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Abstract—Optimization formulations with chance constraints
have been widely proposed to operate the power system under
various uncertainties, such as renewable production and load
consumption. Constraints like the system’s physical limits are
required to be satisfied at high confidence levels. Conventional
solving methodologies either make assumptions on the underlying
uncertainty distributions or give overly-conservative results. We
develop a new distributionally robust (DR) chance constrained
optimal power flow formulation in which the chance constraints
are satisfied over a family of distributions with known first-
order moments, ellipsoidal support, and an assumption that the
probability distributions are log-concave. Since most practical un-
certainties have log-concave probability distributions, including
this assumption in the formulation reduces the objective costs
as compared to traditional DR approaches without sacrificing
reliability. We derive second-order cone approximations of the
DR chance constraints, resulting in a tractable formulation that
can be solved with commercial solvers. We evaluate the perfor-
mance of our approach using a modified IEEE 9-bus system with
uncertain wind power production and compare it to standard
approaches. We find that our approach produces solutions that
are sufficiently reliable and less costly than traditional DR
approaches.

Index Terms—Optimal power flow, chance constraint, log-
concave distribution, distributionally robust optimization, uncer-
tainty

I. INTRODUCTION

Uncertainties resulting from, e.g., renewable generation or

load consumption, complicate the optimal operation of power

systems. Optimal power flow (OPF) formulations using chance

constraints [1]–[5] have been proposed to limit the chance of

violating physical constraints, such as generation and line lim-

its. The key difficulty in solving chance constrained problems

is that we usually do not know the true underlying probability

distributions of the uncertain variables. Most existing work

either assumes that the uncertainties follow known, empirical

distributions [6], [7] or use randomized techniques that require

constraint satisfaction for a large number of scenarios [8],

[9]. The former often fail to guarantee reliability (unless the

distributions are modeled perfectly) while the latter often give
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overly-conservative results. Recently, distributionally robust

chance constrained (DRCC) OPF formulations have been

developed, e.g., [10]–[16]. This new approach requires the

chance constraints to be satisfied for all possible distributions

with known statistical parameters (e.g., first and second-order

moments [10], [12], [16] or likelihood to a data-based distri-

bution [15]) producing highly reliable solutions generally at a

lower cost than those obtained with randomized techniques. In

addition to moment information, common structural properties

of practical uncertainties, like unimodality [13], [14] and

symmetry [11], can be enforced to further lower the costs. To

solve DRCC OPF problems, the constraints are either exactly

reformulated or approximated resulting in second-order cone

programs (SOCPs) [17] or semidefinite programs (SDPs) [18],

[19], which can both be directly solved using commercial

solvers.

In this paper, we propose a new DRCC OPF formulation

in which chance constraints are satisfied over a family of

distributions (i.e., an ambiguity set) with known first-order

moments, an ellipsoidal support, and an assumption that the

probability distributions are log-concave [20], [21]. Most prac-

tical uncertainties follow log-concave distributions; Gaussian,

Beta and Weibull distributions are all log-concave. For ex-

ample, wind forecast errors are generally modeled as specific

distributions in the log-concave family [22]–[24]. Including

this assumption limits the distributions over which the chance

constraints should be satisfied, reducing the conservatism and

the objective cost of the solution. Meanwhile, assuming the

real uncertainty distributions are log-concave, the solutions

will be sufficiently reliable. We benchmark our approach

against a DRCC approach that uses an ambiguity set with only

moment and support requirements and a chance constrained

approach that assumes all uncertainty follows multivariate

normal distributions, which is a special type of log-concave

distribution.

The contributions of the paper are as follows. 1) We derive a

projection property to simplify the multi-dimensional ambigu-

ity set into an equivalent single dimensional one. 2) We derive

second-order cone (SOC) relaxing and conservative approxi-

mations (i.e., a sandwich approximation) of the distributionally

robust chance constraints under our ambiguity set. Using the

DC power flow equations, the resulting DRCC OPF is an



SOCP. We also derive exact SOC constraints for the simpler

ambiguity set. 3) We apply the theoretical results to solve a

DC OPF problem on a modified IEEE 9-bus system with wind

uncertainty. 4) We compare our results to those produced by

the two benchmark approaches described above and report the

objective costs and reliability of all approaches. To the best

of our knowledge, this is the first work to include the log-

concavity structure in distributionally robust optimization.

The remainder of the paper is organized as follows. The

DR chance constraints and ambiguity set are introduced in

Section II. In Section III, we derive the projection property.

In Section IV, we give our main theoretical results. In Sec-

tion V, we present the case studies and their results. Finally,

Section VI summarizes the paper and proposes some potential

future research directions.

II. DISTRIBUTIONALLY ROBUST CHANCE CONSTRAINTS

A. Formulation

Assume that ξ represents an n-dimensional random vector

defined on a probability space (Rn,B,Pξ) with Borel σ-

algebra B and probability distribution Pξ. We define x ∈ R
m

as the design variable vector and 1−ε as the confidence level.

A chance constraint seeks to respect the physical constraint

with the pre-defined confidence level as follows:

Pξ (f(x, ξ) ≤ 0) ≥ 1− ε. (1)

In practice, Pξ is usually unknown and empirical estimation

can be difficult and unreliable. To reduce the risk associated

with modeling uncertainty, we consider a distributional ambi-

guity set Dξ that incorporates plausible candidates of the true

distribution Pξ. Then, we require that (1) is satisfied for all

Pξ ∈ Dξ, which leads to the following DR chance constraint:

inf
Pξ∈Dξ

Pξ (f(x, ξ) ≤ 0) ≥ 1− ε. (2)

In the rest of the paper, we further specify that the constraint

function f(x, ξ) is a bilinear function, i.e., f(x, ξ) = a(x)T ξ−
b(x), where both a(x) : R

m → R
n and b(x) : R

m → R

are affine functions of x. This form of bilinear function

applies to many physical constraints in practice and is standard

in existing DR chance constraint research. The DR chance

constraint in the final form is then

inf
Pξ∈Dξ

Pξ

(
a(x)T ξ ≤ b(x)

) ≥ 1− ε. (3)

B. Ambiguity Set

We assume Dξ consists of all probability distributions Pξ

that live in an ellipsoid around its mean value μ and satisfies

structural properties specified in set PS, i.e.,

Dξ := {Pξ ∈ PS : EPξ
[ξ] = μ,

‖Σ− 1
2 (ξ − μ)‖2 ≤ r almost surely}, (4)

where matrix Σ � 0 defines the ellipsoid and r represents its

radius. For example, we could choose Σ to be the empirical

covariance matrix obtained from the data corresponding to ξ.

In this paper, we consider the following two options for Dξ:

• Case 1: PS

1 = {Pξ is log-concave},

• Case 2: PS

2 = {Pξ is any probability distribution},

where Case 2 is our DRCC benchmark. We denote the am-

biguity set corresponding to Case 1 as D1
ξ and corresponding

to Case 2 as D2
ξ , where D1

ξ ⊆ D2
ξ . We formally define log-

concavity [20] as follows.

Definition 2.1: A probability distribution P is log-concave

if and only if for all non-empty sets A,B ∈ B and for all

θ ∈ (0, 1), we have

P (θA+ (1− θ)B) ≥ [P(A)]θ[P(B)]1−θ. (5)

A large family of probability distributions are log-concave,

including Gaussian, Beta, and Weibull distributions and log-

concavity is commonly assumed for many practical uncertainty

distributions.

III. PROJECTION PROPERTY

In this section, we derive a projection property that trans-

forms the ambiguity set Di
ξ of a random vector ξ ∈ R

n into

an equivalent ambiguity set Di
ζ of a random variable ζ ∈ R,

for i = 1, 2.

Lemma 3.1: For i = 1, 2, the following equality holds:

inf
Pξ∈Di

ξ

Pξ

(
a(x)T ξ ≤ b(x)

)
= inf

Pζ∈Di
ζ

Pζ (ζ ≤ g(x)) , (6)

where

g(x) = b(x)− a(x)Tμ+ r‖Σ 1
2 a(x)‖2 (7)

and

Di
ζ := {Pζ ∈PS

i : EPζ
[ζ] = r‖Σ 1

2 a(x)‖2,
0 ≤ ζ ≤ 2r‖Σ 1

2 a(x)‖2 almost surely}. (8)

Proof: We provide the proof for i = 1; the proof for i = 2
is similar and so omitted.

On the one hand, we can pick any ξ with Pξ ∈ D1
ξ .

Define ζ = a(x)T (ξ − μ) + r‖Σ 1
2 a(x)‖2, we have EPζ

[ζ] =

r‖Σ 1
2 a(x)‖2 and 0 ≤ ζ ≤ 2r‖Σ 1

2 a(x)‖2 almost surely, where

the bounds of ζ are valid because

ζ ≤ r‖Σ 1
2 a(x)‖2 + max

ξ:‖Σ− 1
2 (ξ−μ)‖2≤r
a(x)T (ξ − μ)

= r‖Σ 1
2 a(x)‖2 + max

y:‖y‖2≤r
(Σ

1
2 a(x))T y

= r‖Σ 1
2 a(x)‖2 + r‖Σ 1

2 a(x)‖2 = 2r‖Σ 1
2 a(x)‖2

and

ζ ≥ r‖Σ 1
2 a(x)‖2 + min

ξ:‖Σ− 1
2 (ξ−μ)‖2≤r
a(x)T (ξ − μ)

= r‖Σ 1
2 a(x)‖2 − r‖Σ 1

2 a(x)‖2 = 0.

Furthermore, from Lemma 2.1 of [20], we know that Pζ is

log-concave. Hence, Pζ ∈ D1
ζ and

inf
Pξ∈D1

ξ

Pξ

(
a(x)T ξ ≤ b(x)

) ≥ inf
Pζ∈D1

ζ

Pζ (ζ ≤ g(x)) .



On the other hand, we can pick any ζ with Pζ ∈ D1
ζ and define

ξ = μ + (ζ − r‖Σ 1
2 a(x)‖2) Σa(x)

a(x)TΣa(x)
. We have EPξ

[ξ] = μ

and ‖Σ− 1
2 (ξ − μ)‖2 ≤ r almost surely, which follows from

‖Σ− 1
2 (ξ − μ)‖2 =

‖Σ 1
2 a(x)‖2

a(x)TΣa(x)

∣∣∣ζ − r‖Σ 1
2 a(x)‖2

∣∣∣ ≤ r.

Furthermore, from Lemma 2.1 of [20], we know that Pξ is

log-concave. Hence, Pξ ∈ D1
ξ and

inf
Pξ∈D1

ξ

Pξ

(
a(x)T ξ ≤ b(x)

) ≤ inf
Pζ∈D1

ζ

Pζ (ζ ≤ g(x)) .

IV. MAIN RESULTS

We next present an SOC sandwich approximation of (3)

under ambiguity set D1
ξ and an SOC exact reformulation under

ambiguity set D2
ξ .

A. Sandwich Approximation for D1
ξ

First, we derive a conservative approximation for (3) under

D1
ξ by relaxing PS

1 to a set consisting of all Pξ with a log-

concave cumulative distribution functions (CDFs). Letting PL

represent the set of all Pξ with a log-concave CDFs, we define

DL

ζ := {Pζ ∈PL : EPζ
[ζ] = r‖Σ 1

2 a(x)‖2,
0 ≤ ζ ≤ 2r‖Σ 1

2 a(x)‖2 almost surely}. (9)

From Theorem 1 of [21], we have D1
ζ ⊆ DL

ζ and so

inf
Pζ∈DL

ζ

Pζ (ζ ≤ g(x)) ≤ inf
Pζ∈D1

ζ

Pζ (ζ ≤ g(x)) . (10)

Theorem 4.1: If ε ≤ 1
4 , then (3) under D1

ξ is implied by the

following SOC constraint:

a(x)Tμ+

[
1− 2 log(1− ε)

d∗

]
r‖Σ 1

2 a(x)‖2 ≤ b(x), (11)

where d∗ is the unique root of function exp{d}− d/2 = 1 on

the interval (−∞, 0) and log represents the natural logarithm.

Proof: From the above discussion, it is clear that (3) under

D1
ξ is implied by

inf
Pζ∈DL

ζ

Pζ (ζ ≤ g(x)) ≥ 1− ε. (12)

Define π = r‖Σ 1
2 a(x)‖2 and the CDF of ζ as Fζ(z) = Pζ(ζ ≤

z). Then, Fζ(z) is log-concave in z for any Pζ ∈ DL

ζ .

We claim that, without loss of optimality, we can focus

on those Pζ with log(Fζ(z)) being the minimum of an

affine function of z and the constant-zero function when

computing infPζ∈DL
ζ
Pζ (ζ ≤ g(x)). To see this, we pick any

ζ with Pζ ∈ DL

ζ . Then log(Fζ(z)) is concave and non-

decreasing. Consider a tangent of log(Fζ(z)) at z∗ = g(x),
i.e., G(z) = k(z− z∗)+ log(Fζ(z

∗)) with k ∈ ∂ log(Fζ(z
∗)).

As log(Fζ(z)) is nondecreasing and concave, we have k ≥ 0
and G(z) ≥ log(Fζ(z)) for all z ∈ [0, 2π]. Define F̂ζ(z) =
min{1, exp(G(z))}, which satisfies the property of a log-

concave CDF and yields a probability measure P̂ζ . In addition,

we have P̂ζ (ζ ≤ z∗) = Pζ (ζ ≤ z∗) and EPζ
[ζ] ≥ E

P̂ζ
[ζ].

Then, we manipulate G(z) via the following two steps.

1) Increase the horizontal intercept to 2π with vertical

intercept fixed, and

2) decrease the vertical intercept towards −∞ with the

horizontal intercept fixed.

Both actions will decrease P̂ζ (ζ ≤ z∗) and increase E
P̂ζ
[ζ],

and so we could stop as soon as P̂ζ (ζ ≤ z∗) ≤ Pζ (ζ ≤ z∗)
and EPζ

[ζ] = E
P̂ζ
[ζ]. This proves the claim.

Based on the claim, we recast the left side of (12) as follows.

min
c,d

min{1, exp{cz∗ + d}} (13)

s.t.

∫ 2π

0

[1−min{1, exp{cz + d}}] dz = π (14)

exp{c(2π) + d} ≥ 1 (15)

c > 0, d < 0, (16)

where (14) enforces EPζ
[ζ] = π, (15) enforces 0 ≤ ζ ≤ 2π

almost surely, and (16) makes sure that CDF min{1, exp{cz+
d}} is nondecreasing and nontrivial. Note that (15) is equiv-

alent to −d/c ≤ 2π. Then, it follows that (14) is equivalent

to

π =

∫ 2π

0

[1−min{1, exp{cz + d}}] dz

=

∫ −d/c

0

[1− exp{cz + d}] dz

=
1

c
[exp{d} − d− 1] ,

and so c = (1/π)[exp{d}−d− 1]. Thus, (15) is equivalent to

2π ≥ −d/c = −dπ/[exp{d} − d − 1], or exp{d} ≥ 1 + d/2
because exp{d} − d− 1 > 0 when d < 0. It follows that the

optimal objective value of problem (13)–(16) equals that of

the following problem:

min
d<0

min

{
1, exp

{
exp{d} − d− 1

π
z∗ + d

}}
(17)

s.t. exp{d} ≥ d

2
+ 1. (18)

We analyze the objective function in (17) by considering the

following two scenarios.

• Scenario 1. If z∗ ≥ 2π, then

(exp{d} − d− 1)

(
z∗

π

)
+ d

≥(exp{d} − d− 1)

(
2π

π

)
+ d

=2

(
exp{d} − d

2
− 1

)
≥ 0

for all d < 0 and exp{d} ≥ d/2 + 1. Then, the optimal

objective value of problem in (13)–(16) equals 1. Note

that this makes sense because when z∗ ≥ 2π, we always

have ζ ≤ z∗ for any ζ ∈ [0, 2π].



• Scenario 2. If z∗ < 2π, then by the definition of d∗

(exp{d∗} − d∗ − 1)

(
z∗

π

)
+ d∗

<(exp{d∗} − d∗ − 1)

(
2π

π

)
+ d∗

=2

(
exp{d∗} − d∗

2
− 1

)
= 0

Hence, there exists a d < 0 with exp{d} ≥ d/2+1 such

that (exp{d}− d− 1)(z∗/π) + d < 0. It follows that the

objective function in (17) is equivalent to

min
d<0

exp

{
(exp{d} − d− 1)

(
z∗

π

)
+ d

}
.

Finally, we recast (12) by discussing the following two sce-

narios.

• Scenario 1. If z∗ ≥ 2π, then (12) always holds.

• Scenario 2. If z∗ < 2π, then (12) holds if and only if the

optimal objective value of problem (17)–(18) is greater

than or equal to 1− ε, or equivalently,

z∗ ≥ max
d<0; exp{d}≥d/2+1

{
log(1− ε)− d

exp{d} − d− 1

}
π.

Note that d < 0 and exp{d} ≥ d/2 + 1 is equivalent to

d ≤ d∗ because h(d) = exp{d} − d/2 − 1 is convex in

d with roots d = 0 and d = d∗ ≈ −1.59. In addition,

H(d) = log(1−ε)−d
exp{d}−d−1 is nondecreasing in d because ε ≤

1/4. It follows that (12) is equivalent to

z∗ ≥
{

log(1− ε)− d∗

exp{d∗} − d∗ − 1

}
π =

{
2− 2 log(1− ε)

d∗

}
π.

Note that 2− 2 log(1−ε)
d∗ < 2 as d∗ < 0 and 1− ε ∈ (0, 1).

Summarizing the above two scenarios, (12) is equivalent to

z∗ ≥
{
2− 2 log(1− ε)

d∗

}
π.

The proof is complete given the definition of z∗.

Second, we derive a relaxing approximation for (3) by

focusing on a particular distribution in D1
ζ . More specifical-

ly, let P
U

ζ represent the uniform distribution on the interval

[0, 2r‖Σ1/2a(x)‖2], then (3) implies

P
U

ζ{ζ ≤ g(x)} ≥ 1− ε. (19)

which can be recast as

a(x)Tμ+ r(1− 2ε)‖Σ 1
2 a(x)‖2 ≤ b(x). (20)

The conservative approximation and this relaxing approxima-

tion are used as the sandwich approximation.
Third, we consider another relaxing approximation of (3)

by restricting Pξ to be normally-distributed with mean μ and

covariance matrix Σ. Then, based on existing results (e.g., [6]),

(3) implies the following SOC constraint:

a(x)Tμ+Φ−1
N (1− ε)‖Σ 1

2 a(x)‖2 ≤ b(x). (21)

where ΦN is the inverse CDF of the standard normal distri-

bution. This relaxing approximation is used as a benchmark.

B. Exact reformulation for D2
ξ

We next derive an exact reformulation for (3) under D2
ξ ,

which we use as the DRCC benchmark.

Theorem 4.2: If ε < 1
2 , then (3) under D2

ξ is equivalent to

the following SOC constraint:

a(x)Tμ+ r‖Σ 1
2 a(x)‖2 ≤ b(x). (22)

Proof: We prove by contradiction.

First, if g(x) < r‖Σ 1
2 a(x)‖2, then we consider P̂ζ ∈ D2

ζ

such that ζ = r‖Σ1/2a(x)‖2 almost surely. It follows that

P̂ζ(ζ ≤ g(x)) = 0 and so infPζ∈D1
ζ
Pζ (ζ ≤ g(x)) = 0 < 1−ε.

Second, if r‖Σ 1
2 a(x)‖2 ≤ g(x) < 2r‖Σ 1

2 a(x)‖2, then there

exists a point ζ̃ such that g(x) < ζ̃ < 2r‖Σ 1
2 a(x)‖2. Consider

a specific distribution P̂ζ ∈ D2
ζ that puts equal weight at ζ̃ and

2r‖Σ 1
2 a(x)‖2 − ζ̃. We have

inf
Pζ∈D2

ζ

Pζ (ζ ≤ g(x)) ≤ P̂ζ (ζ ≤ g(x)) =
1

2
< 1− ε.

Hence, (3) is valid if and only if g(x) ≥ 2r‖Σ1/2a(x)‖2.

Note that (3) under D2
ξ is conservative because it is invariant

for any ε ∈ (0, 1/2).

V. CASE STUDY

A. Problem Formulation and Setup

We consider the DCOPF problem from [13], which is

similar to that of [3], [6]. Assuming two wind power plants, the

random variables are the wind forecast error W̃ = [W1,W2]
T .

Assuming the system has NG generators and NB buses,

the design variables are generation PG ∈ R
NG , up and

down reserve capacities Rup ∈ R
NG , Rdn ∈ R

NG , and a

“distribution vector” d ∈ R
NG , which parametrizes an affine

reserve dispatch policy that allocates real-time supply/demand

mismatch to generators providing reserves. The problem is

min PT
G [C1]PG + CT

2 PG + CT
R(R

up +Rdn) (23)

s.t.− Pl ≤ AsPinj ≤ Pl (24)

R = −d(W1 +W2) (25)

Pinj = CG(PG +R) + CW (P f
W + W̃ )− CLPL (26)

PG ≤ PG +R ≤ PG (27)

−Rdn ≤ R ≤ Rup (28)

11×NG
d = 1 (29)

11×NB
(CGPG + CWP f

W − CLPL) = 0 (30)

PG ≥ 0NG×1, d ≥ 0NG×1, (31)

Rup ≥ 0NG×1, R
dn ≥ 0NG×1 (32)

where [C1] ∈ R
NG×NG , C2 ∈ R

NG , and CR ∈ R
NG are

cost parameters. Constraint (24) uses the DC power flow

approximation to relate the power injections Pinj to the line

flows using parameter matrix As, which includes the network

impedances, and constrains the flows to below to the line limits

Pl. Constraint (25) is the affine reserve dispatch policy that

computes the real-time reserve actions R; (26) defines the



Figure 1. Modified IEEE 9-bus system.

real-time power injections, where P f
W is the wind forecast

and CG, CW , and CL are matrices that map generators, wind

power plants, and loads to their buses; (27) constrains gen-

erator production to within its limits [PG, PG]; (28) requires

the real-time reserve actions be within the reserve capacity;

(29) normalizes the distribution vector; (30) enforces power

balance for the wind forecast; and (31), (32) ensures all

decision variables are non-negative. Real-time power balance

is enforced by (25) and (29) which require reserve actions

to exactly compensate for the wind forecast error. Constraints

(24), (27), and (28) are reformulated as chance constraints.

Each constraint is enforced individually, not jointly.

We test our approach on the modified IEEE 9-bus system

shown in Fig. 1. We use the network parameters and generation

costs from [25], and set the reserve cost CR = 10C2. We set

the wind power forecasts to P f
W = [66.8, 68.1] MW. We use

the same wind power forecast uncertainty data as in [5], which

was generated using a Markov Chain Monte Carlo mechanism

[26] applied to real data from Germany. The 24-hour forecasts

are made day-ahead but we only use those associated with the

first hour since we solve a single period problem. We congest

the system by increasing each load by 50% and reducing the

line limit of the line connecting buses 2 and 8 from 250 MW to

200 MW. We pick this transmission line because it connects

a wind power plant to the system and its forecasted power

flow is close to its limit. All optimization problems are solved

using CVX with the Mosek solver [27], [28].

B. Empirical Wind Forecast Error Distributions

We verify the log-concavity of the wind forecast error

distributions using the full data set (10,000 scenarios) with the

exception of statistical outliers (total probability< 0.1%). Note

that the outliers are also not used when empirically estimating

the first-order moment μ, covariance Σ, and radius r, but they

are used when evaluating the reliability of the solution.

In Fig. 2, we show the histogram of univariate wind forecast

errors (i.e., all errors analyzed together) and its logarithmic

profile, which appears to be concave. Figure 3 shows the

histogram of the bivariate wind forecast error (i.e., errors were

used to generate paired forecasts for the two wind power

plants) and its logarithmic profile, which also appears to be
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Figure 2. Histogram of univariate wind forecast errors and its logarithmic
profile.

Figure 3. Histogram of bivariate wind forecast errors and its logarithmic
profile.

concave. Figures 2 and 3 empirically justify our assumption

that Pξ in the ambiguity set D1
ξ is log-concave.

C. Simulation Results

1) Objective Cost: We first compare the optimal objective

cost across the following four DRCC OPF formulations:

• Gaussian: relaxing approximation in which Pξ is

normally-distributed, given in (21).

• RA: relaxing approximation of D1
ξ , given in (20).

• CA: conservative approximation of D1
ξ , given in (11).

• BM: benchmark based on D2
ξ , given in (22).

For each formulation, we test two violation levels ε =
5%, 10% and four data sizes N = 500, 1000, 2000, and 5000.

We replicate the test associated with each (ε, N ) combination

20 times by re-drawing N error scenarios. Table I displays

the minimum, average, and maximum objective costs for each

formulation over all replicates. BM yields the same optimal

objective costs at different confidence levels as it is invariant

under any ε ∈ (0, 1/2) (see Theorem 4.2). We also observe

that, for all formulations, the range of the optimal objective

cost becomes narrower as the data size grows because of better

estimation of μ, Σ, and r. In addition, we observe that the

optimal objective cost of a purely moment-based formulation

(i.e., Gaussian) depends less on the data size as compared with

the formulations using both moment and support information.

The reason is that the support is more sensitive to outliers

than the moments are. We observe that the optimal objective

cost increases in the same order as the list above due to the

increasing size of the corresponding ambiguity set.



TABLE I
OPTIMAL OBJECTIVE COST OF DRCC OPF UNDER VARIOUS FORMULATIONS, DATA SIZES, AND CONFIDENCE LEVELS

Data size 500 1000 2000 5000
1-ε 95% 90% 95% 90% 95% 90% 95% 90%

Gaussian
min 4891 4849 4894 4851 4895 4852 4903 4858
avg 4903 4858 4907 4862 4907 4861 4906 4861
max 4927 4877 4925 4876 4915 4868 4913 4866

Relaxing Approximation (RA)
min 5078 5035 5192 5134 5748 5623 5985 5830
avg 5468 5377 5918 5772 6001 5845 6046 5885
max 6069 5904 6119 5948 6110 5940 6121 5950

Conservative Approximation (CA)
min 5094 5064 5212 5173 5793 5708 6040 5934
avg 5501 5439 5970 5870 6057 5950 6104 5994
max 6127 6015 6180 6063 6171 6054 6183 6065

Benchmark (BM)
min 5122 5122 5250 5250 5875 5875 6141 6141
avg 5561 5561 6066 6066 6159 6159 6211 6211
max 6235 6235 6292 6292 6282 6282 6295 6295

75 80 85 90 95 100
4000

5000

6000

7000
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RA
CA
BM

75 80 85 90 95 100
70

80

90

100

Figure 4. Optimal objective costs and generation cost percentage at various
confidence levels (1− ε).

We next employ the full data set to construct the ambiguity

sets. Then, we solve all formulations with varying confidence

levels from 75% to 99% (i.e., ε ∈ [1, 25]%). Figure 4 displays

the optimal objective costs and the generation cost as a

percent of the total cost for each formulation. We observe

that the optimal objective costs of RA and CA increase at

a faster rate than that of Gaussian. Consistent with Table I,

BM yields a constant optimal objective cost independent of

ε. At high confidence levels (ε ≤ 5%), the objective costs

of RA and CA become closer and they both converge to

that of BM as ε decreases. This indicates that the sandwich

approximations become tighter as ε decreases. Meanwhile,

the impact of the log-concavity assumption on the ambiguity

sets becomes weaker. The optimal objective cost increases in

the same order as in Table I (i.e., Gaussian, RA, CA, and

BM). We also observe that the generation cost percentage of

all formulations except BM decreases as the confidence level

increases because we need to procure more reserve capacity to

balance wind forecast error at a higher confidence levels. More

reserve capacity is required by more conservative approaches

(i.e., reserve capacity increases and generation cost percentage

decreases in the following order: Gaussian, RA, CA, and

BM). We also observe a similar convergence of the generation

cost percentages associated with RA, CA, and BM as the

confidence level increases.

2) Reliability: We evaluate the empirical reliability of all

formulations via an out-of-sample Monte Carlo analysis for

TABLE II
OVERALL RELIABILITY (%) WITH DATA SIZE 5000

1− ε Gaussian RA CA BM

95%
min 87.5 99.7 99.8 99.8
avg 88.7 99.9 99.9 100
max 90.2 100 100 100

75%
min 53.2 99.5 99.5 99.8
avg 55.2 99.8 99.8 100
max 57.5 100 100 100

TABLE III
OVERALL RELIABILITY (%) WITH DATA SIZE 500

1− ε Gaussian RA CA BM

95%
min 85.4 98.3 98.5 98.9
avg 86.9 99.1 99.3 99.5
max 89.2 99.6 99.8 99.8

75%
min 51.6 88.7 94.7 98.9
avg 53.4 90 95.9 99.5
max 55.4 92.1 96.7 99.8

data sizes N = 500, 5000 (used to generate the statistical

information needed in the formulation) and confidence levels

1 − ε = 95%, 75%. For each formulation, we select the

solution associated with the minimum optimal objective value

reported in Table I and test it on 20 randomly-generated groups

of 1000 out-of-sample wind forecast errors. We define the

empirical reliability as the percentage of errors for which

all chance constraints are satisfied by the selected optimal

solution. Tables II and III show the results. With a data size of

5000, we get an accurate estimate of the statistical information

and hence RA, CA, and BM all achieve high overall reliability,

while Gaussian does not meet the reliability requirement. With

a data size of 500, the reliability drops since the estimated

statistical information is less accurate, but RA and CA still

give sufficiently high reliability and are less conservative than

BM. This demonstrates that the sandwich approximation (RA

and CA) provides a good trade-off between cost and reliability.

Additionally, the results in Table II demonstrate that, for

large data size, we may be able to heuristically decrease the

confidence level (e.g., to 75%) and still obtain solutions that

achieve high reliability (i.e., > 99%) at lower cost.



VI. CONCLUSIONS AND FUTURE WORK

In this paper, we derived distributionally robust chance

constraints corresponding to log-concave uncertainty distribu-

tions with known first-order moments and ellipsoidal support.

We derived a projection property and a tractable sandwich

approximation (i.e., relaxing and conservative approximations)

of the distributionally robust chance constraints as second-

order cone constraints. We compared the approximations to

a benchmark using only moment and support information and

another that assumed normally-distributed uncertainty. The

optimal objective costs of the sandwich approximation depend

on the accuracy of the moment and support information. As

the confidence level increases, the gap between the conser-

vative and relaxing approximation reduce and the effect of

the log-concavity assumption becomes weaker. The sandwich

approximation provides a better trade-off between optimal

objective cost and reliability than either benchmark, where

the benchmark assuming normal distributions is cheap but

not sufficiently reliable and the benchmark assuming known

first-order moments and support (without log-concavity) is

expensive. Our approach works well even if only a small

number of data points are available to estimate the statistical

parameters.

Future research directions include deriving an exact re-

formulation of the distributionally robust chance constraints

assuming log-concave distributions and incorporating more

statistical information like higher-order moments (i.e., un-

certainty correlations) and skewed bounded supports. Other

directions include analyzing joint chance constraint, testing

on more realistic systems with higher-dimensional uncertain-

ties, and development of distributionally robust methods that

incorporate the AC power flow equations.
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