
Optimal Power Flow with 

Stochastic Reserves
Johanna Mathieu, Assistant Professor

Department of Electrical Engineering & Computer Science

Joint work with: Bowen Li, Maria Vrakopoulou, Ruiwei Jiang, 

Yiling Zhang, Siqian Shen

Supported by US National Science Foundation Grant CCF-1442495



Outline

• What are “stochastic reserves”?
• Chance–constrained optimal power flow with 

stochastic reserves
• Exploring conventional solution approaches
• Distributionally robust optimization (DRO)
• Making DRO less conservative
• Concluding remarks 

7/2/19 J. Mathieu, University of Michigan 2



Outline

• What are “stochastic reserves”?
• Chance–constrained optimal power flow with 

stochastic reserves
• Exploring conventional solution approaches
• Distributionally robust optimization (DRO)
• Making DRO less conservative
• Concluding remarks 

7/2/19 J. Mathieu, University of Michigan 3



Increased need for 
balancing reserves
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• Intermittent 
renewable energy 
generation 

• Timescales of 
seconds to hours



Loads (and Distributed 

Storage) Providing Reserves

• Thousands of small (a few kW) loads 

collectively tracking a balancing signal

• Energy consumption is unchanged 
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Load Coordination
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[Mathieu, Koch, Callaway IEEE TPWRS 2013]
Many approaches: [Lu and Chassin 2005; Zhang et al. 2013; Bashash and Fathy 2013; 
Meyn et al 2015; Dall’Anese et al. 2018; Almassalkhi et al. 2018; Busic et al. 2018; and 
many many others] 



Modeling Load 
Aggregations as Storage
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Storage Models

• [Mathieu, Dyson, Callaway ACEEE 2012; Mathieu, 
Kamgarpour, Lygeros, Andersson, Callaway IEEE TPWRS 2015]

• Other approaches: [Hao et al. 2015; Sanandaji et al. 2014; 
Trovato et al. 2016; and many others]

• The models are imperfect.
• Storage capacities aren’t perfectly known.
• Storage capacities can vary over time as a function   

of stochastic phenomena.
• Imperfect control responses.
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Example: Aggregation of 
1000 electric space heaters
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In planning problems, 
we have temperature 
forecast uncertainty

We also have 
uncertainty in
• human behavior
• effect of past DR 
actions
• …
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How should we accommodate 
stochastic reserves?

• The load aggregator manages the uncertainty
• The system operator manages the uncertainty
• A hybrid approach
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Chance-Constrained 
Optimal Power Flow

• Many approaches: [Zhang and Li 2011; Jabr 2013; 
Vrakopoulou et al. 2013; Roald et al. 2013; 
Bienstock et al. 2014; and many others]

• Wind power uncertainty (assume 2 wind farms)
• DC Power Flow Equations
• Generators use an affine control policy to 

compensate wind power forecast error 

• Decision variables are generator power outputs, 
reserve capacities, and participation factors 
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Chance-Constrained 
Optimal Power Flow

7/2/19 J. Mathieu, University of Michigan 13

Compute power injections

Bound power flows

Compute reserve action

Bound generator output

Bound reserve capacity

Generation and reserve cost

Normalize participation factors

Schedule generation to meet forecast

Similar to [Vrakopoulou, Margellos, 
Lygeros, Andersson 2013; Bienstock, 
Chertkov, Harnett 2014].



Incorporating Stochastic 
Reserves

• Single period problem [Zhang, Shen, Mathieu TPWRS 2017]

– New decision variables: flexible load power 
consumption, reserve capacities, and participation 
factors

– Modify the constraints: load-based reserve actions 
affect power injections and power flows

– Add constraints: Load consumption bounds based on 
the (uncertain) power capacity and (uncertain) load 
forecast
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Multiperiod Problem

• Two-Part Paper in IEEE TPWRS: [Vrakopoulou, Li, 
Mathieu 2019; Li, Vrakopoulou, Mathieu 2019]

• Add energy capacity constraints
• Reserves provided by aggregations of 

thermostatically controlled loads where baseline 
power consumption, energy and power capacities 
are a function of outdoor temperature

• Assume wind and temperature forecast error
• Reserve designs to mitigate uncertainty 

propagation
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Reserve Design
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Approaches

• Probabilistically robust optimization [Margellos et 
al. 2014], a hybrid of robust optimization and the 
scenario approach [Campi et al. 2009]
– Quadratic programming problem

• Deterministic reformulation assuming 
multivariate normal uncertainty distributions
– Nonlinear convex optimization problem
– Solved via

• Nonlinear solver
• Polyhedral or second-order cone (SOC) approximation of 

nonlinear constraints and SOC programming with a cutting 
plane algorithm from [Bienstock et al. 2014]
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IEEE 30-Bus Network: 
Cost Comparison
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IEEE 30-Bus Network: 
Reliability Comparison
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Distributionally robust 
chance constraints
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• Chance constraints satisfied for all distributions within a 
data-driven ambiguity set [Delage and Ye 2010]. Can 
incorporate:
– Moment-based information: mean, covariance, higher-order 

moments
– Density-based information: distance between empirical 

distribution and real data-generating distribution
– Distribution structure: support, unimodality, symmetry, etc.

• Distributionally Robust Optimal Power Flow [Roald et al. 
2015; Zhang et al. 2017; Xie and Ahmed 2017; Summers et al. 2015; 
Lubin et al. 2016; Guo et al. 2018; Louca and Bitar 2018]



Example: Moment-based 
ambiguity set

• [Zhang, Shen, Mathieu TPWRS 2017]
• Ambiguity set from [Jiang and Guan 2015]

• Reformulated problem is a semidefinite program (SDP)
• We also test an ambiguity set that matches the mean and 

covariance to the empirical ones; the reformulated 
problem is a SOC program (SOCP)

7/2/19 J. Mathieu, University of Michigan 24



Comparison of Approaches
IEEE 9-bus System
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DR approaches even more costly than scenario-based approach!



IEEE 39-bus System

SDP solver starting to have trouble.
7/2/19 J. Mathieu, University of Michigan 26

Gaussian        Scenario      DR (SDP)      DR (SOCP)



Some thoughts…

• Is this really worth it?
• Can we do better?
– Less conservative, sufficiently reliable
– Scalable to large networks
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Unimodality of Wind 
Forecast Error

7/2/19 J. Mathieu, University of Michigan 29

Data from [Jensen and Pinson 2017]



Incorporating Unimodality 
Information
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• Ambiguity set in [Li, Jiang, Mathieu 
Mathematical Progamming 2019]:

• !-unimodality [Dharmadhikari and Joag-Dev 1988

• Exact and approximate reformulations of 
distributionally robust chance and CVaR
constraints using this ambiguity set

• Efficient solution algorithms



Reduction in Conservatism
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Other Directions We’ve 
Explored: Log-concavity

• Assume the distribution is log-concave, support 
is ellipsoidal
– We don’t have an exact reformulation
– Sandwich approximation [Li, Jiang, Mathieu PSCC 2018]
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Other Directions We’ve 
Explored: Misspecified Modes

• Extend the unimodality formulation to consider 
inaccurately estimated modes

• Modes are harder to estimate accurately than means
• Misspecified modes can significantly reduce the 

reliability of the previously-presented approach
• Instead of matching the empirical mode, confine it to 

a connected and compact set constructed from 
historical data

• Reformulation and solution algorithm lead to more 
conservative solutions with good reliability
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Concluding thoughts

• Load aggregations can provide reserves, but their 
capacities are uncertain.

• We can plan for this uncertainty in the OPF 
problem… but who should really be managing 
this uncertainty?

• Distributionally robust optimization might hold 
promise for chance constrained OPF problems 
like this one, but still not yet clear if it leads to the 
right cost/reliability trade-off  and reasonable 
computational requirements
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