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Abstract— The steady rise of electricity demand and re-
newable energy sources is increasing the need for flexibility
to enable power systems to adapt to changes in supply and
demand. To this end, demand response programs have the
potential to increase the flexibility of the system. In this work,
a direct-load-control demand response program is used in
the scheduling task of a power system with high levels of
variable renewable generation. The model considers different
classes of reserves provided by both conventional generation
and responsive demand. Unit commitment, generator dispatch
and reserve allocations are determined with appropriate risk-
averse levels to guarantee a reliable and feasible operation of
the system across the planning horizon. Risk preferences are re-
flected in constraint satisfaction via robust and probabilistically-
constrained approaches. Case studies with a 57-bus system show
that the probabilistic approach allows higher wind share in
the power network and incurs lower costs than the robust
approach. In addition, results show that controllable loads are
an important contributor to system flexibility, though addition
of other classes of responsive demand will also bring desirable
flexibility.

I. INTRODUCTION

As power systems shift to integrate higher levels of
uncertain renewable resources, updated operational processes
are required to improve the flexibility and maintain the reli-
ability of the power system. In this regard, demand response
(DR) programs, defined by the Department of Energy as
“electricity tariff or program established to motivate changes
in electric use by end-use customers, designed to induce
lower electricity use at times of high market prices or when
system reliability is jeopardized” [1], can play an active
role in improving the flexibility of the system as well as
strengthening its reliability [2], [3].

In 2015, wind penetration is reaching new levels globally,
with the U.S. system obtaining nearly 10% of total energy
from this environmentally benign, but intermittent, resource.
As the utilization of wind resources continues to increase, the
power system will require methods to incorporate uncertainty
and to leverage any available flexibility to operate in an
efficient and reliable manner [4]-[6]. Included in potential
sources of flexibility are the use of demand side resources,
in the form of responsive loads. These loads can be roughly
categorized as price-based demand response, in which users
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respond to price signals, and incentive-based demand re-
sponse, typically managed by aggregators or load-serving
entities [7].

Demand response programs are not new, for example,
incentive programs designed to reduce load consumption can
be traced back to 1970 in the U.S.. Previous research has
shown several potential benefits of DR, including peak-load
reduction, mitigation of outage risk, market-clearing price re-
duction, and improving social welfare [1], [8]-[11]. The flex-
ibility provided by DR offers attractive opportunities to meet
fluctuations of renewable generation, for example, the effects
of participation of price-based DR in the electricity market
and its impacts on unit commitment (UC) for a system with
variable generation is analyzed in [12]. The study presented
in [13] shows that price-based DR can mitigate the cost
effects of wind generation in UC decision processes, and the
simulation analysis performed in [14] illustrates the effects
of price-based DR in UC decisions for power systems with
wind and solar photovoltaic (PV) power. Recent studies have
focused on developing stochastic optimization approaches for
UC decisions of power systems with renewable energy and
DR. In [15] a stochastic two-stage UC model with a price-
based demand response program is used to show the benefits
of coupling deferrable loads with renewable energy. In [16] a
stochastic two-stage incentive-based demand response model
is used to determine a load shifting schedule to maximize the
expected usage of the power produced by PV panels. Robust
optimization approaches have also been proposed in the
literature. For example, in [17] a robust optimization model
is used to determine UC decisions under the joint worst-
case wind power output and price-based demand response
scenario. A robust n — k contingency UC model, which
uses the worst-case price-based demand response scenario
to attenuate the impact of multiple contingencies in a power
system, is developed in [18].

In this work, an incentive-based DR program exploits the
potential of thermostatically controlled loads (TCLs), such
as heating, air conditioners, and refrigerators, to provide
reserve capacity to the system. The the chance-constrained
optimal power flow (CC-OPF) model presented in [19]—
[21] is extended to include the unit commitment (UC)
problem and generator ramping constraints. A scheduling
task is implemented to determine an optimal allocation of
generating and load reserves in response to variations of
renewable energy production. This approach adjusts the risk-
level tolerance of the system to provide greater flexibility to
the system in order to accommodate sudden variations of
renewable energy production at each period of time of the
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planning horizon. The simulation study considers the impact
of different risk levels, and responsive load on the efficacy
of wind integration in the system.

The structure of the paper is as follows; an overview of
the the demand response model and the chance-constrained
scheduling task of the system are presented in Section II.
Numerical experiments are reported in Section III, and
concluding remarks and future directions are detailed in
Section IV.

II. MODEL FORMULATION

In this section, the structure of the unit commitment model
is described, which is based on the stochastic optimal power
flow model developed in [19], [20], with the following mod-
ifications: 1) the daily temperature profile is deterministic,
which makes the capacity of the load reserve deterministic;
2) conservative coupling constraints are deleted to reduce
computational complexity; 3) wind capacity is increased and
dispersed among four wind farms on the network using
realistic forecast and error characteristics; and 4) binary com-
mitment variables and generator ramping limits are added to
the economic dispatch problem in [19], [20] to include the
unit commitment problem in the framework.

A. Nomenclature

@det deterministic constraints on generators, flows, loads,
and storage

Cgp  probabilistic constraints associated with the re-
dispatch reserves from generators

Cgs  probabilistic constraints associated with the sec-
ondary reserves from generators

Crs probabilistic constraints associated with the sec-
ondary reserves from controllable loads

ot time step length

€ constraint violation probability

T ambient temperature

R, generator upper ramp rate limit vector

R, generator lower ramp rate limit vector

A matrix that maps power injections to line flows

Cq matrix that maps generator injections to buses

CL matrix that maps load consumption to buses

Cy cost function of the generators

Cw  matrix that maps wind injections to buses

Cyq  cost function of the re-dispatch reserves from gen-
erators

Cys cost function of the secondary reserves from gener-
ators

Cis cost function of the secondary reserves from con-
trollable loads

d;’dw /" senerator upward/downward re-dispatch reserve
distribution vector for restoring generators/loads to
scheduled power dispatch

dz’du” /" oenerator upward/downward re-dispatch reserve
distribution vector for restoring controllable load to
scheduled energy state

dgy /dn senerator upward/downward secondary reserve dis-

tribution vector

dup/dn

s controllable load upward/downward secondary re-

serve distribution vector
DT, generator minimum down time

kg minimum generation cost

Ny number of buses

N number of periods

P, controllable load baseline power vector

Pt controllable load power upper bound vector
P controllable load power lower bound vector
P;r generator generation upper bound vector
P generator generation lower bound vector
P, controllable load power set point vector

P, generator generation vector

P;,;  bus power injection vector

Pjine line limit vector

P, non-controllable load power vector

P forecasted wind power vector

Ry /dn senerator upward/downward re-dispatch reserve ca-
pacity vector

Ry /7 senerator upward/downward secondary reserve ca-

pacity vector
controllable load upward/downward secondary re-
serve capacity vector

Rup/dn

ls

S controllable load energy state vector

St controllable load energy state upper bound vector
Sg generator start-up cost

t time index

UT, generator minimum up time

Wy generator commitment binary variable

Zg generator binary start-up variable

B. Demand Response Model

The demand response model uses an aggregation of TCLs
to provide reserve resources to the system. As detailed in
[22], aggregations of these loads are modeled as thermal
energy storage that exhibit time varying power and energy
capacities as a function of ambient temperature 7;. TCLs are
used to provide flexibility to the system by manipulating their
power consumption while ensuring that the temperatures
they are modulating remain within narrow temperature bands
(e.g., 1°C) around their temperature set points. To ensure
that the TCL temperatures stay within these bands, energy
capacity bounds [0, ST(7;)] and power capacity bounds
[P (T;), PF(T;)] are applied to the energy state S; and
power state P, of the controllable load across all time
periods as follows:

0< 8 <SH(Th) )
P7(Ti) < P.y < P(Ty) 2

Additionally, the energy state evolves as
Stror =S¢ + (Pey — Py(Ty))oT (3)

where Py, (7;) is the baseline power consumption of the load
aggregation and J7 is the length of each time step. Methods
of calculating the power and energy capacity associated with
aggregations of TCLs are described in [22]. Here, we use an
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aggregation of air conditioners, and use the power and energy
capacity profiles from [21].

C. Day-ahead Unit Commitment Model

The goal of the day-ahead unit commitment is to compute
the generation schedule P,, the controllable load schedule
P., the generator commitment binary vector wy, and the
generator start-up binary vector z,. Additionally, in this
model there are three classes of reserves: secondary reserve
from generators R, (with capacity Ry / " where up and
dn denote up-reserves and down-reserves), secondary reserve
from loads R;s (with capacity R;‘f / d"), and re-dispatch
reserve Rgq (with capacity Rgs/ dn) from generators. Both
types of secondary reserve are used to manage deviations
between forecasted and realized wind generation. The sec-
ondary generator reserve distribution vectors dgb /" and load
reserve distribution vector d'”/™" distribute wind deviations
to individual generators. The re-dispatch reserve is activated
every 15 minutes and has two functions; first, to make up
for the intra-hour wind forecast error, and second, to provide
energy to bring the loads back to their scheduled energy state.
Those two functions are accounted for by the distribution
vectors d;aup /" and df}’;p /n tespectively. The optimization
variables are denoted by the vector z;, and include:

:lqg),t’ R;zw R;Zjﬁ Rgisyfta
Rt o Ry oo Ayl i di2 i, Y,

1,dn  2,up 32,dn
dgd,t ’ dgd,t ’ dgd,t ]

Ty = [wg,m Zg,ty Pg,u Pc,ta R

The objective function of the model is defined as

F({xt}?:l) = ZtT:1(kgwg,t+ngg7t
+ Cn(Py) + Cou(RGZH™)
up/dn up/dn
+ Cl(RZ™) + Coa(RE™)),

where kg is the minimum generation cost, s, is the generator
start-up cost, and each C represents a convex, increasing cost
function.

The deterministic constraints C%! are with respect to
24-hour wind forecast P and are listed below. For t €

{1,...,T}:

Lixn, Pinjt =0 4
- Pline S APinj,t S Bine (5)
Pg_wg,t S Pg,t S P;wg,t (6)
R, <Pyt—Fyy1 < R, @)
Zg,t = Wg,t — Wq,t—1 (3
t
Z Zgq S Wgi—1, I UTH; <t 9
q=t—UTy+1
t+DT,
Z Zgg S 1—wg—1, if |[T|—DT, <t (10)
g=t+1

along with (1)—(3) and

0< Sp41 <ST(TY) (1)

where UT, and DT, are the minimum up and down time
of the generators; P, and Pg+ are the generator generation
limits; and R, and R, are the generator ramp rate limits.
The matrix A maps the power injections to the line flows; the
derivation is in [23]. The line flows are bounded by Fj;ye.
Piyj¢ is the DC net power injection of buses at time ¢ €

{1,...,T}:

Pinji = CaPyy + CwPl, — CL(Py + Poy),

where the matrices Cg, Cy,C, map the generator, wind
and load power injections to the corresponding buses. Please
refer to [23] for the details of this power flow formulation.

Additional model constraints are classified as secondary
reserve load constraints Cjg, secondary reserve generator
constraints Cgg, and generator re-dispatch constraints Cgp,
all of which are impacted by the stochastic wind forecast
error and are therefore modeled as stochastic constraints.
Details of all classes of constraints are provided in [23].
In brief, €5 and Cgs include stochastic versions of the
deterministic power flow constraints, generation and load
constraints that include the impact of secondary reserve
actions, and reserve constraints that allow generators/loads
to compensate for wind power error. Similarly, Csp includes
generation and load limits that include the impact of re-
dispatch actions, and reserve limits that allow generators to
compensate for intra-hour wind error and reset loads to their
schedules.

Finally, the optimal day-ahead dispatch can be formulated
as:

minimize, yr F ({z:};)
Gdet
P(CrsNCesNCgp)>1—c¢

subject to

where the stochastic constraints are required to be met
jointly at a probability level of 1 — e. The operator could
also set different probability levels for different constraints
at different times according to their relative importance.
The introduction of binary commitment variables in this
formulation is handled through a first-stage deterministic
optimization for commitments based on wind forecasts, and
the stochasticity of forecast errors are managed in the second
stage of the CC-OPF with reserves.

III. NUMERICAL RESULTS

In this section, the test setting first described, followed
by case study results considering the impact of controllable
loads at different risk levels.

A. Test Setting

The model described is implemented on the IEEE 57-bus
system, which is augmented with addition of four wind farms
located at buses 1, 10, 20, and 57. The data of the system can
be found in [24, case57]. In these simulations, the total air
conditioning load is a function of the ambient temperature,
which is represented by a representative summer day in
New York City. To determine the capacity of load that is
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controllable, a specific percentage (10% or 20%) of the total
air conditioning load is used.

The wind data for each wind farm is selected from the
NREL-Eastern Wind Integration Study dataset [25], located
to reasonably match the location of the temperature data.
Using three years of data, 24-hour trajectories are clustered
to identify a set of similar trajectories, with a common initial
state. The largest set contained 54 trajectories and were used
to represent the realizations of a similar forecast. The central
trajectory of the cluster was selected as the wind forecast,
and the remaining were used to estimate the distribution of
forecast errors, as described in [26]. From the forecast error
distribution, 10000 scenarios are used to generate a robust
wind error scenario set. The maximum share of wind power
(WS) in our study goes up to 30% of the total system load.

Table I gives the cost of different reserves. The upward and
downward reserves are assumed to have the same cost. The
cost of the secondary generator reserves is higher than that
of the re-dispatch reserves as the secondary reserves respond
faster. The cost of the load reserve is

Cisp =1.1-8(Tp), (13)

where S(7;) is normalized by the maximum hourly load
energy bound, and, again, the upward and downward reserves
are assumed to have the same cost.

TABLE I: Generator Reserve Costs

Generator | 1 2 3 4 5 6 7

Cys 51 101 70 98 52 103 47
Cga 31 52 40 50 29 49 30

Two approaches are used in our model: the robust ap-
proach developed by [27] and the percentile approach de-
veloped by [28]. The robust approach considers the worst
case scenario of the wind forecast, whereas the percentile
approach gives the system operators the flexibility to set
the risk level to satisfy a certain percentage of the possible
scenarios.

The problem is implemented in MATLAB and solved by
the optimization package Gurobi solver Version 6.0.4.

B. Results

The objective of this study is to analyze the impact of
flexibility in achieving significant wind integration targets.
To this end, we first summarize the overall feasibility of the
system solution with increasing wind share. These results
are summarized in Table II, where ‘I’ and ‘F’ indicate
‘Infeasible’ and ‘Feasible’ solutions, respectively.

TABLE II: Feasibility (F) and Infeasibility (I) of robust and
percentile (e = 0.05) solutions with increasing wind capacity
and 10% controllable load or no controllable load

WS [ 10% 15% 20% 25% 30%
Robust F F 1 1 1
Percentile (10% CL) F F F F F
Percentile (0% CL) F F F F 1

5 5
£ o
2 2
© g
g g
g s
o 3,

Generators
Generators.

10 i
Period

(C) (d

Fig. 1: Committed Units (red), with 15% Wind Penetration:
Robust solution (a) 10% CL, (b) 20% CL, and Probabilistic
solution (e = 0.05) (¢) 10% CL, (d) 20% CL

The results shown in Table II show that, while the robust
solution provides the most reliable allocations of genera-
tion and reserves, the demands placed on the generation
units are such that so feasible solution exists for wind
levels over 15%. Conversely, the increased flexibility of the
probabilistic approach appears sufficient to incorporate the
higher proportions of variable resources, which is enabled at
by the availability of reserves from controllable load (CL).
Interestingly, increasing levels of controllable to 20% does
not impact feasibility results for robust solutions.

Next, the unit commitment solutions are considered for
various combinations of wind penetration and controllable
load. Figure 1 shows the committed units for 15% wind
share, with both robust and probabilistic approaches, while
Fig. 2 shows the committed units for 30% wind with both
10% and 20% controllable loads. It should also be noted
that in all cases, when no controllable load is available,
all units are committed in both the robust and probabilistic
cases, regardless of wind share, and that no commitment
schedule exists that can ensure a robust solution with 30%
wind. Figures 1 and 2 show that flexibility in risk levels, and
the added flexibility from controllable loads are likely to be
important contributors in the ability to integrate the uncertain
and variable renewables.

In addition to the homogeneously robust and percentile
approaches, a hybrid approach is explored, which uses ad-
justable percentiles based on the characteristics of the wind
forecast error. Specifically, forecasting the day ahead wind
generation is always more accurate during earlier hours of
forecast, and increases as the forecast horizon increases [29].
An empirical plot of typical root mean square (RMS) forecast
error is shown in Fig. 3, and Fig. 4 shows the wind forecast
and scenarios for 20% wind share. In this case, it may be
valuable to use a more risk-averse solution method as the
forecast becomes less accurate.
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Fig. 2: Committed Units (red), with 30% Wind Penetration:
Probabilistic solution (¢ = 0.05) (a) 10% CL, (b) 20% CL

RMS Error
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0.1
0

5 10 15 20 25 Hour

Fig. 3: Wind RMS forecast error over one day.

In the following results, this ‘mixed’ approach is also
considered, wherein a probabilistic approach is used in the
early hours of the day (hours zero through nine), and robust
approach is used for the remaining hours. This selection
is based on the RMS error threshold of 0.7, but could be
customized to the operator preferences and specific forecast
characteristics. In Fig. 5 the upward and downward reserves
allocated for 15% wind share, with controllable loads, is
provided for robust, probabilistic and mixed approach, re-
spectively.

The reserve allocations shown in Fig. 5 show that while
the load reserves are fairly similar across risk-levels, the

0 5 10 15 20 25

Fig. 4: Aggregated wind power forecast (blue) and scenarios
(grey).
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Fig. 6: Generator Reserve Allocations (without ramp limits),
for a single generator

generator reserve requirements in the robust approach are
significantly more than in the probabilistic solution. Invoking
a robust approach for periods of highest uncertainty also
exhibits this significant burden on the generators. In order to
understand the infeasibility of the robust approach at higher
levels of wind, Fig. 6 presents the reserve allocations for
robust and probabilistic approaches with 30% wind, for a
single bus. It is important to note that for this specific figure
only, there are no ramp constraints in the model.
Examination of Fig. 6 illustrates the primary reason for
infeasibility in robust solutions, where the dispatch point of
the generator is indicated by the marker, and error bars pro-
vide up/down reserve allocations. Figure 6a shows a higher
generator dispatch point, and greater demand for up/down
reserves. Specifically, the downward reserves require the
generator to immediately ramp down to zero output during
many hours of the horizon. Inclusion of ramp limits in
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Fig. 7: Total System Generation and Reserve Allocations
(with ramp limits)

the constraint set of the optimization immediately creates
infeasibilities in the solution. Conversely, this phenomenon
very occasionally appears in the percentile approach from
a lower dispatch point. Including ramp limits produces the
system-wide reserve allocations shown in Fig. 7 which
shows, not surprisingly, that greater reserves are allocated
under the robust constraints, but the up/down reserves are
now feasible in all cases.

In addition to the feasibility of different levels of wind
share, the system cost of executing these solutions is an
important metric for comparison. These results, shown in
Fig. 8 illustrate that the increase in cost from 95% to
the robust case (100%) is significant, and relatively large
compared to that from 85% to 90% to 95%. The marginal
cost of reliability is increasing as the solution approaches
robustness, and the rate of this increases for higher levels of
uncertainty.
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Fig. 8: Cost Comparison for 10% and 15% share of wind
power.

IV. CONCLUDING REMARKS

This paper explored the effect of system flexibility,
in terms of controllable loads and different risk levels,
on the integration of significant wind resources within
a chance-constrained unit commitment framework. Results
have shown that the availability of reserves from controllable
loads is effective in enabling higher wind integration levels,
but that increasing controllable loads to a higher percentage
of total load does not provide further benefits. This is a result
of the type of loads in this study — the thermostatically
controlled loads are realistically modeled with storage-like
characteristics. The energy used from controllable loads
for reserves must be returned to the system during the
subsequent time period, thereby limiting the usefulness of
additional reserves of this type. This finding leads to the
conclusion that there is a need for responsive demand sources
with different characteristics or costs, in addition to the
controllable loads included in this study.

In addition, results show that the advantage of total relia-
bility from robust solutions may not be synergistic with the
societal goal of integrating significant uncertain renewable
resources in the existing power system, due to its heavy
burden on controllable generation. A more flexible solution,
such as that provided by the chance-constrained formulation,
can provide a middle ground between the deterministic-
equivalent solution and the overly conservative robust so-
lution. In addition to operational burden, the additional cost
of robust solutions is significant over probabilistic solutions,
even with high probability on the constraints.

While this simulation study has shown some interesting
comparisons, and highlighted the importance of various
classes of flexibility to wind integration, it also requires
additional work to provide practical answers. Specifically,
the controllable loads modeled here are a deterministic
function of ambient temperature. It is widely acknowledged
that demand response is not a deterministic resource [30].
Given the importance of this resource in the results presented
here, it is clearly important to introduce uncertainty into the
load side of this model, as was done in [19], [20], [31].
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Also other classes of controllable loads will be explored in
future explorations within this framework. Finally, the results
presented here are specific to the 57-bus system. While many
of these findings are likely universal, the usefulness of a unit
commitment model is limited if it is not scalable to networks
of practical size. Therefore, decomposition methods will be
explored to allow the application to large networks.
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