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Power (kW)

How can loads provide reserves?
— your refrigerator is already flexible
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Thousands of coordinated thermal loads (TCLs)
can track signals and provide reserves

—> Air conditioners, heat pumps, space heaters, electric water heaters, refrigerators

normal operation

power

[Mathieu, Koch, and Callaway IEEE Transactions on Power Systems 2013]

J. Mathieu, UMich



Thousands of coordinated thermal loads (TCLs)
can track signals and provide reserves

- Air conditioners, heat pumps, space heaters, electric water heaters, refrigerators
—>The more the controller knows about the load, the better it can
coordinate them

Controller gets temperature/state of Controller infers TCL behavior from
each load every 2 seconds power measurements at the substation
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J. Mathieu, UMich



Data from loads

e Parameters

— the make/model of your load? = Modeling
— its temperature setpoint/dead-band width?
— some information about your household?
* Real-time data
— Measurements of the on/off state and/or > Feedback
internal temperature? control
— Household smart meter data? High quality, infrequent
— Power measurements from the
distribution network? Low quality, frequent
 Recorded data
— high resolution power measurements of = Auditing

each load?



Research Questions

* How can we leverage existing imperfect
communication networks for load
coordination?

* How can we schedule loads to provide
reserves when the reserve capacity available
from load aggregations is inherently
uncertain?



Communication & Control Scenario
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System block diagram

Delays cause unsynchronized arrivals of inputs at the loads and
measurements at the controller
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The challenge

* Designh an estimator and controller to enable
loads to track a signal despite delays

* Assuming...
— Control inputs & measurements are time-stamped
— Delay statistics are known

— State measurements are taken frequently;
measurement histories are transmitted infrequently

— Aggregate power measurements are very noisy
(though the noise is normally distributed, zero-mean,
and the standard deviation is known)



Individual TCL Model (Plant)
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Aggregate System Model
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Estimator designs

* Based on Kalman Filtering
* Options

— Sampling window estimator
* Wait, collect, estimate

— Parallel filter estimator
* One Kalman Filter per load
 Each time a measurement arrives, filter it
* Synthesize aggregate estimate from individual estimates

— |dentified parameter estimator

 Use state measurement histories to estimate *individual*
load parameters

e Use individual load models to predict current state
- pseudo-measurements

* Use pseudo-measurements in Kalman Filter



Estimator Results
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— Estimators relies on infrequent state estimates much more
than noisy, frequent aggregate power measurements
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Controller designs

 Based on Model Predictive Control
* Options
— Use the mean delay — “Mean Delay Controller”

— Use knowledge of delay distributions and past
control inputs — “Full Distribution Controller”

First control sequence: Uy, Uy, Ug,.., Uy

Second control sequence: u,,Us, .. , U

Third control sequence: Us, Uy, ooy Upig




Controller Results
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Key takeaways

* Communication network limitations
necessitate controller/estimator designs that
cope with delays, bandwidth limitations, etc.

* Delays make loads less capable of providing
fast services, but some control/estimation
approaches we’ve developed mitigate these
Impacts.



Research Questions

* How can we leverage existing imperfect
communication networks for load
coordination?

* How can we schedule loads to provide
reserves when the reserve capacity available
from load aggregations is inherently
uncertain?



Power system operation —in two slides

* Day-head electricity markets schedule:
— hourly power output of generators

— reserve capacity, i.e., how much capacity is kept in
“reserve” to balance real-time supply-demand
mismatches

* Real-time energy markets reschedule the
power output of a small fraction of the
generators every 5 or 15-minutes

*Disclaimer — this is VERY simplified; it only applies to the U.S. markets; each
electricity market in the U.S. works differently.



The day-ahead scheduling problem
i.e., Optimal Power Flow (OPF) problem

minimize generation costs + reserve costs

subjectto power flow equations
generation constraints
line constraints

Decision variables: generator power set points,
generator reserve capacity
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“But load control will never be reliable
enough to provide trustworthy reserves!”

e Why?
— Too much uncertainty: People! Weather! etc.
* Two options:

— Be conservative in how much reserve you
schedule

— Explicitly consider reserve uncertainty in the
planning algorithm



Time-varying
“thermal battery” model
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Time-varying power & energy capacities

1000 electric space heaters
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The (original) day-ahead scheduling problem

minimize generation costs + reserve costs

subjectto power flow equations
generation constraints
line constraints

Decision variables: generator power set points, generator
reserve capacity
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The (new) day-ahead scheduling problem

minimize generation costs + generator reserve costs
+ load reserve costs

subjectto power flow equations wind

uncertainty

generation constraints
line constraints
controllable load constraints load contro

uncertainty

Decision variables: generator and load power set points,
generator and load reserve capacity, distribution vectors
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Building on recent work

* Stochastic optimal power flow
— Bouffard and Galiana 2008

— Papavasiliou et al. 2011
— Vrakopoulou et al. 2013

 Power flow with loads and storage
— Gayme and Topcu, 2011
— Mount et al. 2011
— Papavasiliou and Oren 2012
— Gonzalez Vaya and Andersson 2013

— Anderson and Cardell 2013



Uncertainty Modeling

 Wind power production uncertainty
* Qutdoor air temperature uncertainty

— load uncertainty = load control capacity uncertainty
—> reserve capacity uncertainty
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Reserve Modeling

e Secondary frequency control (AGC) provided by
loads and generators

— Assumes loads are cheaper!

e Re-dispatch (15-minute market, Tertiary control)
provided by generators

— Covers power mismatch between expected and actual
generation (as it does today)

— Provides energy to return loads to their scheduled
energy state



Solution Approach

e Linearized power flow (DC-OPF)
* Chance-constraints: P(4x > b) > 1-¢

e Solved with probabilistically robust design
[Margellos, Goulart, and Lygeros 2014], inspired by a
scenario-based approach [Calafiore and Campi 2006]

— assumes no a priori knowledge of uncertainty
distributions

— provides probabilistic guarantees
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Operational costs

-===+==== no load uncertainty, no load control
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Operational costs

no load uncertainty, no load control unce’
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Operational costs
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Probability of constraint violation (%)
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Key Takeaway

Reserves from loads may not be of the
same “quality” as those provided by
generators, BUT we can plan for load
uncertainty by explicitly considering it in
our problem formulation



New directions...

 How do uncertainty and reserve costs interact?

 How can we handle the full complexity of load
control uncertainty?

— Multi-dimensional

— Exogenous and endogenous
— Non-stationary

— Insufficient data!

Scenario-based
Vs. Vs.
approaches



e Distributionally robust optimization

— Use available data to build a confidence set to
bound the pdf of the uncertainty distribution

— Moment matching: [zhang, Shen, & Mathieu, ACC 2015 (to
appear)]

* Analytical reformulation

— Assume knowledge of uncertainty distributions
and reformulate chance-constraints to solve a
deterministic problem for a specific choice of ¢

— Gaussian approximation: [Li and Mathieu; in preparation for
PowerTech 2015]
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