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Abstract—The effective integration of significant levels of
intermittent renewable resources in power system operations
will be enabled by increased participation of demand-side re-
sources. In this work, the use of these demand-side resources for
balancing reserves is examined in the context of solutions with
varying degrees of robustness. The objective is a simulation-
based analysis of the impact of requiring robust versus non-
robust solutions, the latter in the form of chance-constrained
solutions. We use a stochastic optimal power flow formulation
that leverages various classes of reserves, from both generation
and responsive demand, to manage considerable uncertainty
in renewable generation. Case studies with a 30-bus system
illustrate that reserve allocations under the robust formulation,
though reliable, may cause undue stress to the system that could
render the dispatch implementation infeasible. Conversely,
the flexibility introduced in a chance-constrained formulation,
even at risk-averse probability levels, produces more realistic
allocations of generation and reserves, and can be adjusted to
provide full robustness at critical, or highly uncertain, periods
in the planning horizon. This flexibility is advantageous to the
system and customizable by the operator.

Keywords-renewable energy, chance constraints, responsive
demand, optimal power flow

I. INTRODUCTION

The undeniable benefits of renewable energy sources are

inspiring increasing investment in these technologies. In

conjunction with the environmental and economic benefits

of renewable energy, the most common renewable sources,

such as wind and solar, also increase uncertainty in power

system operation and planning. In answer to increasing un-

certainty, the development of stochastic methods for system

operations has been an active area of research. Stochastic

methods for power system operations are being developed

for security constrained unit commitment (SCUC), and the

optimal power flow problem (OPF), both of which must be

updated to account for uncertainty.

The approaches taken to both of these applications can

be broadly categorized into three classes: scenario-based

stochastic programming, robust optimization methods, and
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probabilistic optimization. Scenario-based stochastic pro-

gramming approaches have been widely used for both UC

and OPF, wherein the decision maker determines the set

of possible scenarios, and the solution to the optimiza-

tion model will provide a minimum expected cost solution

based on probability weighted scenarios, for example [1]–

[3]. The two primary challenges of stochastic programming

methods are 1) the implicit assumption that all credible

future scenarios are included, and 2) the computational

challenge of the optimization algorithm with a reasonable

set of scenarios. In answer to these challenges, and in

line with traditional requirement for reliability at all costs,

robust optimization methods have been gaining popularity.

Robust optimization methods are designed to provide so-

lutions that are cost minimizing under the worst possible

future outcome, where uncertainty is often characterized by

assumed underlying distributions [4], [5] that may be non-

stationary over a rolling horizon [6]. Under the assumption

that future uncertainty is well-represented by the underlying

distributional assumptions, robust methods provide secure

solutions, with computational tractability. However, these

solutions will provide an upper bound on solution cost that

may be exceedingly restrictive in their use of renewable re-

sources [7]. A compromise between stochastic programming

and robust methods is probabilistic (chance-constrained)

optimization, which allows constraint violation with very

low probability. The advantage of this method is greater

flexibility in solutions, allowing more or less “robustness”

across space and time according to the needs or knowledge

of the system operator [8]–[12]. The primary goal of all

of these methods is the most cost effective and reliable

allocation of available units, generation, and reserves.

The current level of wind generation in the US power

system is such that the uncertainty introduced can be man-

aged via ramping and reserves provided by other generators

within the system. At greater levels of wind penetration,

these reserves may be unavailable or not economically

viable, and the industry is actively investigating alternative

strategies to ensure reliability [13]–[15]. The most daunting

challenges of the transformation of the power system arise

from the timescale for implementation, and the prohibitive

cost of solutions like additional fast-ramping generation or
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grid-scale storage. The promise of demand-side resources

in this arena lies in the spatially widespread availability,

rapid response, and lower cost of using resources that

already exist in the system [16]. However, the challenge

of responsive demand arises from the need to understand,

manage, and incent a very large number of resources to

participate effectively toward serving the objective of the

power system [17]. The inclusion of responsive demand

in the operational models such as SCUC and OPF, will

allow endogenous determination of the best use of these,

and other, reserve resources to maintain system reliability,

make effective use of available renewables, and keep system

costs within reasonable bounds.

This work builds on the approach of [11], which uses

a chance-constrained formulation to determine reserve allo-

cations among generators and responsive loads, accounting

for uncertainty in wind and responsive demand. The model

described in [11] is augmented here with significant wind

capacity over multiple wind farms, and a realistic forecast

model featuring increasing forecast error over the planning

horizon. Additionally, we explore the impact of varying the

risk-level of the probabilistic constraints to require more

robust solutions when uncertainty is significant, as described

in [10]. Previous work has not specifically considered the use

of customized risk levels to manage critical time periods,

nor the trade-off between robustness and feasibility. Within

this framework, we conduct a simulation-based analysis to

compare the solutions obtained using both the robust and the

chance-constrained approaches applied to a 30-bus system.

In Section II we describe the formulation of the model. In

Section III, the numerical results are presented in the context

of the test cases, and concluding remarks are in included

Section IV.

II. MODEL FORMULATION

The framework used here includes thermostatically con-

trolled loads (TCLs) as a reserve resource in an optimal

power flow model, following the approach described in [11].

Loads and generators provide secondary reserves to adjust

for errors in the wind generation forecast, and generators are

re-dispatched every 15 minutes to manage the energy state of

the loads. The model described in [11] is implemented with

the following modifications: 1) a deterministic temperature

profile is used so that load-based reserve capacities are cer-

tain; 2) the generation and load schedule are functions of the

expected variability of wind generation at high penetration

levels (specifically, through the inclusion of four wind farms

in a 30-bus network); and 3) the hour-to-hour coupling

constraints formulated in [11] are eliminated because they

are conservative and removing them reduces computational

effort. For completeness, we provide a very generalized

description of the model below, and the reader is directed

to [11] for the detailed formulation.

A. Nomenclature

Cdet deterministic constraints on generators, flows, loads,

and storage

CGD probabilistic constraints associated with the re-

dispatch reserves from generators

CGS probabilistic constraints associated with the sec-

ondary reserves from generators

CLS probabilistic constraints associated with the sec-

ondary reserves from controllable loads

Cload
dyn probabilistic dynamic controllable load constraints

ε constraint violation probability

PC(Tt) controllable load power upper bound vector in

period t at temperature T
S(Tt) controllable load energy state upper bound vector in

period t at temperature T
PC(Tt) controllable load power lower bound vector in

period t at temperature T
Cn cost function of the generators

CGD cost function of the re-dispatch reserves from gen-

erators

CGS cost function of the secondary reserves from gener-

ators

CLS cost function of the secondary reserves from con-

trollable loads

d
1,up/dn
GD,t generator upward/downward re-dispatch reserve

distribution vector for wind forecast error in period

t
d
2,up/dn
GD,t generator upward/downward re-dispatch reserve

distribution vector for restoring controllable load

energy state in period t

d
up/dn
GS,t generator upward/downward secondary reserve dis-

tribution vector in period t

d
up/dn
LS,t controllable load upward/downward secondary re-

serve distribution vector in period t
PB(Tt) controllable load baseline power vector in period t

at temperature T
PC,t controllable load power set point vector in period t
PG,t generator generation vector in period t

R
up/dn
GD,t generator upward/downward re-dispatch reserve ca-

pacity vector in period t

R
up/dn
GS,t generator upward/downward secondary reserve ca-

pacity vector in period t
RLS,t actual controllable load secondary reserve vector in

period t

R
up/dn
LS,t controllable load upward/downward secondary re-

serve capacity vector in period t
St controllable load energy state vector

B. Demand Response Model

The demand response model exploits the potential of

TCLs, such as air conditioners (ACs), to provide ancillary

services to balance generation and demand. Aggregations of

TCLs are modeled as time-varying thermal energy storage
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devices [18] and their power consumption PC,t is controlled

externally by a load aggregator, where t is the time index.

Control actions are assumed to be non-disruptive [17],

specifically all conditioned spaces stay within a narrow

(∼ 1◦C) temperature range around their temperature set

point. A baseline PB(Tt) is used to represent the power

consumption of an aggregation of TCLs under its own

internal control, and it is a function of ambient temperature

Tt. External control influences the aggregation’s thermal

energy state St as follows:

St+Δτ = St + (PC,t − PB(Tt))Δτ (1)

0 ≤ St ≤ S(Tt), (2)

PC(Tt) ≤ PC,t ≤ PC(Tt), (3)

where Δτ is the time step. The power capacity

[PC(Tt), PC(Tt)] represents the range of real time power

output from the load aggregation. The energy capacity

[0, S(Tt)] represents the range of its energy state. Both

ranges are bounded and calculated with the method de-

scribed in [18].

C. Day-ahead Optimal Dispatch Model

The linearized power flow model (usually referred to as

the DC power flow model) is used to obtain the optimal dis-

patch. The system has two classes of reserves: 1) secondary

frequency control from generators and loads denoted RGS

and RLS , respectively, and 2) intra-hour re-dispatch from

the generators, denoted RGD.

Following [8], [9], let dGS and dLS be the generator

and load secondary frequency control “distribution vectors,”

which distribute the wind forecast error to different genera-

tion and load units. Wind forecast errors are compensated for

by secondary frequency control, and re-dispatch is activated

every 15 minutes to 1) compensate the intra-hour wind

forecast error, which is managed by a distribution vector

d1GD, and 2) restore the energy state of the TCLs, which

is managed by a distribution vector d2GD. The optimization

model decides the day-ahead dispatch for the following

decision variables:

xt = [PG,t, PC,t, R
up
GS,t, R

dn
GS,t, R

up
LS,t, R

dn
LS,t, R

up
GD,t, R

dn
GD,t,

dupGS,t, d
dn
GS,t, d

up
LS,t, d

dn
LS,t, d

1,up
GD,t, d

1,dn
GD,t, d

2,up
GD,t, d

2,dn
GD,t],

where the up and dn superscripts represent the upward

and downward reserve capacity from generators and loads

to account for under- and over-forecasting of wind power.

The operating time horizon is discretized into T = 24
time intervals, each having the length Δτ = 1 hour, and

represented by the indices t = 1, . . . , T . The operational

cost is then defined as:

F ({xt}Tt=1) =

T∑

t=1

Cn(PG,t) + CGS(R
up/dn
GS,t )

+ CLS(R
up/dn
LS,t ) + CGD(R

up/dn
GD,t )

where each C represents a cost function. The system con-

straints include the usual deterministic generation limits,

power flow, and power balance constraints, denoted Cdet,

in addition to (1)-(3), probabilistic constraints associated

with the secondary reserves and re-dispatch reserves denoted

CLS , CGS , and CGD (with details given in [11]), and energy

constraints that check the energy state at the end of the first

and last 15 minute-intervals within each hour [11]:

0 ≤St + (PC,t +RLS,t − PB(Tt))
Δτ

4
≤ S(Tt), (4)

0 ≤St + (PC,t − PB(Tt))
3Δτ

4
(5)

+ (PC,t +RLS,t − PB(Tt))
Δτ

4
≤ S(Tt),

0 ≤St + (PC,t − PB(Tt))
3Δτ

4
(6)

+ (PC,t +RLS,t − PB(Tt))
Δτ

4
≤ S(Tt+1).

for t = 1, . . . , T , where RLS,t is the actual controllable load

secondary reserves deployed. We denote (4)-(6) as Cload
dyn .

Finally, the optimal day-ahead dispatch is:

minimize{xt}T
t=1

F
(
{xt}Tt=1

)

subject to Cdet

P
(
CLS ∩ CGS ∩ CGD ∩ Cload

dyn

)
≥ 1− ε

where the stochastic constraints are required to meet the

specified probability level 1 − ε jointly. It is also possible

to write individual chance constraints, where each stochastic

constraint i is required to meet a specified probability level

1 − εi individually. In the latter case, different εi can be

selected for each constraints allowing critical constraints or

time periods to be managed in a robust way, with increased

flexibility elsewhere.

D. Representing Wind Uncertainty

One of the main challenges in integrating weather-

dependent sources of power, such as wind, is the variable

and intermittent nature of the power source. For example, in

the particular case of wind generation, the complex behavior

of this resource is exacerbated by non-linear interactions

between the turbines and highly variable wind speeds, which

in turn create significant technical difficulties in providing

a complete characterization of its temporal and spatial dy-

namics. As a result, improvement in wind power forecasting

accuracy is acknowledged as a critical need for a secure

and reliable operation of the power system [19]–[21]. Cur-

rent approaches addressed in the literature include weather
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prediction models [22] and stochastic process models [23]–

[25]. The interested reader is referred to [24] for a review

on existing developments in this area.

Actual forecast data is proprietary, and twenty-four hour

forecast trajectories were not available for this study. In

order to implement the stochastic model described in Section

II, wind farms were based on the NREL-Eastern Wind

Integration Study dataset [26], which provides synthetic

wind farm output data for a large number of locations across

the eastern region of the United States. For this study, four

wind farms were placed in the IEEE 30-bus network, as

shown in Table I.

Bus 1 10 20 30
Capacity (MW) 400 460 631 652

Table I: Wind Generation Capacity.

The data used for these simulations are selected to

represent 24-hour trajectories with similar wind temporal

patterns originating from a similar initial condition (wind

level). Using three years of synthetic data, clustering analysis

yielded 54 similar trajectories of data. Wind capacities were

scaled to achieve the desired penetration of wind power in

the network. A single representative trajectory was selected

to represent a daily forecast for each location, with the

remaining trajectories used to represent wind scenarios and

estimate a distribution of forecast errors, as described in [27].

Figure 1 illustrates the aggregated wind power scenarios

used in our numerical instances presented in Section III.
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Figure 1: Aggregated wind power forecast (blue) and sce-

narios (grey).

III. NUMERICAL RESULTS

In this section, the robust-scenario approach developed

by [28] and used in [9], [11] and the percentile approach of

[10] are used to compare risk-averse solutions representing

different reliability requirement levels.

A. Test Setting

The setup of the system considered in the test case is

as follows: the IEEE 30-bus system is modified to include

four wind farms located at buses 1, 10, 20, and 30 to

achieve a maximum wind penetration level corresponding

to 30% of the total system load. We used a sufficiently

large set of scenarios (�10000) to ensure the robustness of

the. The physical properties of the conventional units and

their cost of generation were modeled as in [29, case30].

The temperature profile used in this study corresponds to

an average summer day in the state of New York (see

Fig. 2, top), and it is assumed that 10% of each load in

the system is controllable. The controllable portion of the

load is modeled as an aggregation of AC units such that

at higher temperatures the AC units need to provide more

cooling and thus draw more power. The power and energy

capacity of an aggregation of AC units is shown in Fig. 2

(middle/bottom).
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Figure 2: Temperature profile (top); Power capacity and

power baseline (in MW) as a function of temperature for an

aggregation of 1000 air conditioners (middle); and energy

capacity (in MWh) as a function of temperature for an

aggregation of 1000 air conditioners.

The reserve cost functions are assumed linear in the

reserve capacity and specified in $/MW. The cost of re-

serves from generators was set as shown in Table II, where

cGS and cGD represent secondary and re-dispatch reserve

costs, respectively, and upward and downward capacity are

assumed to be equivalent in cost. The cost of secondary

reserves are set higher than the cost of re-dispatch reserves

because secondary reserves are faster responding.

The cost of load reserves is lower than both types of
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Generators 1 2 3 4 5 6
cGS 6 6.75 7 5.25 5 5
cGD 2.4 2.1 1.2 3.9 2 3.6

Table II: Generator Reserve Costs

generator reserves and time dependent, as follows:

cLS,t = 1.1− S̃(Tt), (8)

where S̃(Tt) is the energy capacity of the controllable loads

normalized by the maximum hourly load and the upward and

downward capacity are again assumed equivalent in cost.

In this analysis, three risk-averse approaches were consid-

ered to manage uncertainty introduced through wind forecast

error, including i) a robust approach where the solution seeks

to protect against all possible forecast errors, ii) percentile
approach where the model requires protection against the

90% probability level of deviations, iii) percentile-robust or

hybrid approach where robustness is required at times of

greatest uncertainty, while probabilistic protection is sought

for periods of time where errors are within a prescribed

tolerance, and therefore considered less critical. Specifically,

in i) we generate 10,000 wind forecast error scenarios

from the distributions described in Section II.D and use

the approach of [28] to formulate a probabilistically robust

problem. In ii), we use the percentile approach of [10], in

which the scenarios are ordered and the problem is solved to

ensure all scenarios within the 90th percentile are satisfied.

In iii), we use the robust approach at critical times (i.e., all

constraints corresponding to those times must be satisfied

in all 10,000 scenarios) and the percentile approach at other

times (i.e., all constraints corresponding to other times must

be satisfied for only 90% of the scenarios). In this mixed

approach, critical times are defined as those hours where

the wind forecast errors are particularly high (RMS > 0.7).

Numerical simulations were implemented in MATLAB

and the optimization problem was solved using the Gurobi

solver Version 6.0.4.

B. Results

As shown in Fig. 3, there are small differences in the

reserves provided by the controllable portion of the loads

under different reliability requirement levels. In Fig. 3,

markers represent the controllable load set point computed

with the wind power forecast, and the corresponding bars

indicate the load reserve scheduled at each period of time.

Due to limitations on the energy state of the controllable

loads and the low cost of load reserves, the system always

prefers to dispatch reserves from the loads, and nearly

universally allocates all available reserves from controllable

loads. As a result, the allocation of load-based reserves are

not particularly sensitive to variations in imposed reliability

requirements.

Figure 4 illustrates the reserve schedules at different

reliability levels. From this figure, it is clear that a robust
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Figure 3: Secondary reserves provided by loads show only

slight differences among reliability requirements.

approach requires more reserves, as the system prepares to

accommodate the maximum forecast errors at all times. A

disadvantage of the robust approach is that the solution is

also likely to stress the generating units under high wind

penetration levels. For example, Fig. 5 plots the secondary

and re-dispatch reserves of the generator at bus 23 (unit 5),

with the markers representing the power dispatch computed

with the wind power forecast, and the bars showing the

amount of reserve the unit is required to provide at each

period of time. The robust approach tends to allow drastic

variations of its power output which could lead to infeasibili-

ties when ramping is considered in the model. The percentile

and percentile-robust policies reduce these possible drastic

power-output variations; therefore, these types of approaches

could more effectively incorporate ramping in the model.

According to the reliability level, a wind power curtailment

policy could also be computed.

Finally, the re-dispatch and secondary reserves of the sys-

tem are presented in Fig. 6. In general, the robust approach

schedules larger amounts of reserves when compared to the

other approaches. An in-depth analysis of the generating

reserve requirements of each generator would assist in

analysis of the effects of each approach.
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Figure 4: Comparison of reserve allocation.
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Figure 5: Comparison of secondary and re-dispatch reserves

of unit 5, bus 23.
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Figure 6: Comparison of secondary and re-dispatch reserve

of the system.

IV. CONCLUDING REMARKS

This paper presents a simulation-based analysis com-

paring robust, percentile, and percentile-robust approaches

to explore the balance between reliability and reserve re-

quirements. While the robust approach is more risk-averse

and allocates more generating and load reserves, the so-

lution shows significant variance in reserve requirements

throughout the operating horizon, which will likely lead

to unnecessary stress for the conventional generating units

at high penetration levels of wind power. Conversely, the

percentile approach allows some reduction in reserve re-

quirements, and the percentile-robust approach could further

ensure more robust allocations at critical times. That is likely

to be a beneficial balance for the system as more flexible

policies will be needed to incorporate ramping constraints

and accommodate different importance levels at different

times of day and locations on the network.

Future directions will include the investigation of the

impact of ramping constraints in the model, as it is hy-

pothesized that some reserve allocations will result in in-

feasbilities, particularly in the robust case. In addition to

ramping, implementing unit commitment (UC) is a crucial

step to determine a cost-effective day-ahead planning of the

system. This model can be extended by incorporating the UC

approach presented in [10]. Finally, the work presented here

does not include potential curtailment of wind resources, and

this strategy is worth examining in future implementations

of the model.
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