
Analytical Reformulation of Chance-Constrained
Optimal Power Flow with Uncertain Load Control

Bowen Li and Johanna L. Mathieu
EECS, University of Michigan, USA
{libowen, jlmath}@umich.edu

Abstract—Aggregations of controllable loads can provide re-
serves to power systems; however, their reserve capacity is
uncertain and affected by ambient conditions like weather. Past
work proposed a stochastic optimal power flow formulation
that used chance constraints to handle uncertain reserves and
generation from wind. The problem was solved with a scenario-
based optimization method. In this paper, we assume Gaussian
distributions of all uncertainties and reformulate the constraints
analytically to solve a deterministic problem, which is compu-
tationally simpler than scenario-based approaches. To evaluate
this idea, we implement our method on a modified IEEE 30-bus
network and compare our results to those of a scenario-based
method. Use of low-cost but uncertain load reserves yields lower
cost dispatch solutions than those for systems with only generator
reserves. The analytical approach using a cutting plane algorithm
leads to fast convergence and is scalable to larger problem
sizes. We explore the effect of non-Gaussian and correlated
uncertainties on the reliability of the solution.

Index Terms—load control, optimal power flow, stochastic
optimization

I. INTRODUCTION

Aggregations of controllable loads can provide reserves to
power systems, possibly with faster response and lower price
than conventional resources [1]. Unlike generator reserves,
load reserves are uncertain and time varying because load
usage patterns and ambient conditions affect load flexibili-
ty [2]. In previous research, an aggregated thermal energy
storage model was used to estimate the reserve capacity
of an aggregation of thermostatically controlled loads as a
function of outdoor temperature [3]. Using this model, a
stochastic optimal power flow (OPF) was proposed to handle
wind and temperature uncertainty and solve for a day-ahead
hourly generation and reserve schedule [4]. The problem
was formulated as a chance-constrained OPF problem and
solved with probabilistically robust design [6], inspired by
the so-called scenario approach [5]. The scenario approach
transforms probability constraints into hard constraints corre-
sponding to a specific number of uncertainty scenarios. By
using a sufficient number of scenarios, and without knowing
the exact uncertainty distributions, the approach ensures a-
priori guarantees that the optimal solution will satisfy the
probability constraints with a certain level of confidence [5].
With high problem dimension, the computational time and
memory usage is large, and the approach in [6] mitigates these
issues by reformulating the problem into a robust optimization
problem.

In contrast, analytical reformulation is an inverse opera-
tion that transforms probability constraints into determinis-
tic constraints using knowledge of uncertainty distributions.
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For the case in which all errors are Gaussian with mutual
independence, [7] gives a reformulation for the regular OPF
problem and [8] for the security constrained OPF problem.
The benefit of analytical reformulation is low computational
complexity with comparable (or better) objective costs and
reliability as compared to scenario-based methods (assuming
the true uncertainty distributions are equivalent to the assumed
ones). A convexity check on the new formulation is required
to ensure global optimality. Past work has not applied this
method to OPF problems with uncertain reserves.

In this paper, we analytically reformulate the stochastic
OPF presented in [4] under the assumption of Gaussian and
uncorrelated wind and temperature uncertainty. We explore the
performance and computational complexity of this approach
as compared to scenario-based methods in both uncongested
and congested cases, using a modified IEEE 30-bus system.
Additionally, we use an iterative solving algorithm from [7],
which helps accelerate convergence, and check the reliability
of our solution using empirical scenarios, correlated Gaussian
errors, and non-Gaussian errors.

II. LOAD MODEL

We model aggregations of thermal loads such as air con-
ditioners as thermal energy storage devices [3]. We assume
a load aggregator sends on/off control signals to the loads in
order to change their aggregate power consumption PC,t, but
that all stay within a narrow (∼ 1◦C) temperature range around
their set point temperature. The difference between PC,t and
the baseline power consumption PT (Tt) linearly affects the
aggregation’s energy state St

St+∆τ (Tt) = St + (PC,t − PT (Tt))∆τ (1)

where t is the time index, ∆τ is the time step. PC,t and
St are bounded but their capacities are functions of ambient
temperature Tt. Ref. [3] describes a method to compute these
capacities. Within our analytical reformulation, we model them
as piece-wise linear functions of temperature (using two lines),
which is a good approximation given Fig. 1 of [4]. We assume
the baseline power is linear in temperature.

III. PROBLEM FORMULATION

Our day-ahead, 24-hour, stochastic OPF problem is similar
to that of [4]. In this section, we summarize the problem and
highlight the differences in our formulation. Our goal is to
minimize energy and reserve costs

min
{xt}24t=1

24∑
t=1

(xTt [c1]xt + cT2 xt) (2)



subject to deterministic and probabilistic constraints, detailed
in the following subsections. Parameters c1 and c2 include the
first and second order generation and reserve costs. Assume
we have NG generators, NL controllable loads, NW wind
power plants, and NB buses. The design variable vector xt
includes generation PG,t ∈ RNG , controllable loads set points
PC,t ∈ RNL , generator reserve capacities Rup/dnGS,t , R

up/dn,k
GD,t ∈

RNG (where S refers to secondary control and D refers to re-
dispatch; and up/dn refer to the up/down reserve limits; and
there are four types k of re-dispatch, described in the following
subsections), and load reserve capacities Rup/dnLS,t ∈ RNL . It
also includes “distribution vectors” dGS,t, dkGD,t ∈ RNG and
dLS,t ∈ RNL that distribute the real time power mismatch to
reserve-providing resources [9]. To simplify our analysis, we
do not allow for different distribution vectors for up and down
reserves as [4] does. All design variables are constrained to
be greater than or equal to zero.

A. Uncertainty Notation

Let µw,t,i and δw,t,i denote the mean and standard deviation
of the output of the i-th wind power plant, and µw,t and
δw,t the mean and standard deviation of the total wind power
mismatch Pm,t. Denote the i-th wind power plant’s forecast
error as ∆w,t,i and error vector containing all forecast errors as
∆w,t. Define the notation for baseline power error similarly:
µP,t,i and δP,t,i denote the mean and standard deviation of
the baseline power of the i-th load; µP,t and δP,t the mean
and standard deviation of total baseline power error P bm,t;
∆P,t,i the i-th loads’ baseline power forecast error; and ∆P,t

the error vector. In this paper, for simplicity, we assume all
loads experience the same temperature (though this is not a
requirement of our approach) and so use µT,t, δT,t, and ∆T,t

to denote the mean, standard deviation, and forecast error of
the temperature. Since the baseline error is linearly related to
temperature error, ∆P,t = a∆T,t where a is a constant.

B. Deterministic Constraints

The following power and energy constraints are determin-
istic, using forecasted values (denoted with superscript f ) to
determine the generation schedule [4]:

11×NB
Pinj,t = 0 (3)

− Pl ≤ APinj,t ≤ Pl (4)

PG ≤ PG,t ≤ PG (5)

0 ≤ PC,t ≤ PC(T ft ) (6)

0 ≤ St ≤ S(T ft ) (7)

0 ≤ St+∆τ (T ft ) ≤ S(T ft ) (8)

where Pinj,t =
(
CGPG,t + CWP

f
w,t − CL(PL,t + PC,t)

)
.

Equation (3) is the power balance where CG, CW , CL are
matrices mapping generators/load to their corresponding buses
and PL,t ∈ RNL is the uncontrollable load. Equations (4)-
(8) bound the power flow, generation, load set points, and
energy state (at the beginning an end of each interval), where
Pl contains the transmission line limits and A is a constant
matrix that transforms power injections into power flow [9].

C. Probabilistic Constraints

All constraints that include uncertainty are formulated as
individual chance constraints, for example, Pr(atxi,t ≤ bt) ≥
1 − ε where at, bt are uncertain and ε is the chance of
constraint violation. We assume that both loads and generators
can provide secondary control to balance real-time deviations
from forecasts, and that generators are re-dispatched every 15
minutes. We define four types of re-dispatch associated with
compensating 0) energy mismatch from the previous hour, 1)
intra-hour wind power mismatch, 2) intra-hour energy mis-
match, and 3) baseline power mismatch. Ref. [4] considered
0-2 but neglected 3, which increases the problem dimension
but enables better tracking of the load energy states.

1) Secondary Frequency Control: The secondary control
power constraints are

− Pl ≤ APinjSec,t ≤ Pl (9)

PG ≤ PG,t − dGS,tPm,t + d3
GD,tP

b
m,t ≤ PG (10)

0 ≤ PC,t + dLS,tPm,t + ∆P,t ≤ PC(Tt) (11)

−RdnGS,t ≤ −dGS,tPm,t ≤ R
up
GS,t (12)

−RdnLS,t ≤ dLS,tPm,t ≤ R
up
LS,t (13)

−Rdn,3GD,t ≤ d
3
GD,tP

b
m,t ≤ R

up,3
GD,t (14)

11×NG
dGS,t + 11×NL

dLS,t = 1 (15)
11×NG

d3
GD,t = 1 (16)

where PinjSec,t = CG(PG,t − dGS,tPm,t + d3
GD,tP

b
m,t) +

CwPw,t − CL(PL,t + PC,t + dLS,tPm,t + ∆P,t). Equations
(9)-(11) are similar to (4)-(6) but include deviations due to
secondary reserve provision and baseline power error (which
is compensated for by the generators). The deviations are
bounded by reserve capacities in (12)-(14). Equations (15) and
(16) ensure the total deviation matches the total error.

Provision of secondary control causes the energy states of
the loads to deviate from their forecast trajectories. We need
to ensure that each load’s energy state stays within its energy
limits. Fortunately, since the energy dynamics are linear, we
only need to check the start/end points of each 15 minute
interval. To simplify notation, we denote the forecast energy
trajectory Sft and forecast baseline power P fT,t. The energy
constraints are

0≤Sft +
(
PC,t+dLS,tPm,t−P fT,t−∆PT ,t

)
︸ ︷︷ ︸

PD,t

∆τ

4
≤S(Tt) (17)

0≤Sft +
∆τ

4
∆PT ,t−1≤S(Tt) (18)

0≤Sft +
(
PC,t−P fT,t

)3∆τ

4
+PD,t

∆τ

4
≤S(Tt) (19)

0≤Sft +
(
PC,t−P fT,t

)3∆τ

4
+∆PT ,t

∆τ

4
≤S(Tt) (20)

0≤Sft +
(
PC,t−P fT,t

)3∆τ

4
+PD,t

∆τ

4
≤S(Tt+1) (21)

where (17) and (18) bound actions in the first 15 minutes, and
(19) and (20) in the last 15 minutes. Equation (21) checks the
energy constraints in the next hour.



2) Re-dispatch: The re-dispatch constraints are similar to
secondary control constraints except dGS,t is replaced by
d1
GD,t + d2

GD,t in (9) and (10), the sign of dLS,t is reversed
in (9) and (11), and the following constraints are added

−RdnGD,t ≤ −(d1
GD,t + d2

GD,t)Pm,t ≤ R
up
GD,t (22)

11×NG
d1
GD,t = 1, (23)

11×NG
d2
GD,t = 11×NL

dLS,t, (24)

where RdnGD,t = Rdn,1GD,t+R
dn,2
GD,t and RupGD,t = Rup,1GD,t+R

up,2
GD,t.

As in [4], we also use coupling constraints that allow us to
handle energy mismatch from the previous hour, in the first
15 minutes of the current hour. We must consider two cases:
i) both re-dispatch and secondary control are active during
these first 15 minutes and ii) only re-dispatch is active. For i),
we replace dGS,tPm,t with dGS,tPm,t + d0

GD,tPm,t−1 in (9)
and (10) and dLS,tPm,t with −dLS,t−1Pm,t−1 + dLS,tPm,t in
(11) and (13). For ii), we replace dGS,tPm,t with d0

GD,tPm,t−1

and dLS,tPm,t with −dLS,t−1Pm,t−1. Additional constraints
include:

−Rdn,0GD,t ≤ −d
0
GD,tPm,t−1 ≤ Rup,0GD,t (25)

11×NG
d0
GD,t = 11×NL

dLS,t−1, (26)

0 ≤ Sft + (PC,t + dLS,tPm,t − dLS,t−1Pm,t−1

− P fT,t −∆P,t)
∆τ

4
≤ S(Tt) (27)

IV. ANALYTICAL REFORMULATION

The biggest challenges in analytically reformulating the
problem are the complexity of the constraints and large
number of uncertain variables. Though we assume Gaussian
temperature forecast error, the load power/energy capacities
are modeled as piecewise linear functions of temperature and
so the power/energy capacity error is non-Gaussian.

A. Secondary Frequency Control Constraint Reformulation
Constraints with only one uncertain variable are reformu-

lated into linear constraints and constraints with two uncertain
variables are reformulated into 2-norms since we assume
uncertainties are independent Gaussian random variables. As
each inequality constraint is bounded on two sides, each results
in two equations. The constant c is a scalar computed as
Φ−1(1−ε), where Φ is the cumulative density function (CDF)
of the relevant random variable. Let S∗ denote slack variables.
The power constraints can be reformulated as

PG − dGS,tµw,t + d3
GD,tµP,t + SGS,t ≤ PG (28)

PG − dGS,tµw,t + d3
GD,tµP,t − SGS,t ≥ PG (29)

SGS,t ≥ c
√

(dGS,tδw,t)2 + (d3
GD,tδP,t)

2 (30)

PC + g1 ≤ PC(T ft ) (31)
PC + dLS,tµw,t + aµT,t − SLS,t ≥ 0 (32)

SLS,t ≥ c
√

(dLS,tδw,t)2 + (aδT,t)2 (33)

RupGS,t ≥ −dGS,tµw,t + cdGS,tδw,t (34)

RdnGS,t ≥ dGS,tµw,t + cdGS,tδw,t (35)
RupLS,t ≥ dLS,tµw,t + cdLS,tδw,t (36)

RdnLS,t ≥ −dLS,tµw,t + cdLS,tδw,t (37)

Rup,3GD,t ≥ d
3
GD,tµP,t + cd3

GD,tδP,t (38)

Rdn,3GD,t ≥ −d
3
GD,tµP,t + cd3

GS,tδP,t (39)

where (28)-(33) are the reformulation of (10) and (11), and g1

is function describing the intersection of five supporting planes
providing a convex approximation of the nonlinear confidence
level bound related to the load power capacity (more details
given in Section IV-E). Reserve capacity constraints (12)-(14)
are reformulated as (34)-(39).

The upper bounds of the energy constraints (17)-(21) are
reformulated as

Sft + (PC,t − P fT,t)
∆τ

4
+ g3 ≤ S(T ft ) (40)

Sft + g2 ≤ S(T ft ) (41)

Sft + PC,t − P fT,t + g3 ≤ S(T ft ) (42)

Sft + (PC,t − P fT,t)
3∆τ

4
+ g2 ≤ S(T ft ) (43)

Sft + PC,t − P fT,t + g4 ≤ S(T ft+1) (44)

where all gi, like g1, are piece-wise linear convex approxima-
tions. The lower bounds of the energy constraints require a
slack variable SEC,t

Sft +(PC,t−P fT,t+dLS,tµw,t−aµT,t)
∆τ

4
−SEC,t≥0 (45)

Sft +(µP,t−1−acδT,t−1)
∆τ

4
≥0 (46)

Sft +PC,t−P fT,t+(dLS,tµw,t−aµT,t)
∆τ

4
−SEC,t≥0 (47)

Sft +(PC,t−P fT,t)
3∆τ

4
+(µP,t−acδT,t)

∆τ

4
≥0 (48)

SEC,t≥
c∆τ

4

√
(dLS,tδw,t)2+(aδT,t)2 (49)

B. Re-dispatch Constraint Reformulation
The reformulated re-dispatch power constraints are similar

to the reformulated secondary control power constraints. We
simply define dGD,t = d1

GD,t + d2
GD,t, replace dGS,t with

dGD,t, reverse the sign of dLS,t, and change the design/slack
variables in (28)-(39).

Reformulating the coupling constraints again requires con-
sideration of two cases. When secondary control is not active,
we can simply replace dGS,t with d0

GD,t, dLS,t with −dLS,t−1,
and use Pm,t−1 instead of Pm,t. When secondary control is
active, we need the following constraints

dLS,tµw,t−dLS,t−1µw,t−1+S1
CP,t≤R

up
LS,t (50)

dLS,tµw,t−dLS,t−1µw,t−1−S1
CP,t≥−RdnLS,t (51)

S1
CP,t≥c

√
(dLS,tδw,t)2+(dLS,t−1δw,t−1)2 (52)

PG−dGS,tµw,t−d0
GD,tµw,t−1+d3

GD,tµP,t+S2
CP,t≤PG (53)

PG−dGS,tµw,t−d0
GD,tµw,t−1+d3

GD,tµP,t−S2
CP,t≥PG (54)

S2
CP,t≥c

√
(dGS,tδw,t)2+(d0

GD,tδw,t−1)2+(d3
GD,tδP,t)

2 (55)

PC+g5≤PC(T ft ) (56)



PC+dLS,tµw,t−dLS,t−1µw,t−1+aµT,t−S3
CP,t≥0 (57)

S3
CP,t≥c

√
(dLS,tδw,t)2+(dLS,t−1δw,t−1)2+(aδT,t)2 (58)

Sft +
∆τ

4
(PC,t−P fT,t)+g6≤S(T ft ) (59)

Sft +
∆τ

4
(PC,t−P fT,t+dLS,tµw,t−dLS,tµw,t−1−aµT,t

−S3
CP,t)≥0 (60)

where gi are again convex approximations.

C. Power Flow Constraint Reformulation
The analytical reformulation for power flow constraints is

more complex than the previous reformulations. All uncertain-
ties appear in Pinj,t and design variables related to reserve
provision can exist in the constraints. We use the secondary
control power flow constraint (9) as an example. Denote the
power flow from bus i to j as fij with βij the admittance
between those 2 buses. Then,

fij = βij(θi − θj) (61)

where θi = (B̆Pinj,t)i, θj = (B̆Pinj,t)j , and B̆ is a constant
matrix related to admittance matrix with the same definition as
in [7]. Separate the power injection equation into three parts:
forecast, secondary control, and re-dispatch

P finj,t = CGPG,t + CwP
f
w,t − CL(PL,t + PC,t) (62)

P scinj,t = CGRGS,t + Cw∆w,t − CLRLS,t (63)

P rdinj,t = CGR
3
GD,t − CL∆P,t (64)

θi =
(
B̆(P finj,t + P scinj,t + P rdinj,t)

)
i

(65)

Define the following matrices:

G = [B̆CG]NB×NG
B = [B̆CW ]NB×NW

C = [B̆CL]NB×NL
D = [B̆CGdGS,t]NB×1

E = [B̆CLdLS,t]NB×1 F = [B̆CGd
3
GD,t]NB×1

Then, we have

fscij = βij((B∆w,t)i − (D + E)ie
T∆w,t

− (B∆w,t)j + (D + E)je
T∆w,t) (66)

frdij = βij(Fie
T∆P,t − (C∆P,t)i

− FjeT∆P,t + (C∆P,t)j) (67)

We can now write the full reformulation of the power flow
constraint as a function of the baseline power and wind
forecast error at each each bus at each bus k

ck = [Bik −Bjk − (D + E)i + (D + E)j ] (68)
dk = (Fi − Fj − Cik + Cjk)ak (69)

µscij = βij

NW∑
k=1

ckµw,t,k (70)

µrdij = βij

(
NL∑
k=1

dk

)
µT,t (71)

pij = βij((Gi −Gj)PG,t + (Bi −Bj)P fw,t
− (Ci − Cj)(PL,t + PC,t)) (72)

pij+µ
sc
ij+µrdij +Sij≤Pl (73)

pij+µ
sc
ij+µrdij −Sij≥−Pl (74)

Sij≥c

∥∥∥∥∥βij
[
c1δw,t,1,...,cNW

δw,t,NW
,

(
NL∑
k=1

dk

)
δT,t

]∥∥∥∥∥
2

(75)

where Gi as the i-th row of G and ∆P,t,k = ak∆T,t.

D. Cutting Plane Algorithm

To reduce computational complexity, we have replaced
some complicated constraints with slack variables. We apply
the iterative cutting plane method described in [7]. Consider
(28) in which we use SGS,t instead of the nonlinear constraint
(30). Assume we obtain optimal decision variables for the
problem without (30). We evaluate (30) and if it is satisfied,
we have a solution to the full problem. If not, we introduce a
new constraint

SGS,t ≥ f(·) +
∂f(·)
∂dGS,t

∆(RupGS,t) +
∂f(·)
∂d3

GD,t

∆(d3
GD,t) (76)

where f(·) is the right side of (30), and resolve the problem.
In a finite number of iterations, we get a result which satisfies
all of the constraints. To further reduce the iteration time, we
include the following constraints, which comprise a relaxation
with a feasible region 27% larger than the cone space.

SGS,t ≥ cdGS,tδw,t
SGS,t ≥ cd3

GD,tδP,t

SGS,t ≥
c
√

2

2
(dGS,tδw,t + d3

GD,tδP,t)

This technique is also used for power flow and some energy
capacity constraints.

E. Probability Analysis and Convex Approximation

We use many convex approximations gi, which are required
because load power/energy capacity forecast errors are non-
Gaussian. Take the secondary control power capacity con-
straint (31) as an example. To find the function g1, we need
to solve for the confidence bound for

P(dLS,tPm,t + ∆P,t − ePC(∆T,t)
≤ g1) ≥ 99% (77)

where ePC(∆T,t)
is the power capacity error, which is a piece-

wise linear function of ∆T,t. Function g1 is also a function
of dLS,t. To simplify the derivation, we rewrite the quantity
within probability operator as Z = max(k1x, k2x+h)+dy =
M + dy where x is ∆T,t; y is Pm,t; k1 < 0, k2 > 0, and
h < 0 are constants; M is lower bounded by constant C1;
and d is dLS,t, which is a design variable. Let the CDF and
probability density function (PDF) of x = ∆T,t be FX(x) and
fx(x). Now we can find the CDF for M

Pr(M ≤ m) = FX

(
m− h
k2

)
− FX

(
m

k1

)
(78)

and the PDF for M

fm(m) =
dP(M ≤ m)

dm
=
fx(m−hk2

)

k2
−
fx(mk1 )

k1
(79)
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Fig. 1. The 99% confidence bound associated with the secondary control
power capacity constraint.

Let the PDF and CDF of N = dy be fN,d(n) and ΦN,d(n).
Now we can find the CDF for Z

P(Z≤g1(d))=

∫ ∞
C1

fm(m)ΦN,d(g1(d)−m)dm≥99% (80)

For other gi, the methodology will be the same with different
constant values. As there is no symbolic equation for gi and
d ∈ [0, 1], we use visual inspection to check the convexity and
other properties. In Fig. 1, we see that the confidence bound
shows convexity and that the function is non-decreasing on
d > 0. To use this bound in our simulation, we construct
a supporting plane set g1 ≥ max(p1,jdLS,t + q1,j) for j =
1, . . . , 5, where p1,j and q1,j are the slopes and intercepts. This
convex approximation gives us a close estimate of the original
set and only introduces linear constraints into the optimization.

V. SIMULATION SETUP

We solved the problem for a modified IEEE 30-bus system
with single wind power generator on bus 13. All loads were
assumed 50% controllable and the uncontrollable portion was
scaled with a shifted sine wave with peaks (set equal to values
in the test case [10]) at t = 18. We use the same look-up table
relating power/energy capacities of 1000 heat pump heaters
to outdoor temperature as in [4], and assume time varying
temperature forecast (shifted sine wave with peak of 12◦C
at t = 16). We considered both uncongested and congested
power flow by reducing the transmission line limits between
bus 1 and bus 2 from 160 MVA to 110 MVA. For each case,
we used both the scenario-based method developed in [6] (and
applied in [4]) and analytical reformulation with ε = 99%.

We use the same wind and temperature error scenarios
as in [4], but we use time-varying wind forecasts
(following a cosine function with a peak of 55MW
and no phase shift) to normalize the wind error. The
distributions of both types of errors are approximately
Gaussian. We assume load reserves are cheaper than
generator reserves but the costs are still comparable. Load
reserves on different buses were assigned different costs:
[5.7, 5.3, 5.1, 5, 5.1, 5.3, 5.7, 6.3, 6.9, 7.5, 8.1, 8.8, 9.3, 9.7, 9.9,
10, 9.9, 9.7, 9.3, 8.8, 8.2] $/MW. Generation costs were set to
the values from the test case [10], secondary control costs
were set to the first order generation costs with scale factor of
1.5, and re-dispatch costs were set to the first order generation
costs. All optimization problems were solved by CVX with
Mosek and Gurobi.

VI. SIMULATION RESULTS

Figures 2 and 5 show the scheduled reserve capacity of
several generators and loads in the uncongested and congested
case, respectively. In the uncongested case, the system prior-
itizes low cost reserves (load bus 5), while in the congested
case the transmission constraint between bus 1 and 2 prevents
some of load bus 5’s reserves from being utilized. Fewer
reserves are procured when the problem is solved analyti-
cally (a) because the scenario-based approach (s) is heavily
influenced by outliers and so gives more conservative results.
Additionally, the analytical formulation produces a smoother
curve. Figures 3 and 6 show the generation schedule of several
of the generators in the uncongested and congested case,
respectively. In the uncongested case, analytical reformulation
works better to shift load and mitigate the generation peak
at t = 16. This is because the scenario-based method treats
uncertainties more conservatively, leaving less room for peak
shifting. In the congested cases, the results for generator 1 are
more similar between the two approaches, but the scenario-
based method calls on generator 5, which is more expensive,
to alleviate the peak. Figures 4 and 7 show the set point
of several of the controllable loads in the uncongested and
congested case, respectively. The set points produced by the
analytical approach deviate more than those produced by the
scenario-based method because the analytical approach is less
conservative. The reason why the set point rises at beginning
is to pre-charge the thermal storage so that the load can drop
below baseline during the peak loading period t = 12, . . . , 18.

Table I shows the computation time associated with two
approaches. We solved the analytical reformation with both a
nonlinear solver and with the cutting-plane algorithm. For the
uncongested case, the slack variables are unlikely to be active
and the cutting-plane method is fast. For the congested case,
the cutting plane method is slower. The computational effort of
the scenario approach is less sensitive to congestion. Although
here, cutting-plane methods are comparable with scenario-
based methods in terms of computational time, with more
uncertain variables, the number of constraints in scenario-
based method will increase exponentially, while the size of
the analytically-reformulated problem will remain the same.
Table II shows the breakdown in costs while Table III shows
the reliability results. We prepared three sets of data – the
empirical scenarios, randomly generated correlated Gaussian
errors, and randomly generated Weibull distributed errors –
and performed 4000 Monte Carlo runs to test the probability
of joint and individual constraint violations. In the uncongested
case, the scenario-based method is resilient to all errors due
to its conservativeness. As expected, the analytical approach
provides less joint reliability, especially under the Weibull
distribution. The individual reliability is still comparable with
our requirement. For the congested case, there is slight de-
crease in all reliability levels due to a higher risk of violating
transmission line constraints.

VII. CONCLUSIONS

In this paper, we presented the full analytical formulation for
the stochastic optimal power flow problem with uncertain load
control and uncertain wind production under the assumption
of Gaussian outdoor temperature and wind uncertainty. We
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Fig. 2. Reserve capacity, uncongested.
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Fig. 3. Generator schedules, uncongested.
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Fig. 4. Load schedules, uncongested.

TABLE I
COMPUTATIONAL TIME

Scenario Analytical
Nonlinear Cutting

uncongested 11.57 12.79 5.94
congested 12.32 42.34 15.21

compared the performance and computational complexity of
this approach to that of a scenario-based methods. We found
that the analytical approach provides less conservative results
with better objective values and more effective response to
peak load and congestion. The scenario-based method provides
high joint and individual constraint satisfaction, while with
analytical reformulation, joint reliability suffers.

TABLE II
COST DISTRIBUTION

Scenario Analytical

uncongested
generation 121010 120850
secondary 1821 1443
redispatch 52696 42127

congested
generation 123960 122460
secondary 2134 1529
redispatch 52487 42085

TABLE III
RELIABILITY RESULTS (UNCONGESTED/CONGESTED)

Scenario Analytical

empirical scenarios Joint 0.996/0.994 0.890/0.854
Individual 0.999/0.998 0.976/0.967

correlated errors Joint 0.994/0.994 0.892/0.869
Individual 0.998/0.998 0.980/0.974

Weibull distributed errors Joint 0.995/0.992 0.854/0.825
Individual 0.998/0.997 0.970/0.962
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