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Abstract Optimization problems face random constraint violations when uncertainty
arises in constraint parameters. Effective ways of controlling such violations include
risk constraints, e.g., chance constraints and conditional Value-at-Risk constraints.
This paper studies these two types of risk constraints when the probability distri-
bution of the uncertain parameters is ambiguous. In particular, we assume that the
distributional information consists of the first two moments of the uncertainty and a
generalized notion of unimodality. We find that the ambiguous risk constraints in this
setting can be recast as a set of second-order cone (SOC) constraints. In order to facil-
itate the algorithmic implementation, we also derive efficient ways of finding violated
SOC constraints. Finally, we demonstrate the theoretical results via computational
case studies on power system operations.
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1 Introduction

In an uncertain environment, optimization problems often involve making decisions
before the uncertainty is realized. In this case, constraints, which may include secu-
rity criteria and capacity restrictions, may face random violations. For example, we
consider a constraint subject to uncertainty taking the form

a(x)�ξ ≤ b(x), (1)

where x ∈ {0, 1}nB × R
n−nB represents an n-dimensional decision variable, nB ∈

{0, 1, . . . , n} represents the number of binary decisions, a(x) : Rn → R
T and b(x) :

R
n → R represent two affine transformations of x , and ξ ∈ R

T represents a T -
dimensional random vector defined on probability space (RT ,BT ,Pξ ) with Borel
σ -algebra BT . An intuitive way of handling random violations of (1) is to employ
chance constraints, which attempt to satisfy (1)with at least a pre-specified probability,
i.e.,

Pξ {a(x)�ξ ≤ b(x)} ≥ 1 − ε, (2)

where 1 − ε represents the confidence level of the chance constraint with ε usually
taking a small value (e.g., 0.05 or 0.10; see, e.g., [8,23]). Dating back to the 1950s,
chance constraints have been applied in a wide range of applications including power
system operations (see, e.g., [25,40]), production planning (see, e.g., [6,15]), and
chemical processing (see, e.g., [19,20]).

In practice, a decision maker is often interested in not only the violation probability
of constraint (1), but also the violation magnitude if any (see, e.g., [28,29]). Indeed,
chance constraint (2) offers no guarantees on the magnitude of a(x)�ξ − b(x) when
it is positive. This motivates an alternative risk measure called the conditional Value-
at-Risk (CVaR) that examines the (right) tail of a(x)�ξ − b(x). More precisely, the
CVaR of a one-dimensional random variable χ with confidence level 1 − ε ∈ (0, 1)
is defined as

CVaRε
Pχ

(χ) = inf
β∈R

{
β + 1

ε
EP[χ − β]+

}
, (3)

where Pχ represents the probability distribution of χ and [x]+ = max{x, 0} for
x ∈ R. When the infimum is attained in (3), β represents the Value-at-Risk of χ with
confidence level 1 − ε, that is, Pχ {χ ≤ β} ≥ 1 − ε (see [2,29]). As a consequence,
CVaRε

Pχ
(χ)measures the conditional expectation ofχ on its right ε-tail.Hence, chance

constraint (2) is implied by the CVaR constraint

CVaRε
Pξ

(a(x)�ξ) ≤ b(x). (4)

A basic challenge to using risk constraints (2) and (4) is that complete information
of probability distribution Pξ may not be available. Under many circumstances, we
only have structural knowledge of Pξ (e.g., symmetry, unimodality, etc.) and possibly
a series of historical data that can be considered as samples taken from the true (while
ambiguous) distribution. As a result, the solution obtained from a risk-constrained
model can be biased, i.e., sensitive to the Pξ we employ in constraints (2) and (4), and
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Ambiguous risk constraints with unimodality information 153

hence performpoorly in out-of-sample tests.Anaturalwayof addressing this challenge
is to employ a set of plausible probability distributions, termed the ambiguity set, rather
than a single estimate of Pξ .

1.1 Ambiguity set with unimodality information

We consider an ambiguity set characterized by the first two moments of ξ and a
structural requirement that Pξ is unimodal in a generalized sense. By definition, if
T = 1, then Pξ is unimodal about 0 if function F(z) := Pξ (ξ ≤ z) is convex on
(−∞, 0) and concave on (0,∞). If ξ admits a density function fξ (z), then unimodality
is equivalent to fξ (z) being nondecreasing on (−∞, 0) and nonincreasing on (0,∞).
In a multidimensional setting, i.e., if T > 1, an intuitive extension of this notion is
that fξ (zd) is nonincreasing on (0,∞) for all d ∈ R

T and d �= 0. That is, the density
function of ξ is nonincreasing along any ray emanating from the mode. The following
definitions extend this intuitive notion to also cover the distributions that do not admit
density functions.

Definition 1 (Star-Unimodality; see [11]) A set S ⊆ R
T is called star-shaped about

0 if, for all ξ ∈ S, the line segment connecting 0 and ξ is completely contained in S.
A probability distribution Pξ on R

T is called star-unimodal about 0 if it belongs to
the closed convex hull of the set of all uniform distributions on sets in R

T which are
star-shaped about 0.

In this paper, we consider a more general notion than the star-unimodality as follows.

Definition 2 (α-Unimodality; see [11]) For any givenα > 0, a probability distribution
Pξ is called α-unimodal about 0 if function G(z) := zαPξ (S/z) is nondecreasing on
(0,∞) for all Borel set S ∈ BT .

If ξ admits a density function fξ (z), then it can be shown that Pξ is α-unimodal
about 0 if and only if zT−α fξ (zd) is nonincreasing on (0,∞) for all d ∈ R

T and
d �= 0 (see [11,36]). As compared to star-unimodal distributions, the density of an
α-unimodal distribution can increase along rays emanating from the mode (e.g., when
α > T ), but the increasing rate is controlled by α. Indeed, along any ray d, fξ (zd)

does not increase faster than zα−T on (0,∞). Furthermore, when α = T , fξ (zd) is
nonincreasing on (0,∞) for all d. This implies that α-unimodality reduces to star-
unimodality when α = T .

Given the first two moments of ξ and α-unimodality, we define the following
ambiguity set

Dξ (μ,�, α) :=
{
Pξ ∈ MT : EPξ

[ξ ] = μ, EPξ
[ξξ�] = �, Pξ isα-unimodal about 0

}
,

(5)
whereMT represents the set of all probability distributions on (RT ,BT ), andμ and�

represent the first and second moments of ξ , respectively. Without loss of generality,
we assume that themode of ξ is 0 in definition (5) and a generalmodem can bemodeled
by shifting ξ to ξ − m (see, e.g., Example 3.4.4 in [17]). For notational brevity, we
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often refer to ambiguity setDξ with its dependency on parameters (μ,�, α) omitted.
Based on Dξ , we consider an ambiguous chance constraint (ACC)

inf
Pξ ∈Dξ

Pξ {a(x)�ξ ≤ b(x)} ≥ 1 − ε, (6)

that is, we wish to satisfy chance constraint (2) for all probability distributions Pξ in
ambiguity set Dξ . Similarly, we define an ambiguous CVaR constraint (AVC)

sup
Pξ ∈Dξ

CVaRε
Pξ

(a(x)�ξ) ≤ b(x), (7)

which requires that CVaR constraint (4) is satisfied for all Pξ in Dξ .

1.2 Relations to the prior work

In recent years, distributionally robust optimization (DRO) has become an important
tool to handle distributional ambiguity in stochastic programs. Using concepts similar
to ACC (6) and AVC (7), DRO aims to optimize or protect a system from the worst-
case probability distribution, which belongs to a pre-specified ambiguity set. DROwas
first introduced by [30] as a minimax stochastic program for the classical newsvendor
problem under an ambiguous demand with only moment information. Following this
seminal work, moment information has been widely used for characterizing ambiguity
sets in various DROmodels (see, e.g., [4,10,44]). A key merit of the DRO approach is
that the model can often be recast as tractable convex programs such as semidefinite
programs (SDPs) (see, e.g., [10]) or SOC programs (see, e.g., [12]). Recently, [41]
successfully identified a class of ambiguity sets that lead to tractable convex program
reformulations of general DRO models.

ACCs with moment information (and without structural information) have been
well-studied in recent years (see, e.g., [1,7,9,12,18,37,39,43]). In particular, [12],
[39], and [7] showed that the ACC can be recast as an SOC constraint if the ambiguity
set is characterized by the first two moments of ξ . Later, [43] showed that ACC and
AVC are actually equivalent if the same ambiguity set is employed. Recently, [1]
and [9] extended the analysis of ACC to the case when variable x involves binary (i.e.,
0–1) decisions, and [18]made significant progress on representing the ambiguous joint
chance constraints in tractable forms. ACCs with information on the density function
have also been studied (see, e.g., [13,14,21]).

In contrast, ACCs and AVCs with both moment and structural information have
received less attention. [26] considered general DRO models with ambiguity sets
incorporating unimodality, symmetry, and convexity. Recently, by using the Choquet
representation of α-unimodal distributions, [35] successfully derived SDPs to quantify
the worst-case probability bound in ACC. Furthermore, based on both α-unimodality
and γ -monotonicity, [36] extended the analysis to quantifying the worst-case expec-
tation in AVC. The main focus of [35,36] is to evaluate the worst-case expectations
in ACC or AVC for a given decision variable x . In contrast, we adjust x to satisfy
ACC and AVC. In our prior work [22], we derived approximations of AVC. Here, we
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Ambiguous risk constraints with unimodality information 155

obtain an exact representation of AVC and derive tighter approximations than those
in [22]. To the best of our knowledge, our results on ACC are most related to [17]
(in particular, Example 3.4.4), which employs a different ambiguity set that bounds
the second moment of ξ by � instead of matching it as in (5). Furthermore, [17]
derived a representation of ACC based on SDPs. In contrast, in this paper, we employ
a different approach based on projection, which allows us to represent ACC with SOC
constraints. SOC constraints are more computationally tractable than SDPs, espe-
cially when x involves binary decisions. In addition, many off-the-shelf commercial
solvers (e.g., CPLEXandGUROBI) can directly handlemixed-integer SOCprograms.
Finally, [34] assumed that the mean and the mode of ξ coincide and derived a rep-
resentation of ACC based on SOC constraints. In contrast, in this paper, we study a
more general setting where the mean and the mode may be different.

We summarize our main contributions as follows.

1. We derive equivalent reformulations of ACC (6) and AVC (7) using both moment
and unimodality information. Both reformulations are SOC constraints and so
can be efficiently handled in commercial solvers. Different from previous results
in [43], we find that ACC and AVC are not equivalent after incorporating the
unimodality information.

2. Inspired by the separation approach (see, e.g., [24]), we derive efficient ways for
finding violated SOC constraints in the reformulations of ACC and AVC. The
separation procedures can be used to accelerate the algorithmic implementation
of ACC and AVC.

3. We derive conservative and relaxed approximations of ACC and AVC that are
asymptotically tight. As demonstrated in the computational case study, these
approximations help to provide high-quality bounds for the optimal objective value
of the test instances.

The remainder of this paper is organized as follows. Section 2 represents ACC
(6) as a set of SOC constraints. Section 3 represents AVC (7) as a set of SOC con-
straints. In both sections, we derive separation procedures for finding violated SOC
constraints based on the golden section search. In Sect. 4, we analyze an extension of
ACC and AVC to incorporate the linear unimodality in the ambiguity set. We present
computational case studies in Sect. 5 and mention future research directions in Sect. 6.

2 Representation of the ambiguous chance constraint

We show that ACC (6) can be recast as second-order cone (SOC) constraints.
To this end, we first simplify the computation of the left-hand side of (6), i.e.,
infPξ ∈Dξ

Pξ {a(x)�ξ ≤ b(x)}, by projecting random vector ξ on R and consider-
ing a one-dimensional random variable ζ . We summarize this projection result in the
following proposition, whose proof relies on the representation of α-unimodal random
vectors in [11].

Proposition 1 Define scalars μ1 = a(x)�μ, �1 = a(x)��a(x), and ambiguity set
D1 = {Pζ ∈ M1 : EPζ

[ζ ] = μ1, EPζ
[ζ 2] = �1, Pζ isα-unimodal about 0}. Then

123



156 B. Li et al.

inf
Pξ ∈Dξ

Pξ {a(x)�ξ ≤ b(x)} = inf
Pζ ∈D1

Pζ {ζ ≤ b(x)}. (8)

Proof Theorem 3.5 in [11] states that a random vector X ∈ R
m is α-unimodal if and

only if there exists a random vector Z ∈ R
m such that X = U 1/αZ , where U is

uniform in (0, 1) and independent of Z .
First, pick any ξ such thatPξ ∈ Dξ . Then, there exists Zξ such that ξ = U 1/αZξ .We

define ζ = a(x)�ξ . It follows that ζ is α-unimodal because ζ = a(x)�(U 1/αZξ ) =
U 1/α(a(x)�Zξ ). Furthermore, EPζ

[ζ ] = μ1 and EPζ
[ζ 2] = �1. Hence, Pζ ∈ D1,

and so infPξ ∈Dξ
Pξ {a(x)�ξ ≤ b(x)} ≥ infPζ ∈D1 Pζ {ζ ≤ b(x)}.

Second, pick any ζ such that Pζ ∈ D1. Then, there exists a Zζ such that ζ =
U 1/αZζ . It follows thatE[Zζ ] = (α+1

α
)μ1 andE[Z2

ζ ] = (α+2
α

)�1. Based on Theorem

1 in [27], there exists a Zξ ∈ R
T such that Zζ = a(x)�Zξ , E[Zξ ] = (α+1

α
)μ, and

E[Zξ Z�
ξ ] = (α+2

α
)�. We define ξ = U 1/αZξ . It follows that ξ is α-unimodal, and

furthermore EPξ
[ξ ] = ( α

α+1 )E[Zξ ] = μ and EPξ
[ξξ�] = ( α

α+2 )E[Zξ Z�
ξ ] = �.

Therefore, Pξ ∈ Dξ , and so infPξ ∈Dξ
Pξ {a(x)�ξ ≤ b(x)} ≤ infPζ ∈D1 Pζ {ζ ≤ b(x)}.


�
Next, we compute the worst-case probability infPζ ∈D1 Pζ {ζ ≤ b(x)}, for which we

make the following two assumptions in the remainder of this section.

Assumption 1
(

α+2
α

)
� � (

α+1
α

)2
μμ�.

Assumption 2 Constraint a(x)�ξ ≤ b(x), and so constraint ζ ≤ b(x) as well, is
satisfied when ξ takes the value of its mode 0. That is, b(x) ≥ 0.

Assumption 1 is standard in the literature and ensures that Dξ �= ∅ (see, e.g., [35]).
Assumption 2 is standard in the related literature (see, e.g., [17,35,36]). In fact, asACC
(6) requires that a(x)�ξ ≤ b(x) holds with high probability, it is reasonable to assume
that it also holds at the mode of ξ . Additionally, given ACC (6) and Proposition 1, we
observe that Assumption 2 holds if Pζ {ζ ≤ 0} < 1 − ε for each Pζ ∈ D1, i.e., if the
distributions inD1 are not extremely negative-skewed. To represent ACC (6), we show
an equivalent reformulation of infPζ ∈D1 Pζ {ζ ≤ b(x)} in the following proposition
that also sheds light on the worst-case probability distribution.

Proposition 2 Define μ0 = (
α+1
α

)
μ1 and �0 = (

α+2
α

)
�1. Then, infPζ ∈D1 Pζ {ζ ≤

b(x)} is equivalent to the optimal objective value of optimization problem

min
p1,p2,z1,z2

p1 +
(
b(x)

z2

)α

p2 (9a)

s.t. p1 + p2 = 1, (9b)

p1z1 + p2z2 = μ0, (9c)

p1z
2
1 + p2z

2
2 = �0, (9d)

p1, p2 ≥ 0, z1 ∈ R, z2 ≥ b(x). (9e)

Proof First, we rewrite infPζ ∈D1 Pζ {ζ ≤ b(x)} as a functional optimization problem
as follows:
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Ambiguous risk constraints with unimodality information 157

min
Pζ

Pζ {ζ ≤ b(x)} (10a)

s.t. EPζ
[ζ ] = μ1, (10b)

EPζ
[ζ 2] = �1, (10c)

EPζ
[1] = 1, (10d)

Pζ isα-unimodal, (10e)

where constraints (10b)–(10c) describe the two moments of ζ , and constraint (10d)
ensures that Pζ is a probability distribution. Using Theorem 3.5 in [11], since Pζ

is α-unimodal, there exists a random variable Z such that ζ = U 1/αZ , where U is
uniform in (0, 1) and independent of Z . It follows that EPζ

[ζ ] = E[U 1/α]EPZ [Z ] =
( α
α+1 )EPZ [Z ] and EPζ

[ζ 2] = E[U 2/α]EPZ [Z2] = ( α
α+2 )EPZ [Z2]. Furthermore,

Pζ {ζ ≤ b(x)} = P{U 1/αZ ≤ b(x)}
=

∫ +∞

z=−∞
P{U 1/αz ≤ b(x)}dPZ (z)

=
∫ b(x)

z=−∞
1 dPZ (z) +

∫ +∞

z=b(x)
P

{
U 1/α ≤ b(x)

z

}
dPZ (z) (11a)

=
∫ b(x)

z=−∞
1 dPZ (z) +

∫ +∞

z=b(x)

(
b(x)

z

)α

dPZ (z)

=
∫ +∞

z=−∞

[
b(x)

max{z, b(x)}
]α

dPZ (z), (11b)

where equality (11a) is becauseU 1/αz ≤ b(x)when z ≤ b(x) (note that b(x) ≥ 0 due
to Assumption 2), and in (11b) we designate that 0/0 = 1 in case b(x) = 0. Hence,
problem (10a)–(10e) can be recast as

min
PZ

EPZ

[
b(x)

max{Z , b(x)}
]α

(12a)

s.t. EPZ [Z ] = μ0, (12b)

EPZ [Z2] = �0, (12c)

EPZ [1] = 1. (12d)

Second, we take the dual of problem (12a)–(12d) to obtain

max
π,λ,γ

μ0π + �0λ + γ (13a)

s.t. λz2 + π z + γ ≤
[

b(x)

max{z, b(x)}
]α

, ∀z ∈ R, (13b)

where dual variables π , λ, and γ are associated with primal constraints (12b)–(12d),
respectively.Meanwhile, dual constraints (13b) are associatedwith primal variablePZ .
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Strong duality holds between problems (12a)–(12d) and (13a)–(13b) due to Assump-
tion 1 (see Proposition 3.4 in [31]). It follows that there exists an optimal solution P∗

Z
to (12a)–(12d) that is discrete with at most 3 points of support (see Lemma 3.1 in [32])
and a finite optimal solution (π∗, λ∗, γ ∗) to (13a)–(13b) (see Proposition 3.4 in [31]).

Third, strong duality yields

EP
∗
Z

{[
b(x)

max{Z , b(x)}
]α

− (λ∗Z2 + π∗Z + γ ∗)
}

= EP
∗
Z

[
b(x)

max{Z , b(x)}
]α

− (λ∗�0 + π∗μ0 + γ ∗) = 0.

It follows that P∗
Z is supported at those points z such that [b(x)/max{z, b(x)}]α =

λ∗z2 + π∗z + γ ∗. From constraints (13b), we note that λ ≤ 0 and so λz2 + π z + γ

is concave in z. Additionally, [b(x)/max{z, b(x)}]α is piecewise convex and consists
of two pieces, more specifically,

[
b(x)

max{z, b(x)}
]α

=
{
1, if z ≤ b(x)(
b(x)
z

)α

, if z > b(x),

and both pieces 1 and (b(x)/z)α are convex in z. Hence, due to constraints (13b),
[b(x)/max{z, b(x)}]α and λ∗z2 + π∗z + γ ∗ can meet at at most two points, each
located at one piece of [b(x)/max{z, b(x)}]α . It follows that, without loss of opti-
mality, we can shrink the feasible region of formulation (12a)–(12d) to those discrete
distributions with at most two points of support, each corresponding to one piece of
[b(x)/max{z, b(x)}]α . Therefore, formulations (12a)–(12d) and (9a)–(9e) have the
same optimal objective value (note that we relax z1 ≤ b(x) to z1 ∈ R in (9a)–(9e)
without loss of optimality, because it is suboptimal that both z1 and z2 correspond to
the same piece of [b(x)/max{z, b(x)}]α). 
�
Remark 1 Suppose that (p∗

1, p
∗
2, z

∗
1, z

∗
2) is an optimal solution to problem (9a)–(9e).

From the proof of Proposition 2, we observe that problem (9a)–(9e) is solved for the
worst-case probability distribution of a randomvariable Z such that ζ = U 1/αZ , where
U is uniform on (0, 1) and independent of Z . It follows that the worst-case distribution
P

∗
ζ attaining infPζ ∈D1 Pζ {ζ ≤ b(x)} is a mixture in the form P

∗
ζ = p∗

1P
1
ζ + p∗

2P
2
ζ ,

where, for i = 1, 2, Pi
ζ is defined on the interval connecting 0 and z∗i (i.e., [0, z∗i ] or

[z∗i , 0], depending on the sign of z∗i ) and P
i
ζ {|ζ | ≤ t |z∗i |} = tα for all t ∈ [0, 1].

Finally, we reformulate ACC (6) by analyzing problem (9a)–(9e). We summarize
the main result of this section in the following theorem.

Theorem 1 ACC (6) is equivalent to a set of SOC constraints

√
1 − ε − τ−α

ε
‖�a(x)‖ ≤ τb(x) −

(
α + 1

α

)
μ�a(x), ∀τ ≥

(
1

1 − ε

)1/α

, (14)

where � := [(α+2
α

)� − (α+1
α

)2μμ�]1/2.
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Ambiguous risk constraints with unimodality information 159

Proof Weanalyze the solutions to problem (9a)–(9e) and identify all possible solutions
(p1, p2, z1, z2) that satisfy constraints (9b)–(9e). To this end, we analyze the following
two cases.

Case 1 If μ0 ≤ b(x), then we parameterize z2 by defining z2 = τb(x) for τ ≥ 1.
Accordingly, we parameterize all solutions (p1, p2, z1, z2) that satisfy constraints
(9b)–(9e) by τ as follows:

p1 = (τb(x) − μ0)
2

(τb(x) − μ0)2 + �0 − μ2
0

, p2 = �0 − μ2
0

(τb(x) − μ0)2 + �0 − μ2
0

, (15a)

z1 = μ0 − �0 − μ2
0

τb(x) − μ0
, and z2 = τb(x). (15b)

Note that, for each τ ≥ 1, (p1, p2, z1, z2) satisfies constraints (9e) because p1, p2 ≥ 0
and z2 = τb(x) ≥ b(x). Then, problem (9a)–(9e) can be recast as

min
τ≥1

(τb(x) − μ0)
2 + τ−α(�0 − μ2

0)

(τb(x) − μ0)
2 + �0 − μ2

0

.

Hence, ACC (6), i.e., infPζ ∈D1 Pζ {ζ ≤ b(x)} ≥ 1 − ε, can be recast as

(τb(x) − μ0)
2 + τ−α(�0 − μ2

0)

(τb(x) − μ0)
2 + (�0 − μ2

0)
≥ 1 − ε, ∀τ ≥ 1.

After simple transformations, this is equivalent to

(τb(x) − μ0)
2 ≥

(
1 − ε − τ−α

ε

)
(�0 − μ2

0), ∀τ ≥ 1. (16)

As (τb(x) − μ0)
2 ≥ 0, we can assume τ ≥ (1/(1− ε))1/α without loss of generality.

Furthermore, because τb(x) − μ0 ≥ 0 for all τ ≥ 1, we can rewrite constraints (16)
as (14), using the definitions of μ0 and �0.

Case 2 If μ0 > b(x), then we parameterize z2 by defining z2 = τb(x) for τ ≥ 1.
For all τ ≥ μ0/b(x), because z2 ≥ μ0, we parameterize (p1, p2, z1, z2) by τ as in
(15a)–(15b). Similar to Case 1, ACC (6) can be recast as

τb(x) − μ0 ≥
√(

1 − ε − τ−α

ε

)
+

√
�0 − μ2

0, ∀τ ≥ μ0

b(x)
. (17a)
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For all 1 ≤ τ < μ0/b(x), because b(x) ≤ z2 < μ0, we parameterize (p1, p2, z1, z2)
by τ as follows:

p1 = (μ0 − τb(x))2

(μ0 − τb(x))2 + �0 − μ2
0

, p2 = �0 − μ2
0

(μ0 − τb(x))2 + �0 − μ2
0

,

z1 = μ0 + �0 − μ2
0

μ0 − τb(x)
, and z2 = τb(x).

Then, because μ0 > τb(x), ACC (6) can be recast as

μ0 − τb(x) ≥
√(

1 − ε − τ−α

ε

)
+

√
�0 − μ2

0, ∀1 ≤ τ <
μ0

b(x)
. (17b)

Combining inequalities (17a)–(17b) and the fact that (1 − ε − τ−α)/ε > 0 if and
only if τ > [1/(1 − ε)]1/α , we have μ0/b(x) ≤ [1/(1 − ε)]1/α because otherwise,
when τ = μ0/b(x), the left-hand side of (17a) equals zero while the right-hand side
is strictly positive. It follows that inequalities (17b) are equivalent to μ0 − τb(x) ≥ 0
for all 1 ≤ τ < μ0/b(x) and so redundant, and inequalities (17a) are equivalent to
(14), using the definitions of μ0 and �0. 
�

In computation, directly replacing ACC with constraints (14) involves an infinite
number of SOC constraints and so is computationally intractable. An alternative
approach is by separation, i.e., (i) obtain a solution x̂ from a relaxed formulation,
(ii) find a τ̂ ≥ (1/(1 − ε))1/α such that x̂ violates the corresponding SOC constraint
(14), and (iii) incorporate the violated SOC constraint to strengthen the formulation.
Note that constraints (14) imply that

τb(x) −
(α + 1

α

)
μ�a(x) ≥ 0, ∀τ ≥

( 1

1 − ε

)1/α

because
√

(1 − ε − τ−α)/ε ‖�a(x)‖ ≥ 0. These inequalities are equivalent to a single
linear constraint (1/(1 − ε))1/αb(x) − [(α + 1)/α]μ�a(x) ≥ 0, which we assume
is always incorporated in the relaxed formulation in Step (i). We discuss how to
efficiently conduct Step (ii) of the separation approach, which is equivalent to solving
the following problem:

Separation Problem 1: Given x̂ , does there exist a τ̂ ≥ (1/(1 − ε))1/α such that x̂
violates constraints (14)?

In the following proposition, we show that Separation Problem 1 can be solved by
conducting a golden section search on the real line. This search is computationally
efficient.

Proposition 3 Define μ̂0 = (α+1
α

)μ�a(x̂) and �̂0 = (α+2
α

)a(x̂)��a(x̂). We have
the following:

1. If a(x̂) = 0, then constraints (14) are always satisfied;

123



Ambiguous risk constraints with unimodality information 161

2. If a(x̂) �= 0 and b(x̂) = 0, then x̂ violates constraints (14) if and only if it violates
them at τ̂ = +∞, i.e.,

√
(1 − ε)/ε ‖�a(x̂)‖ > −[(α + 1)/α]μ�a(x̂);

3. If a(x̂) �= 0 and b(x̂) > 0, then x̂ violates constraints (14) if and only if√
(1 − ε − τ̂−α)/ε ‖�a(x̂)‖ > τ̂b(x̂) − [(α + 1)/α]μ�a(x̂), where τ̂ represents

the minimizer of the one-dimensional problem

min
τ≥(1/(1−ε))1/α

(
b(x̂)τ − μ̂0

)2 −
(
1 − ε − τ−α

ε

)(
�̂0 − μ̂2

0

)
, (18)

whose objective function is strongly convex and can be minimized via a golden
section search in the interval [(1/(1 − ε))1/α, μ̂0/b(x̂) + α(1 − ε)(α+1)/α(�̂0 −
μ̂2
0)/(2εb(x̂)

2)].

Proof First, if a(x̂) = 0, then constraints (14) reduce to τb(x) ≥ 0 for all τ ≥
(1/(1 − ε))1/α , which always holds due to Assumption 2. Second, if a(x̂) �= 0 and
b(x̂) = 0, then constraints (14) reduce to

√
1 − ε − τ−α

ε
‖�a(x̂)‖ ≤ −

(
α + 1

α

)
μ�a(x̂), ∀τ ≥

(
1

1 − ε

)1/α

.

As the left-hand side of the above inequality is increasing in τ , constraints (14) are
violated if and only if they are violated at τ̂ = +∞. Third, if a(x̂) �= 0 and b(x̂) > 0,
then constraints (14) are satisfied if and only if

[√
1 − ε − τ−α

ε
‖�a(x̂)‖

]2

≤
[
τb(x̂) −

(
α + 1

α

)
μ�a(x̂)

]2
, ∀τ ≥

(
1

1 − ε

)1/α

because both sides of constraints (14) are nonnegative. By the definitions of μ̂0 and
�̂0, this is equivalent to (b(x̂)τ − μ̂0)

2 − [(1 − ε − τ−α)/ε](�̂0 − μ̂2
0) ≥ 0 for all

τ ≥ (1/(1 − ε))1/α . It follows that the Separation Problem 1 can be answered by
checking constraints (14) at the optimal solution τ̂ of problem (18).

Finally, we denote the objective function of problem (18) as H(τ ). It follows that

H ′(τ ) = 2b(x̂)(b(x̂)τ − μ̂0) −
(α

ε

) (
�̂0 − μ̂2

0

)
τ−α−1,

H ′′(τ ) = 2
[
b(x̂)

]2+
(

α2 + α

ε

)(
�̂0 − μ̂2

0

)
τ−α−2.

As H ′′(τ ) > 0 for all τ ≥ (1/(1 − ε))1/α , H(τ ) is strongly convex and can be
minimized via a golden section search. More specifically, if H ′((1/(1− ε))1/α) ≥ 0,
then (1/(1− ε))1/α is optimal to problem (18). Otherwise, if H ′((1/(1− ε))1/α) < 0,
then problem (18) is optimized at τ̂ such that H ′(τ̂ ) = 0. It follows that 2b(x̂)(b(x̂)τ̂ −
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μ̂0) = (α/ε)(�̂0 − μ̂2
0)τ̂

−α−1. Since τ̂ ≥ (1/(1 − ε))1/α , we have

2b(x̂)2τ̂ ≤ 2b(x̂)μ̂0 +
(α

ε

) (
�̂0 − μ̂2

0

)
(1 − ε)(α+1)/α

⇒ τ̂ ≤ μ̂0

b(x̂)
+ α(1 − ε)(α+1)/α

2εb(x̂)2

(
�̂0 − μ̂2

0

)
.

Hence, the golden section search can be restricted to the interval [(1/(1 −
ε))1/α, μ̂0/b(x̂) + α(1 − ε)(α+1)/α(�̂0 − μ̂2

0)/(2εb(x̂)
2)] without loss of optimal-

ity. 
�

2.1 Approximations of the ambiguous chance constraint

Before closing this section,we derive relaxed and conservative approximations ofACC
(6) by using a finite number of SOCconstraints. First, based on the exact representation
(14) that involves all τ ∈ [[1/(1− ε)]1/α,∞)

, we obtain a relaxed approximation by
only involving a finite number of τ .We summarize this approximation in the following
proposition, whose proof is immediate and so omitted.

Proposition 4 For given integer K ≥ 1 and real numbers [1/(1 − ε)]1/α ≤ n1 <

n2 < · · · < nK ≤ ∞, ACC (6) implies the SOC constraints

√
1 − ε − n−α

k

ε
‖�a(x)‖ ≤ nkb(x) −

(
α + 1

α

)
μ�a(x), ∀k = 1, . . . , K . (19)

Second, we obtain a conservative approximation by approximating the left-hand
sides of the inequalities (14) by using a piece-wise linear function of τ .

Proposition 5 Given integer K ≥ 2 and real numbers [1/(1 − ε)]1/α = n1 < n2 <

· · · < nK = ∞, we define a piece-wise linear function containing (K − 1) pieces:

g(τ ) = min
k=2,...,K

{√
1

ε(1 − ε − n−α
k )

[(
αn−α−1

k

2

)
τ + 1 − ε −

(
1 + α

2

)
n−α
k

]}
.

Then, g(τ ) ≥ √
(1 − ε − τ−α)/ε for all τ ≥ [1/(1 − ε)]1/α . Furthermore, denote

m1 = [1/(1− ε)]1/α and let m2 < · · · < mK−1 represent the (K − 2) breakpoints of
function g(τ ), i.e.,

mk =
(1 − ε)

(
1 −

√
1−ε−n−α

k

1−ε−n−α
k+1

)
+ (

1 + α
2

) (
n−α
k+1

√
1−ε−n−α

k

1−ε−n−α
k+1

− n−α
k

)

(
α
2

) (
n−α−1
k+1

√
1−ε−n−α

k

1−ε−n−α
k+1

− n−α−1
k

) ,

∀k = 2, . . . , K − 1.
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Then, ACC (6) is implied by the SOC constraints

g(mk)‖�a(x)‖ ≤ mkb(x) −
(

α + 1

α

)
μ�a(x), ∀k = 1, . . . , K − 1. (20)

Proof Denote h(τ ) = √
(1 − ε − τ−α)/ε. Then, the first derivative h′(τ ) =(

ατ−α−1

2

)√ 1
ε(1−ε−τ−α)

and the tangent of h(τ ) at nk is

√
1

ε(1 − ε − n−α
k )

[(
αn−α−1

k

2

)
τ + 1 − ε −

(
1 + α

2

)
n−α
k

]

for all k = 2, . . . , K . It follows that g(τ ) ≥ h(τ ) for all τ ≥ [1/(1 − ε)]1/α because
h(τ ) is concave on the interval

[[1/(1 − ε)]1/α,∞)
. Hence, ACC (6) is implied by

g(τ )‖�a(x)‖ ≤ τb(x) −
(

α + 1

α

)
μ�a(x), ∀τ ≥ [1/(1 − ε)]1/α. (21)

Furthermore, given x , as the left-hand side of (21) is piece-wise linear in τ and the
right-hand side of (21) is linear in τ , inequalities (21) hold if and only if they hold at
the breakpoints of g(τ ). Therefore, ACC (6) is implied by constraints (20). 
�
Remark 2 In computation, we can use the conservative approximation (20) to find
near-optimal solutions. More specifically, suppose that we employ the separation
approach to solve problem min{c(x) : x ∈ X, x satisfies(6)} and have finished the
first K iterations. Then, from these iterations, we obtain a lower bound cKL of the
optimal objective value and τ̂1, . . . , τ̂K by iteratively solving Separation Problem 1.
By letting n1 = [1/(1− ε)]1/α , nK+2 = ∞, and nk = τ̂k−1 for all k = 2, . . . , K + 1,
we obtain an upper bound cKU of the optimal objective value by solving problem
min{c(x) : x ∈ X, x satisfies (20) based on n1, . . . , nK+2}, whose optimal solution
is denoted x∗

K . If (cKU − cKL )/cKL is small enough, then we can stop the iterations and
output x∗

K as a near-optimal solution.

3 Representation of the ambiguous CVaR constraint

To recast AVC (7) as SOC constraints, we adopt a similar method to that described
in Sect. 2. Again, we project random vector ξ on R and consider a one-dimensional
random variable ζ . We summarize this result in the following proposition and omit
the proof due to its similarity to that of Proposition 1.

Proposition 6 The following equality holds:

sup
Pξ ∈Dξ

CVaRε
Pξ

(a(x)�ξ) = sup
Pζ ∈D1

CVaRε
Pζ

(ζ ).

123



164 B. Li et al.

We compute supPζ ∈D1
CVaRε

Pζ
(ζ ) by observing that Pζ is α-unimodal and so there

exists a random variable Z such that ζ = U 1/αZ , where U is uniform in (0, 1) and
independent of Z (see Theorem 3.5 in [11]). We summarize this computation in the
following proposition, and note that it can also be obtained by following Theorem 2.1
in [36].

Proposition 7 The following equality holds:

sup
Pζ ∈D1

CVaRε
Pζ

(ζ ) = inf
β∈R

{
β + 1

ε
sup

PZ∈D(μ0,�0)

EPZ [ f (Z)]
}

,

where D(μ0, �0) := {PZ ∈ M1 : EPZ [Z ] = μ0,EPZ [Z2] = �0} and f (Z) =
1[β < 0] f−(Z) + 1[β ≥ 0] f+(Z), where

f+(z) =
{
0 if z ≤ β(

α
α+1

)
z − β +

(
β

α+1

) (
β
z

)α

if z > β,

and f−(z) =
⎧⎨
⎩

−
(

β
α+1

) (
β
z

)α

if z < β(
α

α+1

)
z − β if z ≥ β.

Proof First, based on the definition of CVaR, we have

sup
Pζ ∈D1

CVaRε
Pζ

(ζ ) = sup
Pζ ∈D1

inf
β

{
β + 1

ε
EPζ

[ζ − β]+
}

= inf
β

{
β + 1

ε
sup

Pζ ∈D1

EPζ
[ζ − β]+

}
. (22)

To justify the switch of infβ and supPζ
in (22), we observe that β + 1

ε
EPζ

[ζ − β]+
is convex in β and concave (actually affine) in Pζ . Additionally, we claim that β ∈
[μ1 −

√
(1 + ε)(�1 − μ2

1)/(1 − ε), μ1 +
√

(2 − ε)(�1 − μ2
1)/ε], i.e., β belongs to

a compact set, without loss of optimality. Then, the switch follows from the Sion’s
minimax theorem (see [33]). To prove this claim, we observe that

VaRε
Pζ

(ζ ) ≤ argminβ∈R
{
β + 1

ε
EPζ

[ζ − β]+
}

≤ VaRε+
Pζ

(ζ )

for all Pζ ∈ D1, where VaRε
Pζ

(ζ ) := inf{β : Pζ {ζ ≤ β} ≥ 1 − ε} and VaRε+
Pζ

(ζ ) :=
inf{β : Pζ {ζ ≤ β} > 1 − ε} (see Theorem 10 in [29]). It follows that we can
assume β ∈ [VaRε

Pζ
(ζ ),VaRε+

Pζ
(ζ )] for all Pζ ∈ D1 without loss of optimality. But

D1 ⊆ D∞
1 := {Pζ ∈ M1 : EPζ

[ζ ] = μ1, EPζ
[ζ 2] = �1}, and it follows from

Cantelli’s inequality that
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inf
Pζ ∈D1

Pζ

{
ζ ≤ μ1 +

√(
2 − ε

ε

) (
�1 − μ2

1

)}

≥ inf
Pζ ∈D∞

1

Pζ

{
ζ ≤ μ1 +

√(
2 − ε

ε

) (
�1 − μ2

1

)} ≥ 1 − ε

2
.

Hence, VaRε+
Pζ

(ζ ) ≤ μ1 +
√

(2 − ε)(�1 − μ2
1)/ε for all Pζ ∈ D1 because otherwise

there exists a Pζ ∈ D1 such that Pζ {ζ ≤ μ1 +
√

(2 − ε)(�1 − μ2
1)/ε} ≤ 1−ε, which

contradicts Pζ {ζ ≤ μ1 +
√

(2 − ε)(�1 − μ2
1)/ε} ≥ 1 − ε/2. Similarly, application

of Cantelli’s inequality gives us

sup
Pζ ∈D1

Pζ

{
ζ ≤ μ1 −

√(
1 + ε

1 − ε

)
(�1 − μ2

1)

}

≤ sup
Pζ ∈D∞

1

Pζ

{
ζ ≤ μ1 −

√(
1 + ε

1 − ε

)
(�1 − μ2

1)

}
≤ 1 − 1 + ε

2
.

Hence, VaRε
Pζ

(ζ ) ≥ μ1 −
√

(1 + ε)(�1 − μ2
1)/(1 − ε) for all Pζ ∈ D1 because oth-

erwise there exists a Pζ ∈ D1 such that Pζ {ζ ≤ μ1−
√

(1 + ε)(�1 − μ2
1)/(1 − ε)} ≥

1−ε, which contradicts Pζ {ζ ≤ μ1−
√

(1 + ε)(�1 − μ2
1)/(1 − ε)} ≤ 1− (1+ε)/2.

Second, based on the representation ζ = U 1/αZ (see Theorem 3.5 in [11]), we
obtain that EPZ [Z ] = (α+1

α
)EPζ

[ζ ] = μ0, EPZ [Z2] = (α+2
α

)EPζ
[ζ 2] = �0, and

EPζ
[ζ − β]+ = EPZ [U 1/αZ − β]+

=
+∞∫

z=−∞

1∫
u=0

[
u1/αz − β

]
+ du dPZ (z).

It follows that, when β < 0,

EPζ
[ζ − β]+ =

β∫
z=−∞

(β/z)α∫
u=0

(
u1/αz − β

)
du dPZ (z)

+
+∞∫

z=β

1∫
u=0

(
u1/αz − β

)
du dPZ (z)

=
β∫

z=−∞

(
− 1

α + 1

)(
βα+1

zα

)
dPZ (z)
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+
+∞∫

z=β

[(
α

α + 1

)
z − β

]
dPZ (z)

= EPZ [ f−(Z)],

and, when β ≥ 0,

EPζ
[ζ − β]+ =

+∞∫
z=β

1∫
u=(β/z)α

(
u1/αz − β

)
du dPZ (z)

=
+∞∫

z=β

[(
α

α + 1

)
z − β +

(
1

α + 1

)(
βα+1

zα

)]
dPZ (z)

= EPZ [ f+(Z)]. 
�

Proposition 7 indicates that computing supPζ ∈D1
CVaRε

Pζ
(ζ ) can be difficult

because it needs to evaluate the worst-case expectation of a nonlinear function f (z),
i.e., supPZ∈D(μ0,�0)

EPZ [ f (Z)]. To obtain a computable form, we first present two
structural properties of f (z). Lemma 1 proposes two approximations of f (z) from
above (termed fU(z)) and below (termed fL(z)), respectively. Both fU(z) and fL(z)
are convex and consist of two linear pieces. Furthermore, Lemma 2 represents convex
functions f+(z) and f−(z) by the supporting hyperplanes of their epigraphs.

Lemma 1 Define fU(z) =
(

α
α+1

)
(z − β)+ +

(
1

α+1

)
(−β)+ and fL(z) =[(

α
α+1

)
z − β

]
+. Then, fL(z) ≤ f (z) ≤ fU(z) for all z ∈ R.

Proof First, we prove fL(z) ≤ f (z) by discussing the following four cases:

1. If z < β < 0, then 0 ≤ (β/z) ≤ 1 and (−β) ≥ 0. It follows that f (z) =
−(β/(α + 1)) (β/z)α ≥ 0. Additionally, define H(z) := −(β/(α + 1)) (β/z)α

and then H(z) is a convex function of z on interval (−∞, β]. It follows that
H(z) ≥ H ′(β)(z − β) + H(β), i.e.,

−
(

β

α + 1

)(
β

z

)α

≥
(

α

α + 1

)
(z − β) +

(
− β

α + 1

)
=

(
α

α + 1

)
z − β,

where the inequality is because H ′(z) = (α/(α + 1))(β/z)α+1 and H(β) =
(−β/(α+1)). Hence,−(β/(α+1)) (β/z)α ≥ [( α

α+1 )z−β]+, i.e., f (z) ≥ fL(z).
2. If β < 0 and z ≥ β, then ( α

α+1 )z − β ≥ 0. It follows that fL(z) = ( α
α+1 )z − β =

f (z).
3. If β ≥ 0 and z ≤ β, then ( α

α+1 )z − β < 0. It follows that fL(z) = 0 = f (z).
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(a) (b)β = –1 and α =1 β = 1 and α =1

Fig. 1 Examples of function f (z) and its approximations fU(z) and fL(z)

4. If z > β ≥ 0, then (β/z) ≥ 0. It follows that f (z) = (α/(α +1))z−β + (β/(α +
1))(β/z)α ≥ ( α

α+1 )z − β. Additionally, as −z < −β ≤ 0, from Case 1 we have

−
( −β

α + 1

)(−β

−z

)α

≥
(

α

α + 1

)
(−z) − (−β).

In other words, (α/(α + 1))z − β + (β/(α + 1))(β/z)α ≥ 0. Hence, (α/(α +
1))z − β + (β/(α + 1))(β/z)α ≥ [( α

α+1 )z − β]+, i.e., f (z) ≥ fL(z).

Second, we prove f (z) ≤ fU(z) by discussing the following four cases:

1. If z < β < 0, then 0 ≤ (β/z) ≤ 1 and (−β) ≥ 0. It follows that f (z) =
−(β/(α + 1)) (β/z)α ≤ ( 1

α+1 )(−β) ≤ fU(z).
2. If β < 0 and z ≥ β, then (z − β)+ = z − β and (−β)+ = −β. It follows that

fU(z) = ( α
α+1 )(z − β)+ + ( 1

α+1 )(−β)+ = ( α
α+1 )z − β = f (z).

3. If β ≥ 0 and z ≤ β, then f (z) = 0 ≤ fU(z).
4. If z > β ≥ 0, then 0 ≤ (β/z) < 1 and (z − β)+ = z − β. It follows that f (z) =

(α/(α+1))z−β + (β/(α+1))(β/z)α ≤ (α/(α+1))z−β +β/(α+1) = fU(z).


�
Figure 1a, b present examples of function f (z) and its approximations fU(z) and

fL(z).

Lemma 2 The following two equalities hold:

f+(z) = sup
k≥1

{(
α

α + 1

)
(1 − k−α−1)z − (1 − k−α)β

}
(23a)

when β ≥ 0, and

f−(z) = sup
k≥1

{(
α

α + 1

)
k−α−1z − k−αβ

}
. (23b)
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when β ≤ 0. Furthermore, f−(z) = fL(z) ≤ f+(z) for all z ∈ R when β ≥ 0 and
f+(z) = fL(z) ≤ f−(z) for all z ∈ R when β ≤ 0.

Proof First, we suppose that β ≥ 0 and pick a z0 ≥ β. The first derivative of f+(z) at
z0 is f ′+(z)

∣∣
z=z0

= ( α
α+1 )

[
1−(

β
z0

)α+1
]
. It follows that the supporting hyperplane of the

epigraph {(y, z) ∈ R
2 : y ≥ f+(z)} at z0 is y ≥ ( α

α+1 )
[
1− (

β
z0

)α+1
]
z− [

1− (
β
z0

)α
]
β.

Hence, f+(z) = supz0≥β

{
( α
α+1 )

[
1− (

β
z0

)α+1
]
z−[

1− (
β
z0

)α
]
β
}
for all z ≥ β because

f+(z) is convex. Furthermore, as f+(z) = 0 when z ≤ β and ( α
α+1 )

[
1− (

β
z0

)α+1
]
z −[

1 − (
β
z0

)α
]
β = 0 when z0 = β, we have f+(z) = supz0≥β

{
( α
α+1 )

[
1 − (

β
z0

)α+1
]
z −[

1 − (
β
z0

)α
]
β
}
for all z ∈ R. Rewriting z0 = kβ for k ≥ 1 leads to representation

(23a). The proof of representation (23b) is similar and so omitted.
Second,we suppose thatβ ≥ 0 anddefine f k+(z) = ( α

α+1 )(1−k−α−1)z−(1−k−α)β

for all k ≥ 1. Then, f+(z) = supk≥1{ f k+(z)} and f−(z) = supk≥1{( α
α+1 )z − β −

f k+(z)} = ( α
α+1 )z − β − infk≥1{ f k+(z)}. We prove that infk≥1{ f k+(z)} = −[

( α
α+1 )z −

β
]
− by discussing the following two cases:

1. When z ≤ (α+1
α

)β, we have z ≤ (α+1
α

)kβ as k ≥ 1 and β ≥ 0. It follows that
( α
α+1 )(−k−α−1)z+k−αβ ≥ 0 and so f k+(z) = ( α

α+1 )(1−k−α−1)z−(1−k−α)β ≥
( α
α+1 )z − β for all k ≥ 1. Hence, infk≥1{ f k+(z)} ≥ ( α

α+1 )z − β. In addition, by

letting k → +∞, we have f k+(z) → ( α
α+1 )z − β. Therefore, infk≥1{ f k+(z)} =

( α
α+1 )z − β when z ≤ (α+1

α
)β.

2. When z ≥ (α+1
α

)β, we have (1 − k−α−1)z ≥ (1 − k−α)(α+1
α

)β because β ≥ 0
and 1 − k−α−1 ≥ 1 − k−α ≥ 0. It follows that f k+(z) = ( α

α+1 )(1 − k−α−1)z −
(1 − k−α)β ≥ 0 for all k ≥ 1. Hence, infk≥1{ f k+(z)} ≥ 0. In addition, by letting
k = 1, we have f k+(z) = 0. Therefore, infk≥1{ f k+(z)} = 0 when z ≤ (α+1

α
)β.

It follows that f−(z) = ( α
α+1 )z − β + [

( α
α+1 )z − β

]
− = [

( α
α+1 )z − β

]
+. Hence,

by Lemma 1, f−(z) = fL(z) ≤ f+(z) for all z ∈ R when β ≥ 0. The proof of
f+(z) = fL(z) ≤ f−(z) when β ≤ 0 is similar and so omitted. 
�
We are now ready to derive a reformulation of the worst-case expectation

supPZ∈D(μ0,�0)
EPZ [ f (Z)]. We summarize this result in the following theorem.

Theorem 2 For β ∈ R, supPZ∈D(μ0,�0)
EPZ [ f (Z)] = 1

2 max{E+, E−}, where

Sk,μ0,�0,β =
√√√√[

(1 − k−α)β −
( α

α + 1

)
(1 − k−α−1)μ0

]2
+

( α

α + 1

)2
(1 − k−α−1)2(�0 − μ2

0),

E+ = sup
k≥1

{
Sk,μ0,�0,β − (1 − k−α)β +

( α

α + 1

)
(1 − k−α−1)μ0

}
, and (24a)

E− = sup
k≥1

{
Sk,μ0,�0,β − (1 + k−α)β +

( α

α + 1

)
(1 + k−α−1)μ0

}
. (24b)

Proof To avoid clutter, throughout this proof, we assume that �0 > μ2
0 and β �= 0.

The degenerate cases with �0 = μ2
0 or β = 0 can be easily verified. First, we suppose
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that β > 0 and define f k+(z) = ( α
α+1 )(1 − k−α−1)z − (1 − k−α)β for k ≥ 1. Then,

f (Z) = f+(Z) by Proposition 7 and f+(z) = supk≥1{ f k+(z)} by Lemma 2. It follows
that supPZ∈D(μ0,�0)

EPZ [ f (Z)] = supPZ∈D(μ0,�0)
EPZ [supk≥1{ f k+(Z)}]. We make

the following observation on switching the order of two supremum operators.

Observation 1 For β ∈ R, we have

sup
PZ∈D(μ0,�0)

EPZ

[
sup
k≥1

{
f k+(Z)

}]
= sup

k≥1

{
sup

PZ∈D(μ0,�0)

EPZ

[
f k+(Z)

]
+

}
.

Proof of Observation 1 First, for all k ≥ 1, it is clear that supk≥1{ f k+(Z)} ≥
[ f k+(Z)]+ because supk≥1{ f k+(z)} = f+(z) ≥ 0 for all z ∈ R. It follows
that supPZ∈D(μ0,�0)

EPZ [supk≥1{ f k+(Z)}] ≥ supk≥1{supPZ∈D(μ0,�0)
EPZ [ f k+(Z)]+}.

We now show the opposite, i.e., supPZ∈D(μ0,�0)
EPZ [supk≥1 { f k+(Z)}] ≤ supk≥1

{supPZ∈D(μ0,�0)
EPZ [ f k+(Z)]+}. When β ≤ 0, this holds because

sup
PZ∈D(μ0,�0)

EPZ

[
sup
k≥1

{
f k+(Z)

}]
= sup

PZ∈D(μ0,�0)

EPZ

[
fL(Z)

]

= lim
k→∞

{
sup

PZ∈D(μ0,�0)

EPZ

[
f k+(Z)

]
+

}

≤ sup
k≥1

{
sup

PZ∈D(μ0,�0)

EPZ

[
f k+(Z)

]
+

}
,

where the first equality follows from Lemma 2. To prove the second equality, we make
the following observation on the monotonicity of function [ f k+(z)]+ in k and relegate
the proof to Appendix A.

Observation 2 [ f k+1+ (z)]+ ≥ [ f k+(z)]+ for all z ∈ R and k ≥ 1.

By Observation 2, fL(z) = limk→∞[ f k+(z)]+ for all z ∈ R. It follows that, for any
PZ ∈ D(μ0, �0),

EPZ

[
fL(Z)

]
= EPZ

[
lim
k→∞[ f k+(Z)]+

]
= lim

k→∞EPZ

[
[ f k+(Z)]+

]
,

where the second equality follows from the monotone convergence theorem. Hence,

EPZ

[
fL(Z)

]
≤ lim

k→∞

{
sup

PZ∈D(μ0,�0)

EPZ [ f k+(Z)]+
}
.

As this inequality holds for all PZ ∈ D(μ0, �0), we have

sup
PZ∈D(μ0,�0)

EPZ [ fL(Z)] ≤ lim
k→∞

{
sup

PZ∈D(μ0,�0)

EPZ [ f k+(Z)]+
}
.
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On the other hand, as supPZ∈D(μ0,�0)
EPZ [ fL(Z)] ≥ supPZ∈D(μ0,�0)

EPZ [ f k+(Z)]+
for all k ≥ 1, we have

sup
PZ∈D(μ0,�0)

EPZ [ fL(Z)] ≥ lim
k→∞

{
sup

PZ∈D(μ0,�0)

EPZ [ f k+(Z)]+
}
,

which proves the second equality. Hence, we focus on the case when β > 0 in the
remainder of this proof.

Second, we present supPZ∈D(μ0,�0)
EPZ [supk≥1{ f k+(Z)}] as the following opti-

mization problem:

(P) : vP = max
PZ

EPZ [ f+(Z)]
s.t. EPZ [Z ] = μ0,

EPZ [Z2] = �0,

EPZ [1] = 1,

whose dual is (D) : vD = min
p,q,r

μ0 p + �0q + r

s.t. qz2 + pz + r ≥ f+(z), ∀z ∈ R. (25)

Strong duality holds between (P) and (D) due to Assumption 1 (see Proposition 3.4
in [31]), i.e., vP = vD . Furthermore, by Lemma 3.1 in [31], there exists a worst-case
probability distribution (i.e., an optimal solution to (P))with a finite support of atmost 3
points. That is, there existsm ∈ {1, 2, 3}, (z∗1, . . . , z∗m) ∈ R

m , and (π∗
1 , . . . , π∗

m) ∈ R
m+

such that
∑m

i=1 π∗
i z

∗
i = μ0,

∑m
i=1 π∗

i (z∗i )2 = �0, and
∑m

i=1 π∗
i = 1. Denoting an

optimal solution to (D) by (p∗, q∗, r∗), we claim that q∗(z∗i )2 + p∗z∗i + r∗ = f+(z∗i )
for all i = 1, . . . ,m, i.e., constraint (25) holds at equality at points z∗1, . . . , z∗m . Indeed,
if this claim fails to hold, then we have

vP =
m∑
i=1

π∗
i f+(z∗i ) <

m∑
i=1

π∗
i [q∗(z∗i )2+ p∗z∗i +r∗] = q∗�0+ p∗μ0+r∗ = vD,

(26)
where the inequality follows from constraint (25), and the second equality follows
from the definitions of (z∗1, . . . , z∗m) and (π∗

1 , . . . , π∗
m). As inequality (26) violates

the strong duality, the claim holds. In addition, it can be shown that f+(z) and any
quadratic function qz2 + pz + r satisfying constraint (25) intersect at most once in
interval (−∞, β] and at most once in interval [β,∞). It follows that m ≤ 2, and so
m = 2 because �0 > μ2

0. Without loss of generality, we assume that z∗1 ∈ (−∞, β]
and z∗2 ∈ [β,∞).

Third, we define k∗ = z∗2/β and consider function [ f k∗
+ (z)]+ that is tangent to

f+(z) at z∗1 and z∗2 by Lemma 2. Hence, qz2 + pz + r ≥ [ f k∗
+ (z)]+ for all z ∈ R

with equality holding only at z∗1 and z∗2. Consider the primal and dual formulations of
supPZ∈D(μ0,�0)

EPZ [ f k∗
+ (Z)]+ as follows:
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(Pk∗) : vk
∗
P = max

PZ
EPZ [ f k∗

+ (Z)]+
s.t. EPZ [Z ] = μ0,

EPZ [Z2] = �0,

EPZ [1] = 1,

(Dk∗) : vk
∗
D = min

p,q,r
μ0 p + �0q + r

s.t. qz2 + pz + r ≥ [ f k∗
+ (z)]+, ∀z ∈ R.

It is clear that the pair (z∗1, z∗2) and (π∗
1 , π∗

2 ) provide a primal feasible solution to
(Pk∗ ), and (p∗, q∗, r∗) is a dual feasible solution to (Dk∗ ) because f+(z) ≥ [ f k∗

+ (z)]+
for all z ∈ R. Meanwhile, these two solutions share the same objective function
value because

∑2
i=1 π∗

i [ f k∗
+ (z∗i )]+ = ∑2

i=1 π∗
i f+(z∗i ) = μ0 p∗ + �0q∗ + r∗, where

the first equality follows from the definition of [ f k∗
+ (z)]+ and the second equality is

due to vP = vD . It follows that strong duality holds between (Pk∗ ) and (Dk∗ ) and
supPZ∈D(μ0,�0)

EPZ [supk≥1{ f k+(Z)}] = supPZ∈D(μ0,�0)
EPZ [ f k∗

+ (Z)]+. Therefore,
supPZ∈D(μ0,�0)

EPZ [supk≥1{ f k+(Z)}] ≤ supk≥1{supPZ∈D(μ0,�0)
EPZ [ f k+(Z)]+} and

so the proof is completed. 
�

(Proof of Theorem 2 continued) By Observation 1, we have

sup
PZ∈D(μ0,�0)

EPZ [ f (Z)]

= sup
k≥1

{
sup

PZ∈D(μ0,�0)

EPZ

[( α

α + 1

)
(1 − k−α−1)Z − (1 − k−α)β

]
+

}

= sup
k≥1

{( α

α + 1

)
(1 − k−α−1) sup

PZ∈D(μ0,�0)

EPZ

[
Z −

(α + 1

α

)( 1 − k−α

1 − k−α−1

)
β

]
+

}

= sup
k≥1

{( α

α + 1

)
(1 − k−α−1)

(1
2

)[√[(α + 1

α

)( 1 − k−α

1 − k−α−1

)
β − μ0

]2 + (�0 − μ2
0)

−
(α + 1

α

)( 1 − k−α

1 − k−α−1

)
β + μ0

]}
(27)

= 1

2
E+,

where equality (??) follows from Observation 3 presented in Appendix B.
Second, we suppose that β < 0. Then, f (Z) = f−(Z) by Proposition 7. It follows

that

sup
PZ∈D(μ0,�0)

EPZ [ f (Z)]

= sup
PZ∈D(μ0,�0)

EPZ

[
sup
k≥1

{( α

α + 1

)
k−α−1Z − k−αβ

}]
(28a)
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= sup
PZ∈D(μ0,�0)

EPZ

[
sup
k≥1

{
max

{( α

α + 1

)
k−α−1Z − k−αβ,

( α

α + 1

)
Z − β

}}]

(28b)

= sup
k≥1

{
sup

PZ∈D(μ0,�0)

EPZ

[
max

{( α

α + 1

)
k−α−1Z − k−αβ,

( α

α + 1

)
Z − β

}]}

(28c)

= sup
k≥1

{( α

α + 1

)
k−α−1μ0 − k−αβ + sup

PZ∈D(μ0,�0)

EPZ [ f k+(Z)]+
}

(28d)

= 1

2
E−, (28e)

where equality (28a) follows fromLemma 2, equality (28b) is because ( α
α+1 )k

−α−1z−
k−αβ = ( α

α+1 )z − β when k = 1, equality (28c) is parallel to Observation 1 and can

be similarly proved, and equality (28d) follows from the definition of f k+(z).
Finally, it remains to prove that E+ ≥ E− when β > 0 and E+ ≤ E− when β < 0.

Due to the similarity of proof, we only show the former case, i.e., when β > 0. To
that end, we note that the equalities (28b)–(28e) are independent of the sign of β and
so still hold when β > 0. It follows that 1

2 E− = supPZ∈D(μ0,�0)
EPZ [ f−(Z)] when

β > 0. Similarly, we have 1
2 E+ = supPZ∈D(μ0,�0)

EPZ [ f+(Z)]. But f−(z) ≤ f+(z)

for all z ∈ R by Lemma 2, and so 1
2 E− ≤ 1

2 E+ when β > 0. 
�
Theorem 2 leads to an equivalent reformulation of AVC (7). We summarize the

main result of this section in the following theorem.

Theorem 3 AVC (7) is equivalent to a set of SOC constraints

∥∥∥∥∥∥
⎡
⎣(1 − k−α)β − (1 − k−α−1)μ�a(x)(

α
α+1

)
(1 − k−α−1)�a(x)

⎤
⎦
∥∥∥∥∥∥

≤2εb(x) − (1 − k−α−1)μ�a(x) + (1 − k−α − 2ε)β, (29a)∥∥∥∥∥∥
⎡
⎣(1 − k−α)β − (1 − k−α−1)μ�a(x)(

α
α+1

)
(1 − k−α−1)�a(x)

⎤
⎦
∥∥∥∥∥∥

≤2εb(x) − (1 + k−α−1)μ�a(x) + (1 + k−α − 2ε)β, (29b)

for all k ≥ 1.

Proof By Propositions 6–7, AVC (7) is equivalent to

inf
β∈R

{
β + 1

ε
sup

PZ∈D(μ0,�0)

EPZ [ f (Z)]
}

≤ b(x).

Meanwhile, the proof of Proposition 7 shows that there exists a finite β that attains the
above infimum. It follows that AVC (7) is satisfied if and only if there exists a β ∈ R
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such that β+ 1
ε
supPZ∈D(μ0,�0)

EPZ [ f (Z)] ≤ b(x). Then, the conclusion follows from
Theorem 2 by the definition of μ0, �, and that

Sk,μ0,�0,β =
∥∥∥∥∥∥
⎡
⎣(1 − k−α)β − (1 − k−α−1)μ�a(x)(

α
α+1

)
(1 − k−α−1)�a(x)

⎤
⎦
∥∥∥∥∥∥ , ∀k ≥ 1.


�

In computation, directly replacing AVC with constraints (29a)–(29b) requires an
infinite number of SOC constraints and is so computationally intractable. Like what
we described for ACC in Sect. 2, we adopt the separation approach and solve the
following problem:

Separation Problem 2: Given β̂ and x̂ , does there exist a k̂ such that (β̂, x̂) violate
constraints (29a)–(29b)?

In the following proposition, we show that Separation Problem 2 can be solved by
conducting a golden section search on the real line. This search is computationally
efficient.

Proposition 8 Define μ̂0 = (α+1
α

)μ�a(x̂), �̂0 = (α+2
α

)a(x̂)��a(x̂). We have the
following:

1. If β̂ = 0, then (β̂, x̂) violate constraints (29a)–(29b) if and only if (β̂, x̂) violate
them at k̂ = ∞;

2. If β̂ �= 0 and �̂0 = μ̂2
0, then (β̂, x̂) violate constraints (29a)–(29b) if and only if

(β̂, x̂) violate them at k̂ = max{μ̂0/β̂, 1};
3. If β̂ �= 0 and �̂0 > μ̂2

0, then (β̂, x̂) violate constraints (29a)–(29b) if and only if
(β̂, x̂) violate them at the unique root of equation

2

[(α + 1

α

)( 1 − k−α

1 − k−α−1

)
− μβ

]
= (k − μβ) − �β

(k − μβ)
(30)

lying within the interval
[
1+

√
(1−μβ)2+�β, 1+1/α+

√
(1−μβ +1/α)2+�β

]
,

where μβ = μ̂0/β̂ and �β = (�̂0 − μ̂2
0)/β̂

2.

Proof For a given (β̂, x̂), solving Separation Problem 2 is equivalent to finding
supPZ∈D(μ0,�0)

EPZ [ f (Z)], i.e., 1/2max{E+, E−} defined in Theorem 2. First, if

β̂ = 0, then

Sk,μ̂0,�̂0,β̂
=

√[( α

α + 1

)
(1 − k−α−1)μ̂0

]2 +
( α

α + 1

)2
(1 − k−α−1)2

(
�̂0 − μ̂2

0

)

=
( α

α + 1

)
(1 − k−α−1)

√
�̂0.
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It follows that

1

2
E+ = 1

2
sup
k≥1

{( α

α + 1

)
(1 − k−α−1)

√
�̂0 +

( α

α + 1

)
(1 − k−α−1)μ̂0

}

= 1

2
sup
k≥1

{( α

α + 1

)
(1 − k−α−1)

(√
�̂0 + μ̂0

)}
(31a)

= 1

2

( α

α + 1

)(√
�̂0 + μ̂0

)
, (31b)

where equality (31b) is because
√

�̂0 + μ̂0 ≥ 0 and so k = ∞ maximizes (31a).
Additionally,

1

2
E− = 1

2
sup
k≥1

{( α

α + 1

)
(1 − k−α−1)

√
�̂0 +

( α

α + 1

)
(1 + k−α−1)μ̂0

}

= 1

2

( α

α + 1

)
sup
k≥1

{(√
�̂0 + μ̂0

)
+ k−α−1

(
μ̂0 −

√
�̂0

)}
(31c)

= 1

2

( α

α + 1

)(√
�̂0 + μ̂0

)
, (31d)

where equality (31d) is because μ̂0 −
√

�̂0 ≤ 0 and so k = ∞ maximizes (31c).

Summing up the above two cases, we have k̂ = ∞ if β̂ = 0.
Second, if β̂ �= 0 and �̂0 = μ̂2

0, then Sk,μ̂0,�̂0,β̂
= |(1 − k−α)β̂ − ( α

α+1 )(1 −
k−α−1)μ̂0|. It follows that

1

2
E+ = 1

2
sup
k≥1

{∣∣∣(1 − k−α)β̂ −
( α

α + 1

)
(1 − k−α−1)μ̂0

∣∣∣

− (1 − k−α)β̂ +
( α

α + 1

)
(1 − k−α−1)μ̂0

}

= sup
k≥1

{[( α

α + 1

)
(1 − k−α−1)μ̂0 − (1 − k−α)β̂

]
+

}
(32a)

= f+(μ̂0), (32b)

where equality (32b) results from Lemma 2 and so k = max{μ̂0/β̂, 1} maximizes
(32a). Meanwhile,

1

2
E− = 1

2
sup
k≥1

{∣∣∣(1 − k−α)β̂ −
( α

α + 1

)
(1 − k−α−1)μ̂0

∣∣∣

− (1 + k−α)β̂ +
( α

α + 1

)
(1 + k−α−1)μ̂0

}
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= sup
k≥1

{
max

{( α

α + 1

)
μ̂0 − β̂,

( α

α + 1

)
k−α−1μ̂0 − k−αβ̂

}}
(32c)

= f−(μ̂0), (32d)

where equality (32d) results from Lemma 2 and so k = max{μ̂0/β̂, 1} maximizes
(32c). Summing up the above two cases, we have k̂ = max{μ̂0/β̂, 1} if β̂ �= 0 and
�̂0 = μ̂2

0.
Third, suppose that β̂ �= 0 and �̂0 > μ̂2

0. As the case when β̂ < 0 can be similarly
derived, we focus on the case when β̂ > 0. In this case, solving Separation Problem
2 is equivalent to finding the maximizer of optimization problem (24a) that defines
E+. To this end, we let F(k) represent the objective function of (24a), i.e., F(k) :=
Sk,μ̂0,�̂0,β̂

− (1 − k−α)β̂ + ( α
α+1 )(1 − k−α−1)μ̂0. It follows that

F ′(k) = αβ̂k−α−2

⎧⎪⎪⎨
⎪⎪⎩

[(
α+1
α

) ( 1−k−α

1−k−α−1

)
− μβ

]
(k − μβ) + �β√[(

α+1
α

) ( 1−k−α

1−k−α−1

)
− μβ

]2 + �β

− (k − μβ)

⎫⎪⎪⎬
⎪⎪⎭

.

We prove that F(k) is unimodal, and in particular, F(k) is nondecreasing on [1, k̂] and
nonincreasing on [k̂,∞), where k̂ represents the root of Eq. (30). The conclusion of
this proposition then follows because k̂ is the maximizer of F(k) on [1,∞). To that
end, it suffices to show that (i) limk→1+ F ′(k) > 0, (ii) there exists a k ∈ [1,∞) such
that F ′(k) < 0, and (iii) k̂ is the unique root of equation F ′(k) = 0. We show (i)–(iii)
as follows.
(i) As limk→1+{ 1−k−α

1−k−α−1 } = α
α+1 and �β > 0, we have limk→1+ F ′(k) =

αβ̂
[√

(1 − μβ)2 + �β −(1 − μβ)
]

> 0.
(ii) We have

F ′(k)
αβ̂k−α−2

=

⎛
⎜⎜⎝

(
α+1
α

) ( 1−k−α

1−k−α−1

)
− μβ√[(

α+1
α

) ( 1−k−α

1−k−α−1

)
− μβ

]2 + �β

− 1

⎞
⎟⎟⎠ (k − μβ)

+ �β√[(
α+1
α

) ( 1−k−α

1−k−α−1

)
− μβ

]2 + �β

.

As 1−k−α

1−k−α−1 ∈ [
α

α+1 , 1
]
and

(
α+1
α

) ( 1−k−α

1−k−α−1

)
− μβ√[(

α+1
α

) ( 1−k−α

1−k−α−1

)
− μβ

]2 + �β

− 1 < 0,

there exists a sufficiently large k such that F ′(k) < 0.
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(iii) We consider the roots of equation F ′(k) = 0. As F ′(k) = 0 is equivalent to

⎛
⎜⎜⎝1 −

(
α+1
α

) ( 1−k−α

1−k−α−1

)
− μβ√[(

α+1
α

) ( 1−k−α

1−k−α−1

)
− μβ

]2 + �β

⎞
⎟⎟⎠ (k − μβ)

= �β√[(
α+1
α

) ( 1−k−α

1−k−α−1

)
− μβ

]2 + �β

,

any root k satisfies k − μβ > 0 because �β > 0. The above equation can be fur-
ther simplified to Eq. (30) and so any roots k of Eq. (30) also satisfy F ′(k) = 0.
We now prove the uniqueness of the root. We note that the first derivative of
2
[
(α+1

α
)( 1−k−α

1−k−α−1 ) − μβ

]
, i.e., the left-hand side of Eq. (30), is always less than

1. To see this, we take the first derivative and denote it

Q(k) := 2
(α + 1

α

)k−2α−2 + αk−α−1 − (α + 1)k−α−2

(1 − k−α−1)2
.

Through basic algebraic manipulations, it follows that Q(k) ≤ 1 if and
only if Q(k) := (α + 2)k−2α−2 + (2α2 + 4α)k−α−1 − (2α2 + 4α +
2)k−α−2 − α ≤ 0. As Q(1) = 0, it suffices to show that Q

′
(k) ≤ 0

for all k ≥ 1. Noting that Q
′
(k) = 2(α + 1)(α + 2)k−2α−3[(α + 1)kα −

αkα+1 − 1], we need to show that Q̂(k) := (α + 1)kα − αkα+1 − 1 ≤ 0
for all k ≥ 1, which holds because Q̂(1) = 0 and Q̂′(k) = α(α +
1)kα−1(1 − k) ≤ 0. Meanwhile, the first derivative of (k − μβ) − �β

(k−μβ)
,

i.e., the right-hand side of Eq. (30), is always greater than 1. Furthermore,
2
[
(α+1

α
)( 1−k−α

1−k−α−1 ) − μβ

] ∈ [2(1 − μβ), 2(α+1
α

− μβ)], while the range of

function (k − μβ) − �β

(k−μβ)
is (−∞,∞) for k ∈ (μβ,∞). It follows that

the two sides of Eq. (30) can meet only once, i.e., this equation has a unique root.

Finally, we provide lower and upper bounds of root k̂. As 1−k−α

1−k−α−1 ∈ [
α

α+1 , 1
]
,

we have 2(1 − μβ) ≤ (k̂ − μβ) − �β

(k̂−μβ)
≤ 2(α+1

α
− μβ). It follows that

k̂ ∈
[
1 +

√
(1 − μβ)2 + �β, 1 + 1/α +

√
(1 − μβ + 1/α)2 + �β

]
.


�

3.1 Approximations of the ambiguous CVaR constraint

Before closing this section, we derive approximations of AVC (7). First, in the fol-
lowing proposition, we present a conservative approximation based on fU(z) and a
relaxed one based on fL(z), both of which are in the form of SOC constraints.
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Proposition 9 AVC (7) is implied by SOC constraints

∥∥∥∥
[
β − (

α+1
α

)
μ�a(x)

�a(x)

]∥∥∥∥ ≤
[
2ε(α + 1)

α

]
b(x)

−
[
2ε(α + 1)

α
− 1

]
β −

(
α + 1

α

)
μ�a(x), (33a)

∥∥∥∥
[
β − (

α+1
α

)
μ�a(x)

�a(x)

]∥∥∥∥ ≤
[
2ε(α + 1)

α

]
b(x)

−
[
(2ε − 1)(α + 1) − 1

α

]
β −

(
α + 1

α

)
μ�a(x).

(33b)

Furthermore, AVC (7) implies SOC constraint

∥∥∥∥
[(

α+1
α

)
β − (

α+1
α

)
μ�a(x)

�a(x)

]∥∥∥∥ ≤
[
2ε(α + 1)

α

]
b(x) −

[
(2ε − 1)(α + 1)

α

]
β

−
(

α + 1

α

)
μ�a(x). (33c)

Proof First, based on Propositions 6–7 and Lemma 1, AVC (7) is implied by constraint
β + 1

ε
supPZ∈D(μ0,�0)

EPZ [ fU(Z)] ≤ b(x). Furthermore, we have

sup
PZ∈D(μ0,�0)

EPZ [ fU(Z)] = sup
PZ∈D(μ0,�0)

EPZ

[(
α

α + 1

)
[Z − β]+ +

(
− β

α + 1

)
+

]

=
(

− β

α + 1

)
+

+
(

α

α + 1

)
sup

PZ∈D(μ0,�0)

EPZ [Z − β]+

=
(

− β

α + 1

)
+

+
(

α

α + 1

)(
1

2

)
[√

(β − μ0)2 + (�0 − μ2
0) − β + μ0

]
,

where the last equality is due to Observation 3 presented in Appendix B. It follows
that AVC (7) is implied by

β +
(
1

ε

){(
− β

α + 1

)
+

+
(

α

α + 1

)(
1

2

)
[√

(β − μ0)2 + (�0 − μ2
0) − β + μ0

]}
≤ b(x)

⇔
√

(β − μ0)2 + (�0 − μ2
0) ≤

[
2ε(α + 1)

α

]
b(x)

−
[
2ε(α + 1)

α
− 1

]
β −

(
2

α

)
(−β)+ − μ0.

123



178 B. Li et al.

This is equivalent to constraints (33a)–(33b) by the definition ofμ0 and observing that

√
(β − μ0)2 + (�0 − μ2

0) =
∥∥∥∥
[
β − (

α+1
α

)
μ�a(x)

�a(x)

]∥∥∥∥ .

Second, based on Propositions 6–7 and Lemma 1, AVC (7) implies constraint
β + 1

ε
supPZ∈D(μ0,�0)

EPZ [ fL(Z)] ≤ b(x). Furthermore, we have

sup
PZ∈D(μ0,�0)

EPZ [ fL(Z)] = sup
PZ∈D(μ0,�0)

EPZ

[(
α

α + 1

)
Z − β

]
+

=
(

α

α + 1

)
sup

PZ∈D(μ0,�0)

EPZ

[
Z −

(
α + 1

α

)
β

]
+

=
(

α

α + 1

)(
1

2

)
⎡
⎣
√((

α + 1

α

)
β − μ0

)2

+ (�0 − μ2
0) −

(
α + 1

α

)
β + μ0

⎤
⎦ ,

where the last equality is due to Observation 3. It follows that AVC (7) implies

β +
(
1

ε

)(
α

α + 1

)

(
1

2

)⎡
⎣
√((

α + 1

α

)
β − μ0

)2

+ (�0 − μ2
0) −

(
α + 1

α

)
β + μ0

⎤
⎦ ≤ b(x)

⇔
√((

α + 1

α

)
β − μ0

)2

+ (�0 − μ2
0) ≤

[
2ε(α + 1)

α

]
b(x)

−
[
(2ε − 1)(α + 1)

α

]
β − μ0.

This is equivalent to constraints (33c) by the definition of μ0 and observing that

√((
α + 1

α

)
β − μ0

)2

+ (�0 − μ2
0) =

∥∥∥∥
[(

α+1
α

)
β − (

α+1
α

)
μ�a(x)

�a(x)

]∥∥∥∥ .


�
Second, we derive tighter approximations of AVC (7) based on tighter approxima-

tions of function f (z). Note that both fU(z) and fL(z) approximate f (z) based on
two linear pieces (see Fig. 2a, b). We generalize fU(z) and fL(z) by defining K -piece
approximations as follows.

Definition 3 Given integer K ≥ 3 and real numbers 1 = n1 < n2 < · · · < nK = ∞,
we define f KU (z) = 1[β < 0] f KU−(z) + 1[β ≥ 0] f KU+(z) and f KL (z) = 1[β <
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(a) (b)β = –1 and α =1 β = 1 and α =1

Fig. 2 K -piece approximations of f (z) with K = 4, n1 = 1, n2 = 2, n3 = 3, and n4 = ∞

0] f KL−(z) + 1[β ≥ 0] f KL+(z), where

f KU+(z) = max

{
0, max

k=1,...,K−1

{[( α

α + 1

)
+ n−α

k+1 − n−α
k

(α + 1)(nk+1 − nk)

]
z

+
[ nk+1n

−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)
− 1

]
β

}}
,

f KU−(z) = max

{( α

α + 1

)
z − β, max

k=1,...,K−1

{[ n−α
k − n−α

k+1

(α + 1)(nk+1 − nk)

]
z

−
[ nk+1n

−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)

]
β

}}
,

f KL+(z) = max
k=1,...,K

{( α

α + 1

)
(1 − n−α−1

k )z − (1 − n−α
k )β

}
, and

f KL−(z) = max
k=1,...,K

{( α

α + 1

)
n−α−1
k z − n−α

k β

}
.

We note that f KU (z) is the linear interpolation of points {(nk, f (nkβ))}k=1,...,K and
f KL (z) is the pointwise maximum of the tangents of f (z) at these points (see Fig. 2a,
b). Due to the convexity of f (z), it follows that f KU (z) and f KL (z) are convex, and
f KL (z) ≤ f (z) ≤ f KU (z). Furthermore, we observe that f KL+(z) ≤ f+(z) by definition.
Based on Lemma 2, f KL+(z) ≤ fL(z) ≤ f KL−(z) when β < 0. Similarly, we have
f KL−(z) ≤ f KL+(z) when β ≥ 0. It follows that f KL (z) = max{ f KL+(z), f KL−(z)}. We
formalize and extend this observation to f KU (z) in the following lemma.

Lemma 3 We have f KL (z) = max{ f KL+(z), f KL−(z)} for all z ∈ R. Furthermore,
f KU+(z) ≤ f (z) when β < 0 and f KU−(z) ≤ f (z) when β ≥ 0. It follows that
f KU (z) = max{ f KU+(z), f KU−(z)}.
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Proof We first show that f KU+(z) ≤ fL(z) = [(
α

α+1

)
z − β

]
+ when β < 0. Assuming

this is true, we have f KU+(z) ≤ f (z) based on Lemma 2. To this end, we define
f KU+(z) = max

{
0,maxk=1,...,K−1 gkU+(z)

}
, where

gkU+(z) :=
[(

α

α + 1

)
+ n−α

k+1 − n−α
k

(α + 1)(nk+1 − nk)

]
z +

[
nk+1n

−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)
− 1

]
β.

For each k = 1, . . . , K − 1, we prove gkU+(α+1
α

β) ≤ 0 by the following chain of
equivalences:

[(
α

α + 1

)
+ n−α

k+1 − n−α
k

(α + 1)(nk+1 − nk)

](
α + 1

α

)
β +

[
nk+1n

−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)
− 1

]
β ≤ 0

⇔ n−α
k+1 − n−α

k

α(nk+1 − nk)
+ nk+1n

−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)
≥ 0

⇔ nα
k+1(αnk+1 − α − 1) ≥ nα

k (αnk − α − 1),

where the last line holds because function g(y) := yα(αy − α − 1) is nondecreasing
when y ≥ 1. Indeed, g′(y) = (α2 + α)yα−1(y − 1) ≥ 0 when y ≥ 1. It follows that

f KU+(α+1
α

β) = 0. In addition, we note that 0 ≤ (
α

α+1

)+ n−α
k+1−n−α

k
(α+1)(nk+1−nk )

≤ α
α+1 . On the

one hand,
(

α
α+1

)+ n−α
k+1−n−α

k
(α+1)(nk+1−nk )

≤ α
α+1 because nk+1 > nk and n

−α
k+1−n−α

k < 0. On

the other hand,
(

α
α+1

) + n−α
k+1−n−α

k
(α+1)(nk+1−nk )

≥ 0 follows from the following equivalence:

n−α
k − n−α

k+1

(α + 1)(nk+1 − nk)
≤ α

α + 1
⇔ n−α

k+1 + αnk+1 ≥ n−α
k + αnk,

where the right-hand side holds because function h(y) := y−α +αy is nondecreasing
when y ≥ 1. Indeed, h′(y) = α(1 − y−α−1) ≥ 0 when y ≥ 1. Hence, the slope of
gkU+(z) is within interval [0, α+1

α
] for all k. It follows that f KU+(z) ≤ fL(z) for all z ∈ R

because (i) f KU+(α+1
α

β) = fL(α+1
α

β) = 0, (ii) f KU+(z) ≤ 0 = fL(z) when z < α+1
α

β

because the slopes of all affine functions making up f KU+(z) are nonnegative, and (iii)
f KU+(z) ≤ fL(z) when z > α+1

α
β because the slopes of all affine functions making up

f KU+(z) are smaller than or equal to that of fL(z), i.e., α
α+1 .

Second, we show that f KU−(z) ≤ fL(z) = [(
α

α+1

)
z − β

]
+ when β ≥ 0. Assuming

this is true, we have f KU−(z) ≤ f (z) based on Lemma 2. To this end, we define
f KU−(z) = max

{
α

α+1 z − β,maxk=1,...,K−1 gkU−(z)
}
, where

gkU−(z) :=
[

n−α
k − n−α

k+1

(α + 1)(nk+1 − nk)

]
z −

[
nk+1n

−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)

]
β.
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For each k = 1, . . . , K − 1, we prove gkU−(α+1
α

β) ≤ 0 by the following chain of
equivalences:

[
n−α
k − n−α

k+1

(α + 1)(nk+1 − nk)

](
α + 1

α

)
β −

[
nk+1n

−α
k − nkn

−α
k+1

(α + 1)(nk+1 − nk)

]
β ≤ 0

⇔ (α + 1)(n−α
k − n−α

k+1) ≤ α(nk+1n
−α
k − nkn

−α
k+1)

⇔ nα
k+1(αnk+1 − α − 1) ≥ nα

k (αnk − α − 1),

where the last line has been shown above. It follows that f KU−(α+1
α

β) = 0. In addition,

we note that 0 ≤ n−α
k −n−α

k+1
(α+1)(nk+1−nk )

≤ α
α+1 since 0 ≤ (

α
α+1

) + n−α
k+1−n−α

k
(α+1)(nk+1−nk )

≤ α
α+1 . It

follows that f KU−(z) ≤ fL(z) for all z ∈ R because (i) f KU−(α+1
α

β) = fL(α+1
α

β) = 0,
(ii) f KU−(z) ≤ 0 = fL(z) when z < α+1

α
β because the slopes of all affine functions

making up f KU−(z) are nonnegative, and (iii) f KU−(z) ≤ fL(z)when z > α+1
α

β because
the slopes of all affine functions making up f KU−(z) are smaller than or equal to that
of fL(z), i.e., α

α+1 . 
�
In the following proposition, we present conservative approximations based on

f KU (z) and relaxed ones based on f KL (z), both of which are in the form of linear
matrix inequalities. We note that these approximations are asymptotically tight as K
grows to infinity. We omit the proof here because it follows from the standard duality
approach. Interested readers are referred to [12] and [43].

Proposition 10 Define (T + 1) × (T + 1) matrix � :=
[ (

α+2
α

)
�

(
α+1
α

)
μ(

α+1
α

)
μ� 1

]
. Then,

for given integer K ≥ 3 and real numbers 1 = n1 < n2 < · · · < nK = ∞, AVC (7)
is satisfied if there exists a symmetric matrix MU ∈ R

(T+1)×(T+1) such that

β + 1

ε
MU · � ≤ b(x), MU � 0, MU �

[
0 1

2

(
α

α+1

)
a(x)

1
2

(
α

α+1

)
a(x)� −β

]
,

(34a)

MU �
⎡
⎢⎣

0 1
2

[(
α

α+1

) + n−α
k+1−n−α

k
(α+1)(nk+1−nk )

]
a(x)

1
2

[(
α

α+1

) + n−α
k+1−n−α

k
(α+1)(nk+1−nk )

]
a(x)�

[
nk+1n

−α
k −nkn

−α
k+1

(α+1)(nk+1−nk)
− 1

]
β

⎤
⎥⎦ ,

∀k = 1, . . . , K − 1, (34b)

MU �
⎡
⎢⎣

0 1
2

[
n−α
k −n−α

k+1
(α+1)(nk+1−nk )

]
a(x)

1
2

[
n−α
k −n−α

k+1
(α+1)(nk+1−nk)

]
a(x)� −

[
nk+1n

−α
k −nkn

−α
k+1

(α+1)(nk+1−nk )

]
β

⎤
⎥⎦ , ∀k = 1, . . . , K − 1,

(34c)
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where · represents the Frobenius product of matrices. Furthermore, AVC (7) implies
that there exists a symmetric matrix ML ∈ R

(T+1)×(T+1) such that

β + 1

ε
ML · � ≤ b(x), ML � 0, ML �

[
0 1

2

(
α

α+1

)
a(x)

1
2

(
α

α+1

)
a(x)� − β

]
,

ML �
[

0 1
2

(
α

α+1

)
(1 − n−α−1

k )a(x)

1
2

(
α

α+1

)
(1 − n−α−1

k )a(x)� −(1 − n−α
k )β

]
, ∀k = 1, . . . , K − 1,

ML �
[

0 1
2

(
α

α+1

)
n−α−1
k a(x)

1
2

(
α

α+1

)
n−α−1
k a(x)� −n−α

k β

]
, ∀k = 1, . . . , K − 1.

Note that, as nK = ∞, constraints (34b)–(34c) reduce to

MU �
⎡
⎢⎣

0 1
2

(
α

α+1

)
a(x)

1
2

(
α

α+1

)
a(x)�

(
n−α
K−1

α+1 − 1
)
β

⎤
⎥⎦ ,

MU �
⎡
⎢⎣
0 0

0 −
(
n−α
K−1

α+1

)
β

⎤
⎥⎦

when k = K − 1.

Remark 3 In computation, we can use the conservative approximation (34a)–(34c) to
find near-optimal solutions. More specifically, suppose that we employ the separation
approach to solve problemmin{c(x) : x ∈ X, x satisfies (7)} and have finished the first
K iterations. Then, from these iterations, we obtain a lower bound cKL of the optimal
objective value and K outputs, denoted ϕ1, . . . , ϕK , by iteratively solving Separation
Problem 2. By letting n1 = 1, nK+2 = ∞, and nk = ϕk−1 for all k = 2, . . . , K + 1,
we obtain an upper bound cKU of the optimal objective value by solving problem
min{c(x) : x ∈ X, x satisfies (34a)–(34c) based on n1, . . . , nK+2}, whose optimal
solution is denoted x∗

K . If (c
K
U −cKL )/cKL is small enough, thenwe can stop the iterations

and output x∗
K as a near-optimal solution.

4 Extension to linear unimodality

In this section, we consider an extension of ACC (6) and AVC (7) based on a related
structural property called linear unimodality.

Definition 4 (Linear Unimodality; see [11]) A probability distribution Pξ is called
linear unimodal about 0 if for all a ∈ R

T , the linear combination a�ξ is univariate
unimodal about 0.
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Analogous to (5), we define the alternative ambiguity set based on linear unimodality
as

DLU
ξ (μ, �) :=

{
Pξ ∈ MT : EPξ

[ξ ] = μ, EPξ
[ξξ�] = �, Pξ is linear unimodal about 0

}
.

(35)

We now show an equivalence between ambiguity sets DLU
ξ (μ,�) and Dξ (μ,�, α)

with α = 1. It follows that all results derived in Sects. 2 and 3, with α set to be 1,
remain valid under DLU

ξ (μ,�).

Proposition 11 For any Borel measurable function h : R → R, we have

inf
Pξ ∈Dξ (μ,�,1)

EPξ

[
h(a(x)�ξ)

] = inf
Pξ ∈DLU

ξ (μ,�)
EPξ

[
h(a(x)�ξ)

]
.

Proof By Theorem 3.5 in [11], a random variable X is 1-unimodal if and only if there
exists a random variable Z such that X = UZ , where U is uniform in (0, 1) and
independent of Z .

First, pick any ξ such that Pξ ∈ Dξ (μ,�, 1). As a�ξ is univariate 1-
unimodal for all a ∈ R

T because Pξ is 1-unimodal, Pξ ∈ DLU
ξ (μ,�). It

follows that Dξ (μ,�, 1) ⊆ DLU
ξ (μ,�) and so infPξ ∈Dξ (μ,�,1) EPξ

[h(a(x)�ξ)] ≥
infPξ ∈DLU

ξ (μ,�) EPξ
[h(a(x)�ξ)].

Second, pick any ξ such that Pξ ∈ DLU
ξ (μ,�). Then, ζ := a(x)�ξ is 1-unimodal

because Pξ is linear unimodal. Hence, there exists a Zζ such that ζ = UZζ . It fol-
lows that E[Zζ ] = 2μ1 and E[Z2

ζ ] = 3�1. Based on Theorem 1 in [27], there

exists a Zξ ∈ R
T such that Zζ = a(x)�Zξ , E[Zξ ] = 2μ, and E[Zξ Z�

ξ ] = 3�.

It follows that UZξ is 1-unimodal, and meanwhile EPξ
[UZξ ] = 1

2E[Zξ ] = μ and
EPξ

[(UZξ )(UZξ )
�] = 1

3E[Zξ Z�
ξ ] = �. Furthermore, a(x)�ξ = a(x)�(UZξ ).

Therefore, the probability distribution of UZξ belongs to Dξ (μ,�, 1), and so
infPξ ∈Dξ (μ,�,1) EPξ

[h(a(x)�ξ)] ≤ infPξ ∈DLU
ξ (μ,�) EPξ

[h(a(x)�ξ)]. 
�

5 Computational case studies

In this section, we conduct two case studies. In Sect. 5.1, we evaluate the theoreti-
cal results derived in Sects. 2 and 3 based on a risk-constrained economic dispatch
(RCED) problem in power system operation. In Sect. 5.2, we compare the compu-
tational performance of our ACC representation using SOC constraints with that of
the SDP reformulation derived in [17] based on a simplified RCED problem with a
varying uncertainty dimension.

5.1 The RCED case study

We present a nominal RCED model as follows:
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min
g,d,rU,rD

∑
i∈I\IR

[
ci2g

2
i + ci1gi + cR

i (r
U
i + rD

i )
]

(36a)

s.t.
∑

i∈I\IR

gi +
∑
i∈IR

fi =
B∑

b=1

Lb, (36b)

ri = −
(∑
i∈IR

wi

)
di , ∀i ∈ I \ IR, (36c)

∑
i∈I\IR

di = 1, (36d)

− rD
i ≤ ri ≤ rU

i , ∀i ∈ I \ IR, (36e)

gMIN
i ≤ gi + ri ≤ gMAX

i , ∀i ∈ I \ IR, (36f)

− C� ≤
B∑

b=1

Db
�

[∑
i∈Gb

(gi + ri ) +
∑
i∈Hb

( fi + wi ) − Lb

]
≤ C�, ∀� ∈ L,

(36g)

where B represents the number of buses in the power system, I represents the set
of generating units (conventional and renewable), IR represents the set of renewable
units, L represents the set of transmission lines, Gb represents the set of conventional
units at bus b, Hb represents the set of renewable units at bus b, ci2 and ci1 represent
cost parameters of conventional unit i , cR

i represents the unit cost for up/down reserve
capacity of conventional unit i , Lb represents the load at bus b, and C� represents the
capacity of transmission line �. For each renewable unit i ∈ IR, fi and wi represent
the forecasted power output and the forecast error, respectively. For each conventional
unit i ∈ I\IR, gi and ri represent the planned generation amount and the adjustment
amount, respectively, anddi represents the portion of total generation-loadmismatch to
be offset by this unit (see, e.g., [5,38]). Constraint (36b) describes the power balance
requirement for generation and loads (we assume that the loads are deterministic),
constraints (36c) describe the proportional distribution ofmismatches, constraint (36d)
requires that all proportions sum to 1, constraints (36e) limit the adjustment amount
by the reserve capacities rU and rD, constraints (36f) bound the generation amount
by the generation capacity, and constraints (36g) describe the transmission capacity
limits based on the dc power flow approximation where Db

� maps power injections to
power flows (see, e.g., [3] and [16]).

Our case study uses the IEEE 30-bus system [42]. We increase all electric loads
by 50% and add two wind farms at buses 5 and 22. The forecasted power out-
put from each wind farm is 30MW. The transmission line between buses 1 and
2 has a capacity of 30MW, while all other line flows are unconstrained. Other
cost and capacity coefficients are reported in Table 1. We assume random fore-
cast errors and describe the uncertainty by an uncorrelated random vector w :=
[w1, w2]� with mean μw and covariance matrix �w = diag(9, 9). Additionally,
we assume that w is α-unimodal about [0, 0]�. To handle random violations of
constraints (36e)–(36g), we replace them by ACC (6) and AVC (7), and term
the resultant RCED model (C-ED) and (V-ED), respectively. For example, in (C-
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Table 1 Coefficients of the case study

Conventional unit Bus index ci1 ($/MW) ci2 ($/MW2) cRi ($/MW) gMIN
i (MW) gMAX

i (MW)

1 1 20 0.04 200 0 360

2 2 40 0.25 400 0 140

3 5 40 0.01 400 0 100

4 8 40 0.01 400 0 100

5 11 40 0.01 400 0 100

6 13 40 0.01 400 0 100

(a) (b)Optimal Value versus φ Optimal Value versus α

Fig. 3 Optimal values of (O-ED), (C-ED), and (V-ED) with various φ and α

ED), we replace constraints (36e) by infPw∈Dw{di ∑i∈IR
wi ≤ rD

i } ≥ 1 − ε and
infPw∈Dw{−di

∑
i∈IR

wi ≤ rU
i } ≥ 1 − ε, where Dw = {Pw ∈ M2 : EPw[w] =

μw,EPw [ww�] = μwμ�
w + diag(9, 9),Pw isα-unimodal about 0}. In contrast, in

(V-ED), we replace constraints (36e) by supPw∈Dw
CVaRε

Pw
(di

∑
i∈IR

wi ) ≤ rD
i

and supPw∈Dw
CVaRε

Pw
(− di

∑
i∈IR

wi ) ≤ rU
i . Throughout this case study, we set

1 − ε = 95%. Lastly, when the requirement of α-unimodality is relaxed from Dw,
(C-ED) and (V-ED) become equivalent and we term this model (O-ED).

By using (O-ED) as a benchmark, we test (C-ED) and (V-ED) under various
selections of μw and α values. First, we fix α = 1 and let μw = φ[1, 1]� with
φ ∈ {− 3,− 2, . . . , 3}. We report the optimal objective values of the three models
in Fig. 3a. From this figure, we observe that the optimal value of (O-ED) is con-
sistently larger than that of (V-ED), which is consistently larger than that of (C-ED).
This demonstrates that incorporating α-unimodality makes the RCEDmodel less con-
servative and hence decreases the cost of economic dispatch. Meanwhile, unlike in
(O-ED), ACC (6) and AVC (7) are not equivalent when α-unimodality is incorpo-
rated in the ambiguity set. Furthermore, we observe that the discrepancy between
(O-ED) and (C-ED)/(V-ED) amplifies as φ deviates from 0. This indicates that α-
unimodality plays a more important role in Dw as the difference between μw and the
mode increases.
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Fig. 4 Gaps between the optimal objective value and the relaxed and conservative approximations of
(C-ED)

Fig. 5 Gaps between the optimal objective value and the relaxed and conservative approximations of
(V-ED)

Second, we fixμw = [0, 0]� and let α increase from 1 to 10. We report the optimal
objective values of the three models in Fig. 3b. From this figure, we observe that
the discrepancy between (O-ED) and (C-ED)/(V-ED) shrinks as α grows. This is as
expected because the requirement of α-unimodality weakens as α grows. Although not
shown in this figure, the convergence of (V-ED) to (O-ED) takes place when α ≥ 40,
while the convergence of (C-ED) takes place when α ≥ 104. The slow convergence
indicates that unimodality information can significantly influence the structure ofDw
and the worst-case probability distribution.

Third, we let α = 1, μw = φ[1, 1]� with φ ∈ {− 2, 0, 2}, and evaluate
the tightness of the approximations of ACC and AVC derived in Propositions 4,
5 and 10, respectively. In this test, we follow Remarks 2, 3 to choose the inter-
polation points n1, . . . , nK in these approximations. In Fig. 4, we report the gap
between the optimal objective value v∗

(C-ED) of (C-ED) and the upper bound vUB

obtained from the conservative approximation, and the gap between v∗
(C-ED) and the

lower bound vLB obtained from the relaxed approximation, for K ∈ {4, 6, 8, 10}.
The gaps are obtained by computing UB% = (vUB − v∗

(C-ED))/v
∗
(C-ED) × 100% and

LB% = (v∗
(C-ED) − vLB)/v

∗
(C-ED) × 100%. Similarly, in Fig. 5, we report the gap between

the optimal objective value v∗
(V-ED) of (V-ED) and those of its K -piece approximations

with K ∈ {2, 4, 6, 8}. From Figs. 4, 5, we observe that the gaps quickly shrink as K
increases and the approximations become near-optimal (e.g., UB% + LB% < 1%)
when K ≥ 8.
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(a) (b)Optimal Value versus Solution Time versusn n

Fig. 6 Comparisons between our approach and the SDP approach in [17]

5.2 Comparison with the SDP reformulation

To demonstrate the scalability of our ACC representation with regard to an increasing
uncertainty dimension, we consider a simplified RCED model where we combine all
conventional generating units into a single unit without generation capacity limits and
relax all transmission capacity limits. As a result, themismatch offset proportion of the
combined unit is d = 1. Additionally, the planned generation amount of the combined
unit is deterministic, i.e., g = ∑B

b=1 Lb −∑
i∈IR

fi , and so is the corresponding gen-
eration cost. Accordingly, we can remove variable g and the corresponding generating
cost from the formulation and present the simplified RCED model as follows:

min
rU,rD

rU + rD (37a)

s.t. inf
Pw∈Dw

Pw

{ n∑
i=1

wi ≤ rD
}

≥ 1 − ε, (37b)

inf
Pw∈Dw

Pw

{
−

n∑
i=1

wi ≤ rU
}

≥ 1 − ε, (37c)

where n = |IR|, Dw = {Pw ∈ Mn : EPw [w] = 0,EPw [ww�] = diag(1, . . . , 1),Pw is
α-unimodal about 0}, and 1− ε = 95%. Our case study tests α = 1, 10 and 15 values
of n ranging from 25 to 100. For each instance of the simplified RCED model, we
evaluate the optimal objective value and solution time of the following two approaches:

1. Our ACC representation using SOC constraints based on Theorem 1;
2. The ACC representation using SDP based on Theorem 3.4.5 and Example 3.4.4

in [17].1

1 The ACC representation of Example 3.4.4 has typos and, for completeness, we present the corrected
representation in Appendix C. We test the corrected ACC representation in this case study.
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We report the evaluation results in Fig. 6. On the one hand, from Fig. 6a, we observe
that these two approaches yield the same optimal values in all test instances. This
indicates that the ACC representations derived in these two approaches are equivalent.
On the other hand, from Fig. 6b, we observe that the solution time of our approach
remains approximately constant as the dimension n of the random vector w increases,
while that of the SDP approach increases superlinearly with n. This indicates that
our approach using SOC constraints has a computational advantage, especially when
involving a large number of random variables.

6 Future research

An interesting future research direction is to derive a computationally tractable refor-
mulation of ACC (6) without making Assumption 2. Another future research direction
is to bound the errors of relaxed approximation (19) and conservative approximation
(20) for ACC (6).

Acknowledgements This research has been supported in part by the National Science Foundation (NSF)
under Grants CMMI-1555983 and CCF-1442495.

Appendix A: proof of Observation 2

Proof As f k+(z) = (
α

α+1

)
(1 − k−α−1)z − (1 − k−α)β, we have

[
f k+(z)

]
+ =

{
0, if z < z0(k) := (

α+1
α

)( 1−k−α

1−k−α−1

)
β(

α
α+1

)
(1 − k−α−1)z − (1 − k−α)β, if z ≥ z0(k)

for all k ≥ 1. As [ f k+1+ (z)]+ ≥ 0 for all z ∈ R, to show that [ f k+1+ (z)]+ ≥ [ f k+(z)]+,
it suffices to prove that [ f k+1+ (z)]+ ≥ f k+(z) for all z ∈ R. First, as β ≤ 0 and 1−k−α

1−k−α−1

increases in k, we have
(

α+1
α

)( 1−k−α

1−k−α−1

)
β ≥ (

α+1
α

)( 1−(k+1)−α

1−(k+1)−α−1

)
β, i.e., z0(k) ≥

z0(k + 1). It follows that, when z < z0(k), f k+(z) ≤ 0 and hence [ f k+1+ (z)]+ ≥
f k+(z). Second, when z ≥ z0(k), f k+1+ (z) ≥ 0 because z ≥ z0(k) ≥ z0(k + 1)
and f k+1+ (z) increases in z. As both f k+(z) and f k+1+ (z) are affine functions of z, we
have f k+1+ (z) = f k+1+ (z0(k)) + ( α

α+1 )(1 − (k + 1)−α−1)(z − z0(k)) and f k+(z) =
( α
α+1 )(1 − k−α−1)(z − z0(k)) for z ≥ z0(k). It follows that f k+1+ (z) − f k+(z) =
f k+1+ (z0(k)) + ( α

α+1 )[k−α−1 − (k + 1)−α−1](z − z0(k)) ≥ 0. Hence, [ f k+1+ (z)]+ ≥
f k+(z) when z ≥ z0(k) and the proof is complete. 
�

Appendix B

For random variable Z and constant β ∈ R, we make the following observation on the
worst-case expectation supPZ∈D(μ0,�0)

EPZ [Z−β]+. Note that this observation can be
made following the derivations in [30], andwe present a proof below for completeness.
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Observation 3 Given β ∈ R, we have

sup
PZ∈D(μ0,�0)

EPZ [Z − β]+ = 1

2

[√
(β − μ0)2 + (�0 − μ2

0) − β + μ0

]
.

Proof We represent supPZ∈D(μ0,�0)
EPZ [Z −β]+ as the following optimization prob-

lem

vP = max
PZ

EPZ [Z − β]+
(P) s.t. EPZ [Z ] = μ0,

EPZ [Z2] = �0,

EPZ [1] = 1,

whose dual is vD = min
q,p,r

μ0 p + �0q + r

(D) s.t. qz2 + pz + r ≥ [z − β]+, ∀z ∈ R.

The weak duality between (P) and (D), i.e., vD ≤ vP , holds becauseμ0 p+�0q+r =
EPZ [qZ2 + pZ + r ] ≤ EPZ [Z − β]+ for any feasible solution (q, p, r) to (D) and
feasible solution PZ to (P). Now we prove the strong duality by constructing two
feasible solutions to (P) and (D), respectively, that have the same objective value.
On the one hand, the primal solution P̂Z is supported on two points z1 and z2 with

probability masses p1 and p2, respectively, where � =
√

(β − μ0)2 + (�0 − μ2
0)

and

p1 = β − μ0 + �

2�
, p2 = μ0 − β + �

2�
, z1 = β − �, and z2 = β + �.

We have p1, p2 ≥ 0 because � ≥ |β − μ0|. Meanwhile, we have

p1z1 + p2z2 = (β − μ0 + �)(β − �)

2�
+ (μ0 − β + �)(β + �)

2�
= μ0,

and

p1z
2
1 + p2z

2
2 = (β − μ0 + �)(β − �)2

2�
+ (μ0 − β + �)(β + �)2

2�

= (β − μ0)
[
(β − �)2 − (β + �)2

] + �
[
(β − �)2 + (β + �)2

]
2�

= − β2+2μ0β+�2=−β2+2μ0β+(β − μ0)
2+(�0 − μ2

0) = �0.

Hence, P̂Z is feasible to (P). On the other hand, the dual solution (q̂, p̂, r̂) is such that

q̂ = 1

4�
, p̂ = � − β

2�
, and r̂ = (� − β)2

4�
.
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Hence, q̂z2 + p̂z + r̂ = 1
4�(z + � − β)2. It follows that q̂z2 + p̂z + r̂ ≥ 0 for

all z ∈ R. Meanwhile, (q̂z2 + p̂z + r̂) − (z − β) = 1
4�(z − β − �)2 ≥ 0, i.e.,

q̂z2 + p̂z + r̂ ≥ z − β. Thus, q̂z2 + p̂z + r̂ ≥ [z − β]+ and so (q̂, p̂, r̂) is feasible to
(D).

Finally, the primal objective value associatedwith P̂Z is p2(z2−β) = (μ0−β+�)�
2� =

1
2 (� − β + μ0). Meanwhile, the dual objective value associated with (q̂, p̂, r̂) is

μ0

(
� − β

2�

)
+ �0

(
1

4�

)
+ (� − β)2

4�

= �2 + (β2 − 2μ0β + μ2
0) + (�0 − μ2

0) + 2μ0� − 2�β

4�

= 2�2 + 2μ0� − 2�β

4�
= 1

2
(� − β + μ0),

which coincides with the primal objective value associated with P̂Z . 
�

Appendix C: corrected ACC representation of Example 3.4.4 in [17]

The ACC representation (3.50) in Example 3.4.4 in [17] has typos and is corrected as
follows:

β − (μ − m)�γ − 〈� + (μ − m)(μ − m)�, �〉 ≥ (1 − ε)τ ,[
τ − β 1

2
α

α+1γ
�

1
2

α
α+1γ

α
α+2�

]
� 0,

⎡
⎣
[
α

1
α+1 + ( 1

α

) α
α+1

]
τ

1
α+1

(
b(x) − m�a(x)

) α
α+1 − β 1

2

(
α

α+1γ − a(x)
)�

1
2

(
α

α+1γ − a(x)
)

α
α+2�

⎤
⎦ � 0.
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