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The Challenge

* Aggregations of electric loads can provide power
systems reserves via load control

e But loads are stochastic...

— We don’t know the future load exactly
— We don’t know the future load flexibility exactly

* Two options:

— Be conservative in how much load-based reserve we
schedule (how it’s done today)

— Plan for load control uncertainty within the optimal
power flow problem ...



Planning for load control uncertainty

e Stochastic optimal power flow (OPF) including...
— uncertain renewable energy production

— uncertain load control (i.e., reserves provided by
loads where feasible reserve capacities aren’t
known exactly)

e Chance-constrained formulation...

— Ensure constraints with stochastic variables are not
violated with certain probabilities
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Load Aggregations Modeled as Time-Varying
& Uncertain Energy Storage
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Formulation: Assumptions

* DC-OPF
 Multi-period problem
— [Vrakopoulou, Mathieu, & Andersson HICSS 2014]
— [Li & Mathieu PowerTech 2015]
— Energy dynamics included as constraint
— Generator-based reserves manage the energy state of flexible loads

* Single-period problem
— [Zhang, Shen, & Mathieu ACC 2015]

— Load-based reserves should be able to provide full power capacity
for 15-minutes

- Power capacity offered to market is a function of
P min(k)a P max(k)9 \) (k)a and P max(k)

min




Formulation: Notation

* Decision variables
— Generator energy production, P
— Generator up- and down reserve capacity, J_QG, R:
— Load up- and down reserve capacity, RL, R,
— Distribution vectors, d_, dg dL, d;

* Random variables
— Wind power production, ﬁW
— Load, ISL N
— Maximum and minimum load, }_’L, EL



Formulation:
Joint Chance Constrained OPF
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Formulation:
Joint Chance Constrained OPF

Expanding the chance constraints...
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Formulation:
Individual Chance Constrained OPF
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Solution Approaches

Al: Sample Average Approximation
— [Luedtke and Ahmed SIAM Opt 2008]

A2: Gaussian Approximation

— Used by [Roald et al. PowerTech 2013] and [Bienstock et al.
SIAM Review 2014] for OPF with uncertain wind

— Used by [Li and Mathieu PowerTech 2015] for OPF with
uncertain wind and load control
A3: Scenario Approximation
— [Calafiore and Campi TAC 2006]

— Used by [Vrakopoulou et al. TPWRS 2013] for OPF with
uncertain wind

— A variant based on [Margellos et al. TAC 2014] used by
[Vrakopoulou et al. HICSS 2014] for OPF with uncertain wind
and load control

A4: Distributionally Robust Optimization

— [Delage and Ye OR 2010]

— Used by [Zhang et al. ACC 2015] for OPF with uncertain wind
and load control



Al: Sample Average Approximation

e Reformulate individual chance constraints as

Afx >0 — My ' Vs€Q, i=1,...,m
Z EQPS?JE < €4, \vlza and y; = {071} VS? 7:7

where M is a large number and each sample s is
associated with a binary logic variable y,

* This is a mixed integer quadratic program (MIQP).



A2: Gaussian Approximation

Re-write the individual chance constraint
P(Z;a—:gb;) >1—¢ i=1,...,m,

Assume the uncertainty is Gaussian

Then,
Az —b ~ N z—b,2'%;7).
and the constraint can be rewritten as

b, — 2 >0 1 (1—€)VZT8z i=1,...,m.

This is a second-order cone program (SOCP) if the
probability of constraint violation is less than 50%.



A3: Scenario Approximation

* Replace each chance constraint with

Ajx > b7 Vs € Q.

2( (1
* Use at least E(ln(ﬁ)m) samples to guarantee
performance [Califiore and Campi TAC 2006],

where ¢ is the probability of constraint
violation, /-f is the confidence level, n is the

dimension of x.
* This is a quadratic program (QP).



A4: Distributionally Robust
Optimization

* The distributionally robust variant of the
individual chance constraint is

inf Pe(ASz>05)>1—¢ Vi=1,...,m.
f(&)eD

* Given samples of the uncertainty, calculate
the empirical mean y, and covariance %, and
build a confidence set
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A4: Distributionally Robust
Optimization

Hq; 7 .
* Let ™ lpg ];] 2nd @ibe the dual variables
associated with the three constraints within
the confidence set.

 The chance constraints are equivalent to
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resulting in a semi-definite program (SDP).



Computational experiments

* |[EEE 9-bus test system P >h|7:

— Added one wind farm to bus 6 g_l g
— All loads assumed partially controllable

— Wind forecast uncertainty (modeled with real data)

— Load control uncertainty assumed a function of
temperature forecast uncertainty



Computational Results: Comparison

Desired probability of constraint violation: 5% (95% Reliability)

SAA: Joint
SAA: Individ.
Gaussian
Scenario
Dist. Robust

Cost Performance| Computation
avg min | max | avg min | max | avg min | max
4120 | 4112 | 4129 | 83.46 | 62.52 {92.86| 0.49 | 0.27 | 0.64
4119 | 4111 | 4124 | 81.37 | 60.60 | 91.92 | 1981 | 731 | 5472
4123 | 4116 | 4128 | 88.70 | 74.92 | 95.22| 0.03 | 0.02 | 0.05
4173 | 4143 | 4229 | 99.69 | 99.42 | 99.88| 17.06 | 16.82 | 17.38
4162 | 4141 | 4177 | 99.63 | 99.06 | 99.79| 0.42 | 0.37 | 0.47

Distributionally robust (empirically) requires 20 data points;
the scenario approach (theoretically) requires 900!
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Computational Results:
Distributionally Robust Optimization

1—€ = 95.00% 90.00% 85.00%

average 4161.91 4141.90 4133.24

Objective cost max 4177.33 4151.37 4140.76

min 4141.33 4128.44 4122.56

average 99.63 98.95 97.01

Individual Reliability (%) max 99.79 99.73 99.28
min 99.06 95.54 89.60

average 0.42 0.41 0.41

CPU seconds max 0.47 0.50 0.45

min 0.37 0.37 0.37




Findings & Conclusions

* Distributionally robust optimization provides a
good trade-off...

— Less computationally-intensive than scenario-based
methods

— Requires less data than scenario-based methods
— Better performance than Gaussian approximation or
sample average approximation
e ...but the semidefinite program doesn’t scale very
well to larger systems.

* Next steps: more realistic problem formulation,
development of scalable approximations.
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