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* Background

= More renewable resources require more reserves (i.e. ancillary services)
= Aggregations of controllable loads can provide reserves
= Reserves provided by load control can be inexpensive and fast-responding

e Uncertain Reserves

= Compared to existing reserves, load-based reserve capacity is uncertain and
time varying

= Load flexibility is affected by ambient conditions and human behavior

e Qur Solution

= Using stochastic optimal power flow (OPF) formulation to consider various
uncertainties from loads, load-based reserves, and renewable resources

= Solving with different methodologies to find the trade-offs among objective
cost, computational effort and reliability.



Load Model

* Aggregation of residential loads

» Thermostatically controlled loads (i.e. air conditioners) with temperature deadband
= Nondisruptive control
= On/Off signals from aggregator to individual loads

 Thermal battery model (Mmathieu, et al. 2015)

= Baseline power consumption P+

St+ar =St + (Por — Pr(1i)) AT

= Aggregated power consumption (set point) PC,t EC(Tt) SPC,t < ?(; (Tt)
= Real time energy state S, S(Ty) <8; < E(Tt)
= Energy Storage: Charging/Discharging
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r—— Stochastic OPF Problem
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* Optimization for day-ahead planning

= QObjective: To determine the optimal dispatch with uncertain load control and
renewable resources by co-optimizing reserves and energy.

= Uncertainties: Wind Power Production and Outdoor Temperature
= Chance-constrained DC OPF based on Vrakopoulou, et al. 2014

e Design Variables

= Generation schedule and load set points
= Distribution vectors and reserve capacity (generator/load)

e Constraints

= Deterministic/Probabilistic
= Generation limits/Load limits/Line limits/Reserve limits

e Simulation Setup

= Modified IEEE 30 bus system with single wind bus
» Uncongested/Congested
= All loads are 50% controllable with adequate capacities



— Stochastic OPF Problem
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minimize Generation costs + Reserve costs
x —
subject to Power Flow Equations
Generation Constraints Wind and
Seinr = St + (Pes — Pr(T,)Ar Line Constraints — Temperature

- i Uncertainty
P.(T,) <Pc; < Po(T;)  Controllable Load Constraints

S(Ty) <8y < S(Ty)

X € [Generation Schedule, Load Set Points, Distribution Vectors, Reserve Schedule]
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e Scenario Approach (Campi, et al. 2009)
= Probabilistic constraints transformed into deterministic constraints
= Sufficient scenarios ensure a-priori guarantee at a specified confidence level

= Conservative results and large computational effort

* Probabilistically Robust Design (Margellos, et al. 2014)
= Uncertainty bounded by hyper-rectangular set based on the confidence level

= Solve a robust optimization problem over the set
= More conservative than scenario approach but less computational effort

* Analytical Reformulation (Roald, et al. 2013 and Bienstock, et al. 2014)

= Reformulate constraints deterministically assuming specific uncertainty

distributions
= Less conservative result and less computation effort with efficient algorithm

= Worse at satisfying multiple chance constraints (i.e., worse “joint reliability”)



Methodologies

* Convex Approximation

= Use CDF of uncertainty distribution to find confidence bound given the
specified constraint violation probability

= Represent confidence bound with piecewise linear convex approximation

e Cutting-plane Algorithm (Bienstock, et al. 2014 )
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— Simulation Results
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Simulation Results
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TABLE I: Computational Time

Simulation Results

‘ Analytical
Robust Nonlinear  Cutting
uncongested  11.57 12.79 5.94
congested 12.32 42.34 15.21

TABLE III: Reliability Check

uncongested/congested 1—e=0.99 Robust Analytical
evaluation scenario J.oi.nt 0.995/0.994  0.925/0.900
Individual 0.998/0.997  0.975/0.967

correlated errors J.oi.nt 0.985/0.978  0.941/0.921
Individual 0.996/0.983  0.988/0.973

. o Joint 0.997/0.991  0.897/0.881
Weibull distributed errors — e r o r——659970.997 —0.968/0.960
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* Analytical Reformulation

= | ess conservative with lower cost

= Results in more load shifting, more effectively managing peak load and
congestion

= Worse joint reliability

= Computational effort comparable to probabilistically robust design for small
uncertainty dimensions

* Probabilistically Robust Design
= Conservative and so results in less load shifting
= With congestion, peaking generator might be required
= High reliability regardless of uncertainty distributions
= Computational effort not related to congestion

e Future Work

= Smaller demand response capacity
= Larger uncertainty dimension including uncertainty correlation
= More complicated stochastic load model
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