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Increasing Uncertainty

Renewable energy production forecast error, load consumption
forecast error, component failures

How can we operate the power system in a way that (almost
always) ensures feasibility?

Solution:
More reserves

Stochastic optimal power flow to schedule reserve capacities in a way that
balances system cost and reliability
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Chance Constrained Optimization

Used to obtain the lowest cost solution that satisfies constraints
at certain (high) probabilities

Pξ(f (x , ξ) ≤ 0) ≥ 1− ε

Example: In optimal power flow problems, physical constraints
(e.g., line limits) should be satisfied for most of the possible
realizations of renewable/load uncertainty [Zhang and Li 2011;

Vrakopoulou et al. 2013; Roald et al. 2013; Bienstock et al. 2014, and many more]

Hard to obtain accurate uncertainty distributions

Solving methodologies

Assume a distribution, analytically reformulate, and solve [Roald et al. 2013;

Bienstock et al. 2014; Li and Mathieu 2015]

Scenario approaches [Campi et al. 2009; Vrakopoulou et al. 2013]

Probabilistically robust methods [Margellos et al. 2014; Vrakopoulou et al. 2013]
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Distributionally Robust Optimization [Delage and Ye 2010]

Distributionally Robust Chance Constraint

inf
Pξ∈Dξ

Pξ(f (x , ξ) ≤ 0) ≥ 1− ε

Chance constraints satisfied for all distributions within an
ambiguity set defined using

Moment-based information: mean, covariance, higher-order moments

Density-based information: likelihood of a known probability density

Distribution structure: support, unimodality, symmetry, log-concavity

Distributionally robust OPF [Roald et al. 2015; Zhang et al. 2017; Xie and

Ahmed 2017; Summers et al. 2015; Lubin et al. 2016; Li et al. 2017]
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Log-Concave Distributions [Dharmadhikari and Joat-Dev 1988]

Our ambiguity set

Dξ =
{
Pξ is log-concave, EPξ

[ξ] = µ, ‖Σ−
1
2 (ξ − µ)‖ ≤ r

}
where µ is the mean and Σ � 0, r define an ellipsoidal support set.

What is a log-concave distribution?
The logarithm of the probability density function (PDF) is concave.
Note: log-concave PDF → log-concave CDF, unimodal PDF

Why assume a log-concave distribution?
We want to make the most aggressive assumptions we can without assuming
away any plausible distributions. Otherwise our solutions will be unnecessarily
conservative, and costly!

A large family of well-known probability distributions (e.g., Uniform, Gaussian,
Beta, and Weibull) are log-concave.

These distributions are generally good matches for empirical wind and load
forecast uncertainty data [Pappala et al. 2009; Doherty and O’Malley 2005;

Bludszuweit et al. 2008].
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Wind Forecast Uncertainty Data
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Contributions of Our Work

We derive a projection property to simplify the multi-dimensional
ambiguity set into an equivalent single dimensional one.

We incorporate the log-concavity into the distributionally robust
chance-constrained optimization problem and obtain second-order
cone conservative and relaxing approximations, i.e., a sandwich
approximation.

We apply our results to a DCOPF on a modified IEEE 9-bus
system with wind uncertainty and compare to

distributionally robust optimization without the assumption of log-concavity
analytical reformulation assuming Gaussian distributions

B. Li, R. Jiang, and J.L. Mathieu, “Distributionally robust chance constrained optimal
power flow assuming log-concave distributions,” Power Systems Computational
Conference, Dublin, Ireland, 2018.
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Projection Property

Our ambiguity set:

Dξ =
{
Pξ is log-concave, EPξ [ξ] = µ, ‖Σ−

1
2 (ξ − µ)‖2 ≤ r

}
We derive a projection property that transforms the ambiguity set Dξ of a random
vector ξ ∈ Rn into an equivalent set Dζ of a random variable ζ ∈ R.

Lemma: Projection Property

The following equality holds:

inf
Pξ∈Dξ

Pξ

(
a(x)T ξ ≤ b(x)

)
= inf

Pζ∈Dζ

Pζ (ζ ≤ g(x)) ,

where
g(x) = b(x)− a(x)Tµ+ r‖Σ 1

2 a(x)‖2︸ ︷︷ ︸
π

,

and

Dζ := {Pζ is log-concave, EPζ
[ζ] = π, 0 ≤ ζ ≤ 2π}.
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Conservative Approximation

We have been unable to derive an exact reformulation of

inf
Pζ∈Dζ

Pζ (ζ ≤ g(x)) ≥ 1− ε

Instead, we relax Dζ to DC
ζ ⊇ Dζ where

DC
ζ := {CDF of Pζ is log-concave, EPζ [ζ] = π, 0 ≤ ζ ≤ 2π}

Theorem: Conservative Approximation

If ε ≤ 1
4 , then the distributionally robust chance constraint is implied by the

second order cone constraint

a(x)Tµ+

[
1− 2 log(1− ε)

d∗

]
π ≤ b(x),

where d∗ is the unique root of function exp{d} − d/2 = 1 on the interval
(−∞, 0) and log represents the natural logarithm.
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Relaxing Approximation, DR Benchmark, and Gaussian

Relaxing Approximation: Assume ζ follows a uniform distribution, which is a
particular distribution in Dζ . Then the distributionally robust chance constraint is
the second order cone constraint

a(x)Tµ+ (1− 2ε)π ≤ b(x)

DR Benchmark: Our distributionally robust ambiguity set without the
log-concavity assumption, i.e., Dζ := {EPζ [ζ] = π, 0 ≤ ζ ≤ 2π}. If ε < 1

2
, then the

distributionally robust chance constraint is equivalent to the second order cone
constraint

a(x)Tµ+ π ≤ b(x)

Gaussian Assumption: Assume the distribution is multivariate Gaussian. Then the
chance constraint is equivalent to the second order cone constraint

a(x)Tµ+ Φ−1
N (1− ε)‖Σ

1
2 a(x)‖2 ≤ b(x)

where ΦN is the CDF.
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Case Study: IEEE 9-bus system with two wind farms

Problem: Schedule generation PG and reserve capacities Rup,Rdn under wind
forecast error W1,W2 using the DC power flow equations. From [Li et al. 2016],

similar to the formulations in [Vrakopoulou et al. 2013, Bienstock et al. 2014].

min PT
G [C1]PG + CT

2 PG + CT
R (Rup + Rdn)

s.t.− Pl ≤ AsPinj ≤ Pl

Pinj = CG (PG + R) + CW (P f
W + W̃ )− CLPL

R = −d(W1 + W2)

PG ≤ PG + R ≤ PG

− Rdn ≤ R ≤ Rup

11×NG
d = 1

11×NB
(CGPG + CWP f

W − CLPL) = 0

PG ≥ 0NG×1, d ≥ 0NG×1

Rup ≥ 0NG×1, R
dn ≥ 0NG×1

where W̃ = [W1,W2]T .
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Case Study: Objectives

Is it worth it?

How tight is the sandwich approximation?

How do the results change with confidence level 1− ε and the uncertainty
data size for generating the ambiguity sets?
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Results: Objective Cost Comparison

Results are the average of 20 runs in which we re-draw the uncertainty data used
to generate the ambiguity sets (µ,Σ, r).

Data size 500 1000 2000 5000
1-ε 95% 90% 95% 90% 95% 90% 95% 90%

Gaussian 4903 4858 4907 4862 4907 4861 4906 4861
Relax. Approx. 5468 5377 5918 5772 6001 5845 6046 5885

Conserv. Approx. 5501 5439 5970 5870 6057 5950 6104 5994
Benchmark 5561 5561 6066 6066 6159 6159 6211 6211
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Results: Costs vs. Confidence Level
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Simulation Results: Reliability

Data size N = 5000:

1− ε Gaussian Relax. Conserv. Benchmark

95%
min 87.5 99.7 99.8 99.8
avg 88.7 99.9 99.9 100
max 90.2 100 100 100

75%
min 53.2 99.5 99.5 99.8
avg 55.2 99.8 99.8 100
max 57.5 100 100 100

Data size N = 500:

1− ε Gaussian Relax. Conserv. Benchmark

95%
min 85.4 98.3 98.5 98.9
avg 86.9 99.1 99.3 99.5
max 89.2 99.6 99.8 99.8

75%
min 51.6 88.7 94.7 98.9
avg 53.4 90 95.9 99.5
max 55.4 92.1 96.7 99.8
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Conclusions

The objective costs of the sandwich approximation depend on the
accuracy of the moment and support information.

As the confidence level increases, the gap between the
conservative and relaxing approximations reduce and the effect of
the log-concavity assumption becomes weaker.

The sandwich approximation provides a better trade-off between
optimal objective cost and reliability than both the Gaussian
approach and the Benchmark (without log-concavity).

The approximations work well even if a small number of data
points are used to estimate the statistical parameters.

Future work: exact reformulation, other statistical information,
joint chance constraint, more realistic case studies

Contact: libowen@umich.edu
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