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The	Challenge	
•  Aggrega0ons	of	electric	loads	can	provide	power	
systems	reserves	via	load	control	

•  But	loads	are	stochas0c…	
– We	don’t	know	the	future	load	exactly	
– We	don’t	know	the	future	load	flexibility	exactly	
	

•  Two	op0ons:	
–  Be	conserva0ve	in	how	much	load-based	reserve	we	
schedule	(how	it’s	done	today)	

–  Plan	for	load	control	uncertainty	within	the	op0mal	
power	flow	problem	…	
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Planning	for	load	control	uncertainty	
•  Stochas0c	op0mal	power	flow	(OPF)	including…	
– uncertain	renewable	energy	produc0on	
– uncertain	load	control	(i.e.,	reserves	provided	by	
loads	where	feasible	reserve	capaci0es	aren’t	
known	exactly)	

•  Chance-constrained	formula0on…	
– Ensure	constraints	with	stochas0c	variables	are	not	
violated	with	certain	probabili5es	

3	



Outline	

•  Load	modeling	
•  Problem	formula0on	
•  Solu0on	approaches	
•  Computa0onal	results	
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Load	Aggrega0ons	Modeled	as	Time-Varying	
&	Uncertain	Energy	Storage	

Mean	power	over	an	interval	
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Physikstrasse 3, 8092 Zürich (email: koch@eeh.ee.ethz.ch).
D.S. Callaway is with the Energy and Resources Group at the University

of California at Berkeley, 310 Barrows Hall, Berkeley, CA 94720-3050 USA
(email: dcal@berkeley.edu).
J.L. Mathieu and D.S. Callaway acknowledge financial support from

PSERC’s Future Grid Initiative, and S. Koch acknowledges financial support
from swisselectric research for the project Local Load Management.

IEEE TRANSACTIONS ON POWER SYSTEMS 1

State Estimation and Control of Electric Loads to
Manage Real-Time Energy Imbalance
Johanna L. Mathieu, Student Member, IEEE, Stephan Koch, Student Member, IEEE,

Duncan S. Callaway, Member, IEEE

θi(k + 1) = aiθi(k) + (1− ai)(θa,i −mi(k)θg,i) + ϵi(k)

mi(k + 1) =

⎧

⎪

⎨

⎪

⎩

0, θi(k + 1) < θset,i − δi/2

1, θi(k + 1) > θset,i + δi/2

mi(k), otherwise

θset + δ/2

θset − δ/2

ugoal(k) =
∑

j uj(k) = K(Pdesired(k+1)−Ppredicted(k+1))

S(k + 1) = S(k) + (P (k)− Pbaseline(k))∆T

Pmin(k) ! P (k) ! Pmax(k)

Smin(k) ! S(k) ! Smax(k)

J.L. Mathieu is with the Department of Mechanical Engineering at the
University of California at Berkeley, 4th Floor Collaboratory, Sutardja Dai
Hall, Berkeley, CA 94720-1740 USA (email: jmathieu@berkeley.edu).
S. Koch is with the Power Systems Laboratory at ETH Zürich, ETL G 29,
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Formula0on:	Assump0ons	
•  DC-OPF	
•  Mul0-period	problem	

–  [Vrakopoulou,	Mathieu,	&	Andersson	HICSS	2014]	
–  [Li	&	Mathieu	PowerTech	2015]	
–  Energy	dynamics	included	as	constraint	
–  Generator-based	reserves	manage	the	energy	state	of	flexible	loads	
	

•  Single-period	problem	
–  [Zhang,	Shen,	&	Mathieu	ACC	2015]	
–  Load-based	reserves	should	be	able	to	provide	full	power	capacity	
for	15-minutes		
	à	Power	capacity	offered	to	market	is	a	func0on	of		
   Pmin(k),  Pmax(k), Smin(k), 	and	Pmax(k)	
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Formula0on:	Nota0on	

7	

•  Decision	variables	
– Generator	energy	produc0on,	PG 
– Generator	up-	and	down	reserve	capacity,	RG, RG 
– Load	up-	and	down	reserve	capacity,	RL, RL	
– Distribu0on	vectors,	dG, dG, dL, dL	

•  Random	variables	
– Wind	power	produc0on,	PW 
– Load,	PL 
– Maximum	and	minimum	load,	PL, PL 
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2 SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS

Section II, we describe CC-OPF models with joint and indi-
vidual chance constraints, which are solved via mixed-integer
linear programming reformulations. Section III considers an
equivalent conic program of the individual CC-OPF model by
assuming Gaussian distributed uncertainty. We also approx-
imate the CC-OPF problem as a convex program. Section
IV introduces the DR optimization approach which uses the
first two moments to construct a ambiguity set of possible
distributions. Using this set, we reformulate the robust chance
constraints as equivalent conic duals and the CC-OPF problem
as a convex program. Section V describes the simulation setup
and Section VI compares the performance of the different
approaches. We summarize the paper and state future research
directions in Section VII.

II. MODELING CC-OPF VARIANTS

We consider a power system with Nline transmission lines,
N

B

buses, N
G

generators providing energy and reserves,
N

W

wind farms producing random energy, and N
L

load
aggregations consuming random energy. Additionally, load
aggregations can provide reserves via load control schemes,
but the available reserve capacity is also random. The goal
is to minimize the expected costs of producing energy and
providing generator/load reserves subject to power balance,
generator/load constraints, and line limits. In line with most
work on stochastic OPF, for example, [12], [19], [20], we
use the DC power flow approximation. Also, for ease of
exposition and results interpretation, we formulate single-
period problems, unlike [14] which considered multi-period
problems with dynamic constraints.

A. Joint and Individual CC-OPF Models
We present two types of CC-OPF models, where the risk of

undesirable outcomes is bounded i) jointly or ii) individually.
Decision variables include energy production at generators
P
G

2 RNG , generators’ up- and down-reserve capacities
R

G

, R
G

2 RNG , and loads’ up- and down-reserve capacities
R

L

2 RNL , R
L

2 RNL . The actual generator reserves
R

G

2 RNG and load reserves R
L

2 RNL depend upon
actual energy production and consumption. Following [12],
[19], we define additional decision variables d

G

, d
G

,2 RNG

and d
L

, d
L

2 RNL named “distribution vectors” to distribute
real-time supply/demand mismatch P

m

2 R to generators
and loads. The generators’ production P

G

is scheduled to
cover the difference between the sum of forecasted loads
P f
L

2 RNL and the wind forecast P f
W

2 RNW , i.e., P
G

=P
NL

i=1 P
f

L,i

�
P

NW

i=1 P f

W,i

, where P f

L,i

is the ith element of the
load forecast vector and P f

W,i

is the ith element of the wind
forecast vector. The actual wind power eP

W

, the actual load
eP
L

, and the actual minimum and maximum load [

eP
L

, eP
L

]

are random variables. Let c = [c0, c1, c2, cG, c
G

, c
L

, c
L

]

T

be the cost vector and [P
G

, P
G

] be the min/max generator
production. We formulate a joint CC-OPF model as:

[J-CC-OPF]:

min cT[1, P
G

, P 2
G

, R
G

, R
G

, R
L

, R
L

] (1)

s.t. P
m

=

NWX

i=1

(

eP
W,i

� P f

W,i

)�
NLX

i=1

(

eP
L,i

� P f

L,i

) (2)

NGX

i=1

P
G,i

=

NLX

i=1

P f

L,i

�
NWX

i=1

P f

W,i

(3)

NGX

i=1

d
G,i

+

NLX

i=1

d
L,i

= 1 (4)

NGX

i=1

d
G,i

+

NLX

i=1

d
L,i

= 1 (5)

R
G

= d
G

max{�P
m

, 0}� d
G

max{P
m

, 0} (6)
R

L

= d
L

max{P
m

, 0}� d
L

max{�P
m

, 0} (7)

P
⇣
eAx � eb

⌘
� 1� ✏ (8)

x = [P
G

, R
G

, R
G

, R
L

, R
L

, d
G

, d
G

, d
L

, d
L

] � 0, (9)

where (2) calculates the real-time supply/demand mismatch.
Constraint (3) enforces the generation power meet the differ-
ence between the forecasted wind power and the forecasted
loads. Constraints (4)–(5) normalize the distribution vectors,
and (6)–(7) compute the reserve capacity from generators
and from loads, respectively. The joint chance constraint (8)
guarantees that eAx � eb holds with 1 � ✏ probability where
eAx � eb is a set of linear constraints limiting the amounts
of power generations and reserves within the corresponding
capacities. Specifically,

eAx � eb = {P
G

 P
G

+R
G

 P
G

,

eP
L

 eP
L

+R
L

 eP
L

,

�R
G

 R
G

 R
G

,

�R
L

 R
L

 R
L

,

�Pline  Bflow


0

B�1
bus

ˆPinj

�
 Pline}, (10)

where Pinj = C
G

(P
G

+ R
G

) + C
W

eP
w

� C
L

(

eP
L

+ R
L

) 2
RNline is a vector with the net power injection each bus; ˆPinj 2
RNB�1 is the last N

B

� 1 rows of Pinj; C
G

, C
W

, and C
L

are matrices that map generators/wind farms/loads to buses;
Bflow is the flow admittance matrix; Bbus is the bus admittance
matrix; and Pline is a vector containing the line flow limits.

We consider an alternative CC-OPF model where the con-
straints in eAx � eb are guaranteed individually with pre-
specified probability levels. Consider

[I-CC-OPF]:

min (1)
s.t. (2)–(7), (9)

P
⇣
eA
i

x � eb
i

⌘
� 1� ✏

i

i = 1, . . . ,m, (11)

where m is the number of constraints in eAx � eb. We assume
that eA

i

represents the ith row of matrix eA and eb
i

is the ith entry
of vector eb. Therefore, each constraint i in (8) has exactly one
row with probability 1� ✏

i

.

Formula0on:		
Joint	Chance	Constrained	OPF	

Joint and Individual CC-OPF Models

[J-CC-OPF]:

min cT[1, P
G

, P 2
G

, R
G

, R
G

, R
L

, R
L

] (1)

s.t. P
m

=
NWX

i=1

( eP
W,i

� P f

W,i

)�
NLX

i=1

( eP
L,i

� P f

L,i

) (2)

NGX

i=1

d
G,i

+
NLX

i=1

d
L,i

= 1 (3)

NGX

i=1

d
G,i

+
NLX

i=1

d
L,i

= 1 (4)

R
G

= d
G

max{�P
m

, 0}� d
G

max{P
m

, 0} (5)

R
L

= d
L

max{P
m

, 0}� d
L

max{�P
m

, 0} (6)

P
⇣
eAx � eb

⌘
� 1� ✏ (7)

x = [P
G

, R
G

, R
G

, R
L

, R
L

, d
G

, d
G

, d
L

, d
L

] � 0. (8)
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Joint and Individual CC-OPF Models

Constraints inside (7)

e
Ax � e

b = {PG  PG +RG  PG,

e
PL  e

PL +RL  e
PL,

�RG  RG  RG,

�RL  RL  RL,

�P

line

 B

flow


0

B

�1

bus

P̂

inj

�
 P

line

}. (9)

[I-CC-OPF]:

min (1)

s.t. (2)–(6), (8)

P
⇣
e
Aix � e

bi

⌘
� 1� ✏i i = 1, . . . ,m. (10)
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Formula0on:		
Joint	Chance	Constrained	OPF	
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Expanding	the	chance	constraints…	
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Load	limits	
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DC	Power	Flow	



Joint and Individual CC-OPF Models

[J-CC-OPF]:

min cT[1, P
G

, P 2
G

, R
G

, R
G

, R
L

, R
L

] (1)

s.t. P
m

=
NWX

i=1

( eP
W,i

� P f

W,i

)�
NLX

i=1

( eP
L,i

� P f

L,i

) (2)

NGX

i=1

d
G,i

+
NLX

i=1

d
L,i

= 1 (3)

NGX

i=1

d
G,i

+
NLX

i=1

d
L,i

= 1 (4)

R
G

= d
G

max{�P
m

, 0}� d
G

max{P
m

, 0} (5)

R
L

= d
L

max{P
m

, 0}� d
L

max{�P
m

, 0} (6)

P
⇣
eAx � eb

⌘
� 1� ✏ (7)

x = [P
G

, R
G

, R
G

, R
L

, R
L

, d
G

, d
G

, d
L

, d
L

] � 0. (8)
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Joint and Individual CC-OPF Models

Constraints inside (7)

e
Ax � e

b = {PG  PG +RG  PG,

e
PL  e

PL +RL  e
PL,

�RG  RG  RG,

�RL  RL  RL,

�P

line

 B

flow


0

B

�1

bus

P̂

inj

�
 P

line

}. (9)

[I-CC-OPF]:

min (1)

s.t. (2)–(6), (8)

P
⇣
e
Aix � e

bi

⌘
� 1� ✏i i = 1, . . . ,m. (10)
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Solu0on	Approaches		
•  A1:	Sample	Average	Approxima0on	

–  [Luedtke	and	Ahmed	SIAM	Opt	2008]	
•  A2:	Gaussian	Approxima0on	

–  Used	by	[Roald	et	al.	PowerTech	2013]	and	[Bienstock	et	al.	
SIAM	Review	2014]	for	OPF	with	uncertain	wind	

–  Used	by	[Li	and	Mathieu	PowerTech	2015]	for	OPF	with	
uncertain	wind	and	load	control	

•  A3:	Scenario	Approxima0on	
–  [Calafiore	and	Campi	TAC	2006]		
–  Used	by	[Vrakopoulou	et	al.	TPWRS	2013]	for	OPF	with	
uncertain	wind	

–  A	variant	based	on	[Margellos	et	al.	TAC	2014]	used	by	
[Vrakopoulou	et	al.	HICSS	2014]	for	OPF	with	uncertain	wind	
and	load	control	

•  A4:	Distribu0onally	Robust	Op0miza0on	
–  [Delage	and	Ye	OR	2010]	
–  Used	by	[Zhang	et	al.	ACC	2015]	for	OPF	with	uncertain	wind	
and	load	control	 11	



A1:	Sample	Average	Approxima0on	

12	

•  Reformulate	individual	chance	constraints	as	

		
	where	M	is	a	large	number	and	each	sample s is	
	associated	with	a	binary	logic	variable	ys 		

•  This	is	a	mixed	integer	quadra0c	program	(MIQP).		

Solution Approaches: Mixed-Integer Linear
programming (MILP) Approach (A1)

Known as Sample Average Approximation (SAA) approach

Reformulate individual chance constraints (10)

P
⇣
e
Aix � e

bi

⌘
� 1� ✏i i = 1, . . . ,m as

A

s
ix � b

s
i �My

i
s 8s 2 ⌦, i = 1, . . . ,m (11)

X
s2⌦

p

s
y

i
s  ✏i, 8i, and y

i
s 2 {0, 1} 8s, i, (12)

where M is a large scalar coe�cient.

Associate each s 2 ⌦ with a binary logic variable y

i
s such that

y

i
s = 0 indicates that As

ix � b

s
i .

y

i
s = 1 indicates that As

ix < b

s
i .
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A2:	Gaussian	Approxima0on	

13	

•  Re-write	the	individual	chance	constraint	

•  Assume	the	uncertainty	is	Gaussian	

•  Then,	

	and	the	constraint	can	be	rewripen	as		

		
•  This	is	a	second-order	cone	program	(SOCP)	if	the	
probability	of	constraint	viola0on	is	less	than	50%.	

Solution Approaches: Gaussian Approximation
Approach (A2)

Consider an equivalent of individual chance constraints (10)

P
⇣
e
Aix � e

bi

⌘
� 1� ✏i i = 1, . . . ,m

P
⇣
e
A

0
ix̄  b

0
i

⌘
� 1� ✏i i = 1, . . . ,m, (13)

Assume the uncertainty is Gaussian distributed:

e
A

0
i ⇠ N(µi,⌃i).

Then,
e
A

0
ix̄� b

0
i ⇠ N(µT

i x̄� b

0
, x̄

T⌃ix̄).

We rewrite (13) as

b

0
i � µ

T
i x̄ � ��1(1� ✏i)

p
x̄

T⌃ix̄ i = 1, . . . ,m. (14)

The above are second-order cone constraints if ��1(1� ✏i) � 0, i.e.,
1� ✏i � 0.5.
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•  Replace	each	chance	constraint	with	

•  Use	at	least	 	 	 		 	samples	to	guarantee	
performance	[Califiore	and	Campi	TAC	2006],	
where	ε is	the	probability	of	constraint	
viola0on,	1-β is	the	confidence	level,	n	is	the	
dimension	of	x.	

•  This	is	a	quadra0c	program	(QP).	 

A3:	Scenario	Approxima0on	

Solution Approaches: Scenario Approximation
Approach (A3)

Replace each chance constraint in (10)

P
⇣
e
Aix � e

bi

⌘
� 1� ✏i i = 1, . . . ,m with

A

s
ix � b

s
i 8s 2 ⌦

ap

. (15)

Both A1 and A2 require full distributional knowledge, while A3 requires
large sample sizes and significant computation.
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•  The	distribu0onally	robust	variant	of	the	
individual	chance	constraint	is	

	
•  Given	samples	of	the	uncertainty,	calculate	
the	empirical	mean	µ0	and	covariance	Σ0,	and	
build	a	confidence	set 

A4:	Distribu0onally	Robust	
Op0miza0on	

Solution Approaches: Distributionally Robust
Optimization Approach (A4)

The DR variant of (10):

inf
f(⇠)2D

P
⇠

( eA⇠

i

x � eb⇠
i

) � 1� ✏
i

8i = 1, . . . ,m. (16)

Given samples {⇠i}N
i=1 of ⇠, we first calculate the empirical mean and

covariance matrix as µ0 = 1
N

P
N

i=1 ⇠
i and ⌃0 = 1

N

P
N

i=1(⇠ � µi

0)(⇠ � µi

0)
T, and

then build a confidence set

D =

8
><

>:
f(⇠) :

R
⇠2S f(⇠)d⇠ = 1

(E[⇠]� µ0)
T(⌃0)

�1(E[⇠]� µ0)  �1

E[(⇠ � µ0)(⇠ � µ0)
T] � �2⌃0

9
>=

>;
.
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•  Let	 	 	 	 	 	be	the	dual	variables	
associated	with	the	three	constraints	within	
the	confidence	set.	

•  The	chance	constraints	are	equivalent	to	

	resul0ng	in	a	semi-definite	program	(SDP).	

A4:	Distribu0onally	Robust	
Op0miza0on	

Solution Approaches: Distributionally Robust
Optimization Approach (A4)

(Duality theory) Let r
i

,


H

i

p
i

pT
i

q
i

�
, and G

i

be the dual variables associated

with the three constraints in the above confidence set D, respectively. The
individual chance constraints (16) are equivalent to

�2⌃0 ·Gi

+ 1� r
i

+ ⌃0 ·Hi

+ �1qi  ✏
i

y
i

(17)

G

i

�p
i

�pT
i

1� r
i

�
⌫


0 1

2 Ā
x

i

1
2 (Ā

x

i

)T y
i

+ (Āx

i

)Tµ0 � b̄x
i

�
(18)


G

i

�p
i

�pT
i

1� r
i

�
⌫ 0,


H

i

p
i

pT
i

q
i

�
⌫ 0, y

i

� 0, i = 1, . . . ,m, (19)

where operator “·” in constraint (17) represents Frobenius inner product of two
matrices (i.e., A ·B = tr(ATB)). This is a semi-definite program and can be
solved by commercial solvers.

Importantly, note that the above approaches for bounding the unknown f(⇠)
are general and allow the uncertainty ⇠ to be time-varying, correlated, and
endogenous.
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Computa0onal	experiments	

•  IEEE	9-bus	test	system	
– Added	one	wind	farm	to	bus	6	
– All	loads	assumed	par0ally	controllable	
– Wind	forecast	uncertainty	(modeled	with	real	data)	
– Load	control	uncertainty	assumed	a	func0on	of	
temperature	forecast	uncertainty	

17	



avg	 min	 max	 avg	 min	 max	 avg	 min	 max	

4120	 4112	 4129	 83.46	 62.52	 92.86	 0.49	 0.27	 0.64	

4119	 4111	 4124	 81.37	 60.60	 91.92	 1981	 731	 5472	

4123	 4116	 4128	 88.70	 74.92	 95.22	 0.03	 0.02	 0.05	

4173	 4143	 4229	 99.69	 99.42	 99.88	 17.06	 16.82	 17.38	

4162	 4141	 4177	 99.63	 99.06	 99.79	 0.42	 0.37	 0.47	

Computa0onal	Results:	Comparison	

18	

Cost	 Performance	 Computa0on	

Distribu0onally	robust	(empirically)	requires	20	data	points;	
the	scenario	approach	(theore0cally)	requires	900!	

Desired	probability	of	constraint	viola0on:	5%	(95%	Reliability)	

SAA:	Joint	
SAA:	Individ.		

Gaussian	
Scenario	

Dist.	Robust	



Computa0onal	Results:	
Distribu0onally	Robust	Op0miza0on		
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8GB memory. All models are solved by CVX implemented in
Matlab with MOSEK as the optimization solver.

VI. COMPUTATIONAL RESULTS

A. Results of instances based on the IEEE 9-bus system
We compare solution time, cost objective, and reliability of

OPF solutions based on the IEEE 9-bus system. For assessing
solution reliability, we report the percentage of scenarios in
set ⌦(9), where all constraints are satisfied jointly by a certain
solution of interest.

First, we compare the results of J-CC-OPF and I-CC-OPF
by using A1, each using 20 samples randomly selected from
set ⌦(9) We perform 10 repetitions and report the average in
Table II.

TABLE II
COMPARISON OF THE RESULTS OF J-CC-OPF AND I-CC-OPF SOLVED BY

A1

1� ✏
i

= 95.00% 90.00% 85.00%
average 4120.95 4118.28 4116.55

Objective cost max 4129.91 4124.81 4120.80
min 4112.08 4111.52 4110.99

average 83.46 79.22 74.68
joint Reliability (%) max 92.86 91.27 86.85

min 62.52 60.6 58.53
average 0.49 0.92 1.49

CPU seconds max 0.64 1.28 2.12
min 0.27 0.34 0.55

average 4119.39 4115.66 4112.77
Objective cost max 4124.81 4119.23 4114.57

min 4111.52 4110.17 4109.80
average 81.369 73.5 63.98

Individual Reliability (%) max 91.92 83.96 72.08
min 60.6 54.86 53.24

average 1981.26 14117.14 7707.37
CPU seconds max 5472.34 38009.67 40080.96

min 731.60 52.70 0.83

From Table II, we observe that I-CC-OPF has lower ob-
jective cost as we can be more flexible in satisfying con-
straints individually at different risk tolerance levels compared
with satisfying them jointly. However, the cost benefit is
not obvious, and it also takes significantly longer time to
compute instances of I-CC-OPF since its MILP reformulations
have much more binary variables and constraints. For both J-
CC-OPF and I-CC-OPF, their optimal solutions can achieve
sufficiently high reliability (i.e., the “max” of Row Reliability
(%) is higher than the required 1 � ✏ in each corresponding
column.) Optimal solutions of J-CC-OPF yield much more
diverse reliability, and can perform badly when using some
20-sample selections (i.e., the “min” of Row Reliability (%)
can be much less than the required 1 � ✏.). We only observe
very few sample selections that perform undesirably among all
100 repetitions and thus the average reliability remains high
for all risk tolerance levels. Moreover, via I-CC-OPF, we have
high covariance among the individual constraints, since the
reliability for J-CC-OPF is close to that of I-CC-OPF.

Next, we present the results of I-CC-OPF obtained by using
A2, A3, and A4. We use the same randomly selected 20
samples as in A1 to derive the first and second moments that
are needed by A2 and A4; for A3, we randomly select 900,
500, 300 samples from set ⌦(9) for instances with 1 � ✏

i

=

95%, 90%, 85%, respectively. The average, minimum, and
maximum values of the objective values, reliability, and CPU
time are given in Tables III–V for each approach and each risk
tolerance level.

TABLE III
RESULTS OF I-CC-OPF SOLVED BY THE GAUSSIAN APPROXIMATION

APPROACH A2

1� ✏
i

= 95.00% 90.00% 85.00%
average 4122.96 4117.88 4114.45

Objective cost max 4128.15 4121.93 4117.73
min 4115.58 4112.13 4109.80

average 88.70 79.45 69.92
Individual Reliability (%) max 95.22 88.20 80.08

min 74.92 62.90 53.04
average 0.03 0.03 0.03

CPU seconds max 0.05 0.03 0.05
min 0.02 0.02 0.03

TABLE IV
RESULTS OF I-CC-OPF SOLVED BY THE SCENARIO APPROXIMATION

APPROACH A3

1� ✏
i

= 95.00% 90.00% 85.00%
average 4173.45 4156.17 4145.95

Objective cost max 4229.12 4224.85 4160.51
min 4143.28 4136.83 4138.05

average 99.69 99.40 99.34
Individual Reliability (%) max 99.88 99.71 99.81

min 99.42 98.82 98.89
average 17.06 3.72 1.29

CPU seconds max 17.38 3.84 1.33
min 16.82 3.60 1.26

TABLE V
RESULTS OF I-CC-OPF SOLVED BY THE DR APPROACH A4

1� ✏
i

= 95.00% 90.00% 85.00%
average 4161.91 4141.90 4133.24

Objective cost max 4177.33 4151.37 4140.76
min 4141.33 4128.44 4122.56

average 99.63 98.95 97.01
Individual Reliability (%) max 99.79 99.73 99.28

min 99.06 95.54 89.60
average 0.42 0.41 0.41

CPU seconds max 0.47 0.50 0.45
min 0.37 0.37 0.37

Comparing the results in Tables III–V, the DR approach A4
outperforms the other two in terms of the objective cost and
the reliability with respect to 10,000 samples in set ⌦(9). All
the three approaches use much shorter time for computing
I-CC-OPF compared to the exact approach A1. Approach
A3 takes the longest time among the three approaches due
to the large sample sizes it requires. Moreover, the solution
time of A3 depends on the number of samples we select,
while the solution time of the other two approaches A2 and
A4 are independent of the sample size. The objective cost
values given by optimal solutions of A4 are also averagely
lower than the ones yielded by A3. This is because A4 is
less conservative, which employs the moment information
from data and only bounds the worst case probability for any
distributions that match the moments. As expected, A3 yields
the highest cost and the highest reliability since it requires no
constraint violation for a large subset of samples in set ⌦(9)



Findings	&	Conclusions	
•  Distribu0onally	robust	op0miza0on	provides	a	
good	trade-off…	
–  Less	computa0onally-intensive	than	scenario-based	
methods	

–  Requires	less	data	than	scenario-based	methods	
–  Beper	performance	than	Gaussian	approxima0on	or	
sample	average	approxima0on		

•  …but	the	semidefinite	program	doesn’t	scale	very	
well	to	larger	systems.	

•  Next	steps:	more	realis0c	problem	formula0on,	
development	of	scalable	approxima0ons.	
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