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The Challenge
• Aggregations of electric loads can provide power 

systems reserves via load control
• But loads are stochastic…
– We don’t know the future load exactly
– We don’t know the future load flexibility exactly

• Two options:
– Be conservative in how much load-based reserve we 

schedule (how it’s done today)
– Plan for load control uncertainty within the optimal 

power flow problem …
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Planning for load control uncertainty

• Stochastic optimal power flow (OPF) including…
– uncertain renewable energy production
– uncertain load control (i.e., reserves provided by 

loads where feasible reserve capacities aren’t known 
exactly)

• Chance-constrained formulation…
– Ensure constraints with stochastic variables are not 

violated with certain probabilities
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Outline

• Load modeling
• Problem formulation
• Solution approaches
• Computational results
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Load Aggregations Modeled as Time-Varying 
& Uncertain Energy Storage

Mean power over an interval
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Physikstrasse 3, 8092 Zürich (email: koch@eeh.ee.ethz.ch).
D.S. Callaway is with the Energy and Resources Group at the University

of California at Berkeley, 310 Barrows Hall, Berkeley, CA 94720-3050 USA
(email: dcal@berkeley.edu).
J.L. Mathieu and D.S. Callaway acknowledge financial support from

PSERC’s Future Grid Initiative, and S. Koch acknowledges financial support
from swisselectric research for the project Local Load Management.

[Mathieu, Kamgarpour, Lygeros, Andersson, & Callaway TPWRS 2015] 5



Formulation: Assumptions

• DC-OPF
• Single-period problem
• Load-based reserves should be able to provide 

full power capacity for 15-minutes
à Power capacity offered to market is a function of 
Pmin(k), Pmax(k), Smin(k), and Pmax(k)
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Formulation: Notation

7

• Decision variables
– Generator energy production, PG
– Generator up- and down reserve capacity, RG, RG
– Load up- and down reserve capacity, RL, RL
– Distribution vectors, dG, dG, dL, dL

• Random variables
– Wind power production, PW
– Load, PL
– Maximum and minimum load, PL, PL
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Formulation: 
Joint Chance Constrained OPFJoint and Individual CC-OPF Models
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Joint and Individual CC-OPF Models

Constraints inside (7)

e
Ax � e
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e
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Formulation: 
Joint Chance Constrained OPF

9

Expanding the chance constraints…

Generation limits

Load limits

Reserve limits

DC Power Flow



Joint and Individual CC-OPF Models
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Formulation: 
Individual Chance Constrained OPF
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Joint and Individual CC-OPF Models

Constraints inside (7)
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Solution Approaches 
• A1: Sample Average Approximation

– [Luedtke and Ahmed SIAM Opt 2008]
• A2: Gaussian Approximation

– Used by [Roald et al. PowerTech 2013] and [Bienstock et al. 
SIAM Review 2014] for OPF with uncertain wind

– Used by [Li and Mathieu PowerTech 2015] for OPF with 
uncertain wind and load control

• A3: Scenario Approximation
– [Calafiore and Campi TAC 2006] 
– Used by [Vrakopoulou et al. TPWRS 2013] for OPF with 

uncertain wind
– A variant based on [Margellos et al. TAC 2014] used by 

[Vrakopoulou et al. HICSS 2014] for OPF with uncertain wind 
and load control

• A4: Distributionally Robust Optimization
– [Delage and Ye OR 2010]
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A1: Sample Average Approximation

12

• Reformulate individual chance constraints as

where M is a large number each sample s is 
associated with a binary logic variable ys

• This is a mixed integer quadratic program (MIQP). 

Solution Approaches: Mixed-Integer Linear
programming (MILP) Approach (A1)

Known as Sample Average Approximation (SAA) approach

Reformulate individual chance constraints (10)

P
⇣
e
Aix � e

bi

⌘
� 1� ✏i i = 1, . . . ,m as

A

s
ix � b

s
i �My

i
s 8s 2 ⌦, i = 1, . . . ,m (11)

X
s2⌦

p

s
y

i
s  ✏i, 8i, and y

i
s 2 {0, 1} 8s, i, (12)

where M is a large scalar coe�cient.

Associate each s 2 ⌦ with a binary logic variable y

i
s such that

y

i
s = 0 indicates that As

ix � b

s
i .

y

i
s = 1 indicates that As

ix < b

s
i .
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A2: Gaussian Approximation

13

• Re-write the individual chance constraint

• Assume the uncertainty is Gaussian

• Then,

and the constraint can be rewritten as 

• This is a second-order cone program (SOCP) if the 
probability of constraint violation is less than 50%.

Solution Approaches: Gaussian Approximation
Approach (A2)

Consider an equivalent of individual chance constraints (10)

P
⇣
e
Aix � e

bi

⌘
� 1� ✏i i = 1, . . . ,m

P
⇣
e
A

0
ix̄  b

0
i

⌘
� 1� ✏i i = 1, . . . ,m, (13)

Assume the uncertainty is Gaussian distributed:

e
A

0
i ⇠ N(µi,⌃i).

Then,
e
A

0
ix̄� b

0
i ⇠ N(µT

i x̄� b

0
, x̄

T⌃ix̄).

We rewrite (13) as

b

0
i � µ

T
i x̄ � ��1(1� ✏i)

p
x̄

T⌃ix̄ i = 1, . . . ,m. (14)

The above are second-order cone constraints if ��1(1� ✏i) � 0, i.e.,
1� ✏i � 0.5.
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• Replace each chance constraint with

• Use at least samples to guarantee 
performance [Califiore and Campi TAC 2006], 
where ε is the probability of constraint 
violation, 1-β is the confidence level, n is the 
dimension of x.

• This is a quadratic program (QP). 

A3: Scenario Approximation

Solution Approaches: Scenario Approximation
Approach (A3)

Replace each chance constraint in (10)

P
⇣
e
Aix � e

bi

⌘
� 1� ✏i i = 1, . . . ,m with

A

s
ix � b

s
i 8s 2 ⌦

ap

. (15)

Both A1 and A2 require full distributional knowledge, while A3 requires
large sample sizes and significant computation.
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• The distributionally robust variant of the 
individual chance constraint is

• Given samples of the uncertainty, calculate 
the empirical mean µ0 and covariance Σ0, and 
build a confidence set

A4: Distributionally Robust 
Optimization

Solution Approaches: Distributionally Robust
Optimization Approach (A4)

The DR variant of (10):

inf
f(⇠)2D

P
⇠

( eA⇠

i

x � eb⇠
i

) � 1� ✏
i

8i = 1, . . . ,m. (16)

Given samples {⇠i}N
i=1 of ⇠, we first calculate the empirical mean and

covariance matrix as µ0 = 1
N

P
N

i=1 ⇠
i and ⌃0 = 1

N

P
N

i=1(⇠ � µi

0)(⇠ � µi

0)
T, and
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D =

8
><

>:
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R
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T(⌃0)

�1(E[⇠]� µ0)  �1

E[(⇠ � µ0)(⇠ � µ0)
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9
>=

>;
.
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• Let be the dual variables 
associated with the three constraints within 
the confidence set.

• The chance constraints are equivalent to

resulting in a semi-definite program (SDP).

A4: Distributionally Robust 
Optimization

Solution Approaches: Distributionally Robust
Optimization Approach (A4)

(Duality theory) Let r
i

,


H

i

p
i

pT
i

q
i

�
, and G

i

be the dual variables associated

with the three constraints in the above confidence set D, respectively. The
individual chance constraints (16) are equivalent to

�2⌃0 ·Gi

+ 1� r
i

+ ⌃0 ·Hi

+ �1qi  ✏
i

y
i

(17)

G

i

�p
i

�pT
i

1� r
i

�
⌫


0 1

2 Ā
x

i

1
2 (Ā

x

i

)T y
i

+ (Āx

i

)Tµ0 � b̄x
i

�
(18)


G

i

�p
i

�pT
i

1� r
i

�
⌫ 0,


H

i

p
i

pT
i

q
i

�
⌫ 0, y

i

� 0, i = 1, . . . ,m, (19)

where operator “·” in constraint (17) represents Frobenius inner product of two
matrices (i.e., A ·B = tr(ATB)). This is a semi-definite program and can be
solved by commercial solvers.

Importantly, note that the above approaches for bounding the unknown f(⇠)
are general and allow the uncertainty ⇠ to be time-varying, correlated, and
endogenous.
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Optimization Approach (A4)

(Duality theory) Let r
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with the three constraints in the above confidence set D, respectively. The
individual chance constraints (16) are equivalent to
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where operator “·” in constraint (17) represents Frobenius inner product of two
matrices (i.e., A ·B = tr(ATB)). This is a semi-definite program and can be
solved by commercial solvers.

Importantly, note that the above approaches for bounding the unknown f(⇠)
are general and allow the uncertainty ⇠ to be time-varying, correlated, and
endogenous.
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Computational experiments

• IEEE 9-bus test system
– Added one wind farm to bus 6
– All loads assumed partially controllable
– Wind forecast uncertainty (modeled with real data)
– Load control uncertainty assumed a function of 

temperature forecast uncertainty

17



Computational Results: Comparison
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Computational Results: IEEE 9-Bus System

Table : Results for IEEE 9-Bus system with 1� ✏i = 95%

Obj. Rel(%) CPU
avg min max avg min max avg min max

A1 J-CC-OPF 1349 1328 1363 77 8 95 2 1 4
I-CC-OPF 1346 1336 1357 72 46 90 5876 131 32817

A2 I-CC-OPF 1349 1340 1358 82 65 94 1 1 1
A3 I-CC-OPF 1408 1371 1525 100 99 100 55 54 57
A4 I-CC-OPF 1393 1365 1458 100 98 100 5 4 6
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Cost Performance Computation

Distributionally robust (empirically) requires 20 data points;
the scenario approach (theoretically) requires 900!

Desired probability of constraint violation: 5% (95% Reliability)

SAA: Joint
SAA: Individual 
Gaussian
Scenario
Dist. Robust



Computational Results:
Distributionally Robust Optimization 
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Computational Results: IEEE 9-Bus System

Table : Results of I-CC-OPF solved by the DR approach A4

1� ✏i = 95.00% 90.00% 85.00%
avg 1392.64 1369.23 1359.97

Objective cost min 1352.46 1346.62 1346.62
max 1457.81 1385.24 1372.75
avg 99.50 97.97 94.51

Individual Reliability (%) min 91.40 91.40 83.29
max 99.96 99.70 99.18
avg 6.63 6.98 6.95

CPU seconds min 6.13 4.73 6.27
max 8.19 8.44 7.83
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Findings & Conclusions
• Distributionally robust optimization provides a 

good trade-off…
– Less computationally-intensive than scenario-based 

methods
– Requires less data than scenario-based methods
– Better performance than Gaussian approximation or 

sample average approximation 

• …but the semidefinite program doesn’t scale very 
well to larger systems.

• Next steps: more realistic problem formulation, 
development of scalable approximations.
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THANK YOU! QUESTIONS?

Contact: Johanna Mathieu 
jlmath@umich.edu
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