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Loads (and Distributed
Storage) Providing Reserves

 Thousands of small (a few kW) loads
collectively tracking a balancing signal

* Energy consumption is unchanged
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Load Coordination
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[Mathieu, Koch, Callaway IEEE TPWRS 2013]

Many approaches: [Lu and Chassin 2005; Zhang et al. 2013; Bashash and Fathy 2013;
Meyn et al 2015; Dall’Anese et al. 2018; Almassalkhi et al. 2018; Busic et al. 2018; and

many many others]
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Modeling Load
Aggregations as Storage

S(k -+ 1) = S(k) -+ (P(k) — Pbaseline(k))AT

Mean power over an interval

Pmin(k) < P(k> < Pmax(k)

State of charge

Smin(k) < S(k) < Smax(k)
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Storage Models

 [Mathieu, Dyson, Callaway ACEEE 2012; Mathieu,
Kamgarpour, Lygeros, Andersson, Callaway IEEE TPWRS 2015]

* Other approaches: [Hao et al. 2015; Sanandaji et al. 2014;
Trovato et al. 2016; and many others]

* The models are imperfect.
* Storage capacities aren’t perfectly known.

e Storage capacities can vary over time as a function
of stochastic phenomena.

* |Imperfect control responses.




Example: Aggregation of
1000 electric space heaters
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= How should we accommodate
— stochastic reserves?

* The load aggregator manages the uncertainty

* The system operator manages the uncertainty

* A hybrid approach

7/2/19 J. Mathieu, University of Michigan 10
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Wt _L Chance-Constrained
me. o= Optimal Power Flow

* Many approaches: [Zhang and Li 2011; Jabr 2013;
Vrakopoulou et al. 2013; Roald et al. 2013;
Bienstock et al. 2014; and many others]

* Wind power uncertainty (assume 2 wind farms)
e DC Power Flow Equations

* Generators use an affine control policy to
compensate wind power forecast error
R=—d(W; + W,)
e Decision variables are generator power outputs,
reserve capacities, and participation factors



v =l Chance-Constrained
o S —— Optimal Power Flow

min Pg[Cl]PG + C2T Pc + Cg(R”p + Rd") Generation and reserve cost
s.t.|— P < AsPinj < P Bound power flows
Pinj = C6(Pc + R) + (Pl + W) — C P,  Compute power injections
R=—d(W; + W,) )
BGSPG‘FRSﬁG/' Pg(f(X,{)SO)zl—E it

— R <R <R ’
11><ch =1 Normalize participation factors

11xng (Ce P + Cw PCV — CLPL) =0 schedule generation to meet forecast
PG 2 ONgxla d 2 ONGXI

RUYP > ONGx1, Rdn > ONle Similar to [Vrakopoulou, Mafrgellos,
— - Lygeros, Andersson 2013; Bienstock,
where W = [Wla W2] Chertkov, Harnett 2014].
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—L Incorporating Stochastic
/ /\ S
/& e EneyLborsg Reserves

* Single period problem [zhang, Shen, Mathieu TPWRS 2017]

— New decision variables: flexible load power
consumption, reserve capacities, and participation
factors

— Modify the constraints: load-based reserve actions
affect power injections and power flows

— Add constraints: Load consumption bounds based on
the (uncertain) power capacity and (uncertain) load
forecast ~

Py < P, + R, <Pp



\\W ’ . :
MiIr —L Multiperiod Problem

 Two-Part Paper in IEEE TPWRS: [Vrakopoulou, Li,
Mathieu 2019; Li, Vrakopoulou, Mathieu 2019]

* Add energy capacity constraints

* Reserves provided by aggregations of
thermostatically controlled loads where baseline
power consumption, energy and power capacities
are a function of outdoor temperature

 Assume wind and temperature forecast error

e Reserve designhs to mitigate uncertainty
propagation



Reserve Design

Wind power forecast error
Forecast errors

Baseline power forecast error
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Approaches

* Probabilistically robust optimization [Margellos et
al. 2014], a hybrid of robust optimization and the
scenario approach [Campi et al. 2009]

— Quadratic programming problem

* Deterministic reformulation assuming
multivariate normal uncertainty distributions

— Nonlinear convex optimization problem

— Solved via
* Nonlinear solver

* Polyhedral or second-order cone (SOC) approximation of
nonlinear constraints and SOC programming with a cutting
plane algorithm from [Bienstock et al. 2014]



IEEE 30-Bus Network:
Cost Comparison

COST DISTRIBUTION AND RESERVE ALLOCATION, 1 — & = 99%

Scenario 1 Scenario 2

Analytical 1 & 2

Total 19657 19721 13474

Dispatch 11978 11978 11876

Cost GS 2863 2938 0
LS 97 90 87

GD 4719 4716 1510

Capacity GS 572 588 0
(MW) LS 194 179 175
GD 3162 3158 1370
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— IEEE 30-Bus Network:
I S —— Reliability Comparison

h

AVERAGE EMPIRICAL JOINT AND INDIVIDUAL RELIABILITY (%)

1 —e Scenario I  Scenario 2 Analytical 1 & 2

Joint 90% 99.66 99.67 80.42
Individual 90% 100.00 100.00 99.54
Joint 99% 99.98 99.98 95.47

Individual 99% 100.00 100.00 99.89

7/2/19 J. Mathieu, University of Michigan 21
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ANA—— Distributionally robust
2N S — chance constraints

i <0)>1—
nf Pe(f(x,6) <0) =1 —¢

* Chance constraints satisfied for all distributions within a
data-driven ambiguity set [Delage and Ye 2010]. Can
Incorporate:

— Moment-based information: mean, covariance, higher-order
moments

— Density-based information: distance between empirical
distribution and real data-generating distribution

— Distribution structure: support, unimodality, symmetry, etc.

e Distributionally Robust Optimal Power Flow [Roald et al.
2015; Zhang et al. 2017; Xie and Ahmed 2017; Summers et al. 2015;
Lubin et al. 2016; Guo et al. 2018; Louca and Bitar 2018]



\ A _L Example: Moment-based
L — ambiguity set

* [Zhang, Shen, Mathieu TPWRS 2017]
 Ambiguity set from [Jiang and Guan 2015]
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e Reformulated problem is a semidefinite program (SDP)

 We also test an ambiguity set that matches the mean and
covariance to the empirical ones; the reformulated
problem is a SOC program (SOCP)

7/2/19 J. Mathieu, University of Michigan 24



= Comparison of Approaches
S ——— IEEE 9-bus System

CosT, RELIABILITY, AND CPU TIME OF A1-A4 FOR THE IEEE 9-Bus SYSTEM WITH NO CONGESTION

Al: Gaussian A2: Scenario A3: DR (SDP) A4: DR (SOCP)
1 —€ = 95% 90% 95% 90% 05% 90% 095% 90%
avg 4392.63 4330.41 4758.32 4738.73 4875.35 4633.57 4875.41 4633.61
Objective cost max 4478.08 4394.57 4895.40 4812.65 5102.61 4789.59 5102.65 4789.62
min 4308.60  4262.52 4678.17 4649 .48 4652.84 4480.48 4652.92 4480.59
avg
Reliability (%) max 04.07 86.69 09.87 99.83 99.83 99.56 090.83 099.74
min 65.40 61.98 09.36 99.26 97.60 90.99 08.80 01.94
avg 0.03 0.03 15.21 3.51 0.47 0.46 0.44 0.37
CPU Time (s) max 0.05 0.06 15.41 3.85 0.55 0.53 0.36 041
min 0.03 0.02 14.88 3.34 0.34 0.41 0.39 0.34

DR approaches even more costly than scenario-based approach!

7/2/19 J. Mathieu, University of Michigan 25
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IEEE 39-bus System

CosT, RELIABILITY, AND CPU TIME OF Al- A4 FOR THE IEEE 39-Bus
SYSTEM WITH CONGESTION (1 — ¢; = 95%).

Gaussian Scenario DR (SDP) DR (SOCP)
avg | 4235049  45489.17  44765.94  44787.62
Objective cost max  42788.23  45871.69  45676.41  45744.09
min  41888.16  45187.54  43996.11  44070.00
avg 72.38 99.79 93.25 99.10
Reliability (%)  max 86.90 99.87 98.23 99.77
min 60.47 99.70 85.74 96.60
avg 0.10 1003.45 502.69 0.72
CPU Time (s) max 0.12 1040.64 666.80 0.78
min 0.09 978.80 395.95 0.63

SDP solver starting to have trouble.

7/2/19
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Some thoughts...

* |s this really worth it?
e Can we do better?

— Less conservative, sufficiently reliable
— Scalable to large networks

7/2/19 J. Mathieu, University of Michigan
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Unimodality of Wind
Forecast Error
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== Incorporating Unimodality
//&;nwaer&E:yLaboratory Info rm ation

 Ambiguity set in [Li, Jiang, Mathieu
Mathematical Progamming 2019]:
De(p, Z,a) := {]P’g e Mt : ]E[PE [£] = i, E]ps [SET] = X, PP is@-unimodal about O}
* a-unimodality [Dharmadhikari and Joag-Dev 1988

* Exact and approximate reformulations of
distributionally robust chance and CVaR
constraints using this ambiguity set

 Efficient solution algorithms
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Other Directions We've
Explored: Log-concavity

* Assume the distribution is log-concave, support
is ellipsoidal
— We don’t have an exact reformulation
— Sandwich approximation [Li, Jiang, Mathieu PSCC 2018]
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* Extend the unimodality formulation to consider
inaccurately estimated modes

* Modes are harder to estimate accurately than means
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\g —L Concluding thoughts

* Load aggregations can provide reserves, but their
capacities are uncertain.

* We can plan for this uncertainty in the OPF
problem... but who should really be managing
this uncertainty?

e Distributionally robust optimization might hold

oromise for chance constrained OPF problems

ike this one, but still not yet clear if it leads to the

right cost/reliability trade-off and reasonable

computational requirements




