

Data-driven Optimization Approaches for Optimal Powe Flow with Uncertain Reserves from Load Control

Yiling Zhang, Industrial & Operations EngineeringProf. Siqian Shen, Industrial & Operations EngineeringJohanna L. Mathieu, Electrical & Computer Engineering

University of Michigan, Ann Arbor

The Challenge

- Aggregations of electric loads can provide power systems reserves via load control
- But loads are stochastic...
 - We don't know the *future load* exactly
 - We don't know the *future load flexibility* exactly
- Two options:
 - Be conservative in how much load-based reserve we schedule (how it's done today)
 - Plan for *load control uncertainty* within the optimal power flow problem ...

Planning for load control uncertainty

- Stochastic optimal power flow (OPF) including...
 uncertain renewable energy production
 - uncertain load control (i.e., reserves provided by loads where feasible reserve capacities aren't known exactly)
- Chance-constrained formulation...
 - Ensure constraints with stochastic variables are not violated with certain probabilities

Outline

- Load modeling
- Problem formulation
- Solution approaches
- Computational results

Load Aggregations Modeled as Time-Varying & Uncertain Energy Storage

power

Mean power over an interval

$$P_{\min}(k) \leqslant P(k) \leqslant P_{\max}(k)$$

State of charge

 $S_{\min}(k) \leqslant S(k) \leqslant S_{\max}(k)$

[Mathieu, Kamgarpour, Lygeros, Andersson, & Callaway TPWRS 2015]

 $P_{\min}(k)$

time – 1 day

Formulation: Assumptions

- DC-OPF
- Single-period problem
- Load-based reserves should be able to provide full power capacity for 15-minutes
 - → Power capacity offered to market is a function of $P_{\min}(k), P_{\max}(k), S_{\min}(k), \text{ and } P_{\max}(k)$

Formulation: Notation

- Decision variables
 - Generator energy production, P_G
 - Generator up- and down reserve capacity, \overline{R}_G , \underline{R}_G
 - Load up- and down reserve capacity, \overline{R}_L , \underline{R}_L
 - Distribution vectors, \overline{d}_{G} , \underline{d}_{G} , \overline{d}_{L} , \underline{d}_{L}
- Random variables
 - Wind power production, \tilde{P}_W
 - Load, \tilde{P}_L
 - Maximum and minimum load, $\vec{P}_{L,} \vec{P}_{L}$

Formulation: Joint Chance Constrained OPF

Formulation: Joint Chance Constrained OPF

Expanding the chance constraints...

$$\begin{split} \widetilde{A}x \geq \widetilde{b} &= \{\underline{P}_G \leq P_G + R_G \leq \overline{P}_G, \\ & \underbrace{\widetilde{P}_L} \leq \widetilde{P}_L + R_L \leq \widetilde{\overline{P}}_L, \\ & -\underline{R}_G \leq R_G \leq \overline{R}_G, \\ & -\underline{R}_L \leq R_L \leq \overline{R}_L, \\ & -P_{\text{line}} \leq B_{\text{flow}} \begin{bmatrix} 0 \\ B_{\text{bus}}^{-1} \hat{P}_{\text{inj}} \end{bmatrix} \leq P_{\text{line}} \}. \end{split}$$
Generation limits

Formulation: Individual Chance Constrained OPF

min $c^{\mathsf{T}}[1, P_G, P_G^2, \overline{R}_G, \underline{R}_G, \overline{R}_L, \underline{R}_L]$ s.t. $P_m = \sum_{i=1}^{N_W} (\widetilde{P}_{W,i} - P_{W,i}^f) - \sum_{i=1}^{N_L} (\widetilde{P}_{L,i} - P_{L,i}^f)$ $\sum_{K=1}^{N_G} \underline{d}_{G,i} + \sum_{K=1}^{N_L} \overline{d}_{L,i} = 1$ $\sum_{i=1}^{N_G} \overline{d}_{G,i} + \sum_{i=1}^{N_L} \underline{d}_{L,i} = 1$ $R_G = \overline{d}_G \max\{-P_m, 0\} - \underline{d}_G \max\{P_m, 0\}$ $R_L = \overline{d}_L \max\{P_m, 0\} - \underline{d}_L \max\{-P_m, 0\}$ $\mathbb{P}\left(\widetilde{A}_i x \ge \widetilde{b}_i\right) \ge 1 - \epsilon_i \quad i = 1, \dots, m. \quad \blacktriangleleft$ **Chance constraints** $x = [P_G, \overline{R}_G, R_G, \overline{R}_L, \underline{R}_L, \underline{d}_G, \overline{d}_G, \underline{d}_L, \overline{d}_L] \ge \mathbf{0}.$

Solution Approaches

- A1: Sample Average Approximation
 - [Luedtke and Ahmed SIAM Opt 2008]
- A2: Gaussian Approximation
 - Used by [Roald et al. PowerTech 2013] and [Bienstock et al. SIAM Review 2014] for OPF with uncertain wind
 - Used by [Li and Mathieu PowerTech 2015] for OPF with uncertain wind and load control
- A3: Scenario Approximation
 - [Calafiore and Campi TAC 2006]
 - Used by [Vrakopoulou et al. TPWRS 2013] for OPF with uncertain wind
 - A variant based on [Margellos et al. TAC 2014] used by [Vrakopoulou et al. HICSS 2014] for OPF with uncertain wind and load control
- A4: Distributionally Robust Optimization
 - [Delage and Ye OR 2010]

A1: Sample Average Approximation

• Reformulate individual chance constraints as

$$A_i^s x \ge b_i^s - M y_s^i \ \forall s \in \Omega, \ i = 1, \dots, m$$
$$\sum_{s \in \Omega} p^s y_s^i \le \epsilon_i, \ \forall i, \text{ and } y_s^i \in \{0, 1\} \ \forall s, \ i,$$

where M is a large number each sample s is associated with a binary logic variable y_s

• This is a mixed integer quadratic program (MIQP).

A2: Gaussian Approximation

• Re-write the individual chance constraint

$$\mathbb{P}\left(\widetilde{A}'_i \bar{x} \le b'_i\right) \ge 1 - \epsilon_i \quad i = 1, \dots, m,$$

• Assume the uncertainty is Gaussian

$$\widetilde{A}'_i \sim N(\mu_i, \Sigma_i).$$

• Then,

$$\widetilde{A}'_i \bar{x} - b'_i \sim N(\mu_i^\mathsf{T} \bar{x} - b', \bar{x}^\mathsf{T} \Sigma_i \bar{x}).$$

and the constraint can be rewritten as

$$b'_i - \mu_i^\mathsf{T} \bar{x} \ge \Phi^{-1} (1 - \epsilon_i) \sqrt{\bar{x}^\mathsf{T} \Sigma_i \bar{x}} \quad i = 1, \dots, m.$$

• This is a second-order cone program (SOCP) if the probability of constraint violation is less than 50%.

A3: Scenario Approximation

• Replace each chance constraint with

$$A_i^s x \ge b_i^s \ \forall s \in \Omega_{\rm ap}.$$

- Use at least $\frac{2}{\varepsilon} \left(\ln \left(\frac{1}{\beta} \right) + n \right)$ samples to guarantee performance [Califiore and Campi TAC 2006], where ε is the probability of constraint violation, $1-\beta$ is the confidence level, n is the dimension of x.
- This is a quadratic program (QP).

A4: Distributionally Robust Optimization

• The distributionally robust variant of the individual chance constraint is

$$\inf_{(\xi)\in\mathcal{D}} \mathbb{P}_{\xi}(\widetilde{A}_i^{\xi} x \ge \widetilde{b}_i^{\xi}) \ge 1 - \epsilon_i \ \forall i = 1, \dots, m.$$

• Given samples of the uncertainty, calculate the empirical mean μ_0 and covariance Σ_0 , and build a confidence set

$$\mathcal{D} = \left\{ f(\xi) : \begin{array}{l} \int_{\xi \in \mathcal{S}} f(\xi) d\xi = 1 \\ (\mathbb{E}[\xi] - \mu_0)^{\mathsf{T}} (\Sigma_0)^{-1} (\mathbb{E}[\xi] - \mu_0) \leq \gamma_1 \\ \mathbb{E}[(\xi - \mu_0)(\xi - \mu_0)^{\mathsf{T}}] \leq \gamma_2 \Sigma_0 \end{array} \right\}$$

A4: Distributionally Robust Optimization

- Let r_i , $\begin{bmatrix} H_i & p_i \\ p_i^{\mathsf{T}} & q_i \end{bmatrix}$, and G_i be the dual variables associated with the three constraints within the confidence set.
- The chance constraints are equivalent to

$$\begin{split} \gamma_{2} \Sigma_{0} \cdot G_{i} + 1 - r_{i} + \Sigma_{0} \cdot H_{i} + \gamma_{1} q_{i} &\leq \epsilon_{i} y_{i} \\ \begin{bmatrix} G_{i} & -p_{i} \\ -p_{i}^{\mathsf{T}} & 1 - r_{i} \end{bmatrix} \succeq \begin{bmatrix} 0 & \frac{1}{2} \bar{A}_{i}^{x} \\ \frac{1}{2} (\bar{A}_{i}^{x})^{\mathsf{T}} & y_{i} + (\bar{A}_{i}^{x})^{\mathsf{T}} \mu_{0} - \bar{b}_{i}^{x} \end{bmatrix} \\ \begin{bmatrix} G_{i} & -p_{i} \\ -p_{i}^{\mathsf{T}} & 1 - r_{i} \end{bmatrix} \succeq 0, \begin{bmatrix} H_{i} & p_{i} \\ p_{i}^{\mathsf{T}} & q_{i} \end{bmatrix} \succeq 0, y_{i} \geq 0, i = 1, \dots, m, \end{split}$$

resulting in a semi-definite program (SDP).

Computational experiments

- IEEE 9-bus test system
 - Added one wind farm to bus 6
 - All loads assumed partially controllable
 - Wind forecast uncertainty (modeled with real data)
 - Load control uncertainty assumed a function of temperature forecast uncertainty

8

Computational Results: Comparison

Desired probability of constraint violation: 5% (95% Reliability)

	Obj.			$\operatorname{Rel}(\%)$			CPU		
	avg	\min	max	avg	\min	max	avg	\min	max
SAA: Joint	1349	1328	1363	77	8	95	2	1	4
SAA: Individual	1346	1336	1357	72	46	90	5876	131	32817
Gaussian	1349	1340	1358	82	65	94	1	1	1
Scenario	1408	1371	1525	100	99	100	55	54	57
Dist. Robust	1393	1365	1458	100	98	100	5	4	6
	Cost			Performance			Computation		

Distributionally robust (empirically) requires 20 data points; the scenario approach (theoretically) requires 900!

Computational Results: Distributionally Robust Optimization

		$1 - \epsilon_i =$	95.00%	90.00%	85.00%
Individual		avg	1392.64	1369.23	1359.97
	Objective cost	\min	1352.46	1346.62	1346.62
		max	1457.81	1385.24	1372.75
	Reliability (%)	avg	99.50	97.97	94.51
		\min	91.40	91.40	83.29
		max	99.96	99.70	99.18
		avg	6.63	6.98	6.95
	CPU seconds	\min	6.13	4.73	6.27
		max	8.19	8.44	7.83

Findings & Conclusions

- Distributionally robust optimization provides a good trade-off...
 - Less computationally-intensive than scenario-based methods
 - Requires less data than scenario-based methods
 - Better performance than Gaussian approximation or sample average approximation
- ...but the semidefinite program doesn't scale very well to larger systems.
- Next steps: more realistic problem formulation, development of scalable approximations.

THANK YOU! QUESTIONS?

Contact: Johanna Mathieu jlmath@umich.edu

This work supported by NSF Grant #CCF-1442495 (CyberSEES).