reformulation with an SOCP formulation and an efficient algorithm

o Distributionally Robust Risk-Constrained Optimization
o Sandwich approximation with an SDP formulation
o Exact reformulation with an SDP formulation,but no efficient algorithm

e Exact reformulation with an SOCP formulation and an efficient algorithm

o Case Studies

o Stochastic optimal power flow problem with both wind uncertainty and line
congestion
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Questions

Thank you!

Contact: libowen@umich.edu

This work was supported by the U.S. National Science Foundation
(Awards #CCF-1442495 and #CMMI-1555983)
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