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Background: Chance Constrained Optimization

Widely used in different problems with uncertainty

But hard to accurately estimate uncertainty distributions with
historical data

Example: Physical constraints should be satisfied for most of the
possible realizations of renewable/load uncertainty in power
systems planning problems

Solving methodologies

Scenario approach: large number of scenarios/constraints

Probabilistically robust method: overconservativeness

Analytical reformulation: case dependent reliability

General formulation

P(L(x , ξ) ≤ 0) ≥ 1− ε
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Background: Distributionally Robust Optimization [1]

Key properties

A probabilistic constraint is satisfied within an ambiguity set of distributions

The ambiguity set can be calibrated using the following information

Moment-based information: mean, covariance, higher-order moments

Density-based information: likelihood of a known probability density

Distribution structure: unimodality, support, smoothness, symmetry

Good trade-off between performance and computational tractability

Example: distributionally robust chance constraint (DRCC)

inf
P∈PU

P(L(x , ξ) ≤ 0) ≥ 1− ε

PU =
{

Unimodal, EP(ξ) = µ, EP(ξξT ) = S
}

[1] E. Delage and Y. Ye, “Distributionally Robust Optimization under Moment Uncertainty with Application to
Data-driven problems,” Operations Research, vol. 58, no. 3, pp. 595-612, 2010
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Multivariate Unimodality

Univariate unimodal distribution
For an univariate random variable, the probability density/mass function
(pdf/pmf) f (ξ) has its maximum value at the location of mode, m

The pdf/pmf is non-decreasing when ξ ≤ m and non-increasing when ξ > m

α-unimodality [2]
A generalised multivariate unimodality whose distribution structure is
regulated by parameter α

With a random vector of size k, we have the following special features

When α = k = 1, α-unimodality coincides with univariate unimodality

When α = k, α-unimodality coincides with star unimodality such that
the pdf/pmf is non-increasing along the ray from the mode to any other
point in the space
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[2] S.W. Dharmadhikari and K. Joat-Dev, “Unimodality, Convexity and Application,” Probability and
Mathematical Statistics, vol. 27. Academic Press, 1988
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Conditional Value-at-Risk (CVaR)

Definition: CVaR

Given a random function L(x , ξ) and a constant ε ∈ (0, 1), the CVaR of L(x , ξ)
with confidence level (1− ε), denoted CVaRε(L(x , ξ)), is defined as

CVaRε(L(x , ξ)) = inf
β∈R

{
β +

1

ε
EP [L(x , ξ)− β]+

}
, (1)

where EP[·]+ = EP [max(·, 0)].

CVaR [3, 4] is a popular tool used to measure the risk level of randomness

CVaR evaluates the conditional expectation of L(x , ξ) on the tail of its distribution

Risk constraints (RC) imply chance constraints (CC) as below

CVaRε(L(x , ξ)) ≤ 0 ⇒ P{L(x , ξ) ≤ 0} ≥ 1− ε.

[3] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, “Coherent Measures of Risk,” Mathematical Finance, 9:
203228, 1999
[4] R.T. Rockfellar and S. Uryasev, “Optimization of conditional value-at-risk,” J.Risk 2, 21-41, 2002
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Distributionally Robust Risk Constraints (DRRC)

Definition: DRRC
With the definition of RC and the ambiguity set P, DRRC is defined as

sup
P∈P

CVaRε(L(x , ξ)) ≤ 0, (2)

Similarly, DRRC imply distributionally robust chance constraints (DRCC) as below

sup
P∈P

CVaRε(L(x , ξ)) ≤ 0 ⇒ inf
P∈P

P(L(x , ξ) ≤ 0) ≥ 1− ε

In this work, we use the ambiguity set P := {P ∈ Pα : EP[ξ] = µ,EP[ξξT ] = S}
where µ and S can be estimated based on the historical data of ξ

Pα represents all of the α-unimodal distributions with mode at the origin
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Objective and Contributions

Objective
Previous work on distributionally robust optimization (DRO) either does not
consider unimodality in the ambiguity set or assumes fixed variables

We want to include multivariate unimodality into the ambiguity set of DRO
problems and give tractable reformulations

Contribution of this work
We use risk constraints (CVaR) to control both the probability and magnitude
of constraint violations

We incorporate multivariate unimodality into the distributionally robust
risk-constrained optimization (DRRCO) problem with adjustable design
variables and obtain two tractable approximate semidefinite programming
(SDP) reformulations

We study the impact of the mode location and the value of the unimodality
parameter α on the optimal solution
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Previous Results

Lemma (adapted from [5])

Let µ̃ := (α+1
α )µ and S̃ := (α+2

α )S . For P := {P ∈ Pα : EP[ξ] = µ,EP[ξξT ] = S}
as assumed, we have

sup
P∈P

EP [L(x , ξ)− β]+ = sup
P∈P(µ̃,S̃)

EP

[
f̃ (x , ξ)

]
, (3)

where P(µ̃, S̃) := {P : EP[ξ] = µ̃,EP[ξξT ] = S̃} and β as a constant

Assumption 1

We assume L(x , ξ) = y0(x) + y(x)T ξ where where y0(x) and y(x) represent two
affine functions of x

[5] B. Van Parys, P. Goulart and M. Morari, “Distributionally Robust Expectation Inequalities for Structured
distributions,” Optimization Online 2015
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Previous Results

The transformation in the lemma above does not include the unimodality
assumption in the ambiguity set

If we define a := y(x)T ξ and b := β − y0(x), we have f̃ (x , ξ) as below

Evaluating the expectation of f̃ (ξ) is computationally challenging

Lemma (cont’d)

if b ≤ 0 f̃ (ξ) :=

 −
(

b
α+1

) (
b
a

)α
if a ≤ b(

α
α+1

)
a− b, otherwise

(4)

if b > 0 f̃ (ξ) :=

{
0 if a ≤ b(

α
α+1

)
a− b +

(
b

α+1

) (
b
a

)α
, otherwise

. (5)
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Sandwich Approximation

To reduce the computational challenge, we replace f̃ (x , ξ) with a sandwich

approximation of f̃U(x , ξ) and f̃L(x , ξ)

Both approximations are the tightest 2-piecewise linear approximations of f̃ (x , ξ)

Theorem: Approximations

f̃U(x , ξ) =

(
α

α + 1

)
[y(x)T ξ + y0(x)− β]+ +

(
1

α + 1

)
[y0(x)− β]+ (6)

f̃L(x , ξ) =

[(
α

α + 1

)
y(x)T ξ + y0(x)− β

]+
(7)

For given x, f̃L(x , ξ) ≤ f̃ (x , ξ) ≤ f̃U(x , ξ) ∀ ξ ∈ Rk (8)
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Semidefinite Programming (SDP) Reformulation

With the sandwich approximation, we obtain two tractable SDP reformulations
using f̃L,U(x , ξ) respectively

Both approximations will provide upper and lower bounds on real objective value

The idea can be extended using multiple piecewise linear approximations

Example: SDP reformulation using f̃L(x , ξ)

β +
1

ε
Tr(Ω̃ ·M) ≤ 0, M ∈ S+k+1

M −

 0 1
2

(
α
α+1

)
y(x)

1
2

(
α
α+1

)
y(x)T y0(x)− β

 � 0, Ω̃ =

[
S̃ µ̃
µ̃T 1

]
(9)
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Simulation Setup

Objective: Evaluate the performance of the approximate SDP reformulations of the
DRRCO problem and compare to that without the assumption of unimodality

Problem: Optimal power flow to schedule generation and reserve capacities under
wind power production uncertainty

Uncongested modified IEEE 9-bus power system

Assume two independent wind farms

Confidence level 95%

Assume the mode of wind production uncertainty is at the origin

Case studies

Case study 1: Fixing the covariance matrix of the random vector, analyze the
optimal solution with different mean vectors

Case study 2: Fixing both mean and covariance, analyze the influence of
unimodality parameter α

For the above two tests, compare the performance for different number of
approximation pieces
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Simulation Results: Case Study 1
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Simulation Results: Case Study 2

0 5 10 15 20
3400

3600

3800

4000

4200

4400

4600

α

C
os

t

 

 

UB−4
LB−4
Original
UB−3
LB−3
UB−2
LB−2
UB−8
LB−8

Bowen Li University of Michigan November 2016 14 / 17



Conclusion

Including unimodality assumption within DRRCO problems leads
to better objective values as our ambiguity set is more practical
and better defined

When mode moves further from mean, the skewness effect on the
distribution will result in less conservative results

When α increases, the impact of unimodality gets weaker and the
solution will converge to that without assuming unimodality

Multi-cut approximations provide tighter bounds on objective
value as cut number increases

Future work
Joint risk/chance constraints; Other structural features; More realistic case
studies
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Summary of All Completed Extensions

Distributionally Robust Chance-Constrained Optimization
Sandwich approximation with a second-order cone programming (SOCP)
formulation

Exact reformulation with an SOCP formulation and an efficient algorithm

Distributionally Robust Risk-Constrained Optimization
Sandwich approximation with an SDP formulation

Exact reformulation with an SDP formulation,but no efficient algorithm

Exact reformulation with an SOCP formulation and an efficient algorithm

Case Studies
Stochastic optimal power flow problem with both wind uncertainty and line
congestion

Bowen Li University of Michigan November 2016 16 / 17



Questions

Thank you!
Contact: libowen@umich.edu

This work was supported by the U.S. National Science Foundation
(Awards #CCF-1442495 and #CMMI-1555983)
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