
1608 IEEE TRANSACTIONS ON SMART GRID, VOL. 10, NO. 2, MARCH 2019

Chance Constrained Reserve Scheduling Using
Uncertain Controllable Loads Part I: Formulation

and Scenario-Based Analysis
Maria Vrakopoulou, Member, IEEE, Bowen Li, Student Member, IEEE, and Johanna L. Mathieu , Member, IEEE

Abstract—This paper develops a multi-period chance
constrained optimal power flow model to schedule generation and
reserves from both generators and aggregations of controllable
electric loads. In contrast to generator-based reserve capacities,
load-based reserve capacities are less certain because they depend
on load usage patterns and ambient conditions. This paper is
divided in two parts. In part I, we develop a reserve scheduling
framework managing uncertain power from wind and uncertain
reserves provided by controllable loads, and solve the problem
using a probabilistically robust optimization method that may
require large numbers of uncertainty scenarios but provides a
priori guarantees on the probability of constraint satisfaction,
assuming no knowledge of the uncertainty distributions. The
solution of this problem offers us a policy-based strategy for
real-time reserve deployment. We derive simple rules, based on
the cost parameters of the resources, to determine when load-
based reserves will be preferable. In part II, we reformulate the
problem assuming the uncertainty follows multivariate normal
distributions and re-solve the problem, comparing the results
against the randomized technique. To evaluate the performance
of the methods, we conduct simulations using the IEEE 30-bus
network.

Index Terms—Chance constrained optimization, load control,
multi-period optimal power flow, reserve policies, probabilisti-
cally robust optimization, wind power integration.

I. INTRODUCTION

AS THE grid penetration of fluctuating renewable energy
sources increases, more reserves are needed to balance

supply and demand. Thermal and hydropower plants typically
provide balancing reserves to power systems, but aggregations
of electric loads may be able to do so at lower cost and/or with
less environmental impact [1]. Recent studies have developed
methods to use commercial and residential loads to provide
balancing reserves such as load following and frequency reg-
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ulation, e.g., [2] and [3]. Loads are coordinated to decrease
and increase their consumption with respect to their base-
line consumption to provide up and down balancing. Recent
studies have also developed methods to dispatch controllable
loads within the optimal power flow or unit commitment
problem [4], [5].

To manage power system uncertainty stemming from fluc-
tuating renewable power production and loads, we can for-
mulate and solve stochastic optimal power flow problems.
One method is to minimize the expected cost of operating
the power system over a heuristically-chosen finite number
of uncertainty scenarios, e.g., [6]. Another method is to for-
mulate a chance constrained optimization problem in which
constraints with random variables hold probabilistically, ensur-
ing feasibility for a vast majority of uncertainty scenarios,
see [7], [8]. In [9] a chance constrained formulation to sched-
ule the production levels and reserve capacities for generators
in systems with uncertain renewable energy production is
proposed. It is straightforward to extend this approach to addi-
tionally schedule the reserve capacities of aggregations of
controllable loads if we assume the available reserve capac-
ity is known. However, in practice, the available reserve
capacity of an aggregation of loads is a function of random
variables such as ambient conditions (e.g., the capacity of
an aggregation of air conditioners is a function of outdoor
temperature) and load usage patterns (e.g., the capacity of
an aggregation of electric vehicles is a function of driving
patterns) [10].

The main objective of this two-part paper is to design and
analyze a chance-constrained optimal power flow (CC-OPF)
formulation to schedule generator production and load con-
sumption levels along with both generator and load-based
reserve capacities assuming uncertainty in renewable energy
production and the available reserve capacity of the control-
lable loads. We model controllable loads as thermal energy
storage units and design a redispatch1 mechanism to manage
the energy state (comparable to a battery’s state of charge) of
the loads to minimize uncertainty propagation throughout the
time horizon. We consider uncertainty in both wind forecasts
and outdoor temperature forecasts, where the latter affects the
available capacity from controllable loads.

1Note that, in Europe, the term “redispatch” is used differently, i.e., to
describe the adjustment of generator active powers so as to alleviate potential
transmission or N–1 security constraint violations.
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In Part I, we develop the formulation and solve the problem
using a probabilistically robust optimization method [11], [12]
that may require large numbers of uncertainty scenarios, but
provides a priori guarantees on the probability of constraint
violation, assuming no knowledge of the uncertainty distri-
butions. In Part II, we reformulate the problem assuming the
uncertainty follows multivariate normal distributions and re-
solve the problem, comparing the results against those of the
scenario-based method. Other recent studies also solve CC-
OPF problems using the same scenario-based method [8], [9]
or via analytical reformulation, e.g., [13] and [14], but these
studies do not model load-based reserves or their uncertainty.
Reference [15] formulates a simpler, single-period CC-OPF
with uncertain renewable energy production and load-based
reserve capacities. In contrast, our multi-period formulation
leads to lower-cost, higher-reliability solutions because it man-
ages uncertainties jointly throughout a 24-hour horizon. Like
most of the related work [8], [9], [13]–[15], we use the DC
power flow approximation for simplicity, though our formula-
tion could be extended to include the AC power flow equations
and solved using recently developed methods [16], [17].

The contributions compared to our preliminary
work [18], [19] are as follows. 1) We modify the CC-
OPF formulation to more accurately model the energy
state dynamics of the controllable loads (Part I). 2) We
redesign the controllable load model to more accurately
model deviations due to temperature forecast error (Part I).
3) We derive relations between the reserve dispatch and the
reserve costs, which determine when load-based reserves will
be preferred over generator reserves (Part I). 4) We model
uncertainty using correlated multivariate distributions and
provide analytical reformulations for the full realistic range of
temperature forecasts (Part II). 5) We show that the analytical
reformulation is convex (Part II). Both parts explore a wider
range of case studies than [18], [19].

Part I is organized as follows. Section II describes the
model, Section III introduces the formulation of the CC-OPF,
and Section IV describes the solution methodology. Section V
introduces simple cost parameter rules that determine the least-
expensive reserve resource and Section VI presents the results
of case studies on the IEEE 30-bus network. Concluding
remarks are provided in Section VII.

II. MODELLING

A. Uncertain Controllable Loads

In this work, we assume that aggregations of thermostati-
cally controlled loads (TCLs) comprise a portion of the total
system load. Each TCL is locally controlled to maintain its
internal temperature within a narrow temperature range (e.g.,
1◦C) by switching on/off its power consumption. Because they
operate within a temperature range, TCLs have inherent flex-
ibility, i.e., we can coordinate their switching to shift their
consumption in time (ensuring that the total amount of energy
delivered over a specific longer time horizon is fixed) without
violating their temperature constraints.

We can model the aggregations of TCLs as thermal energy
storage units [20]. We assume that the aggregator is able to

Fig. 1. Energy capacity, power capacity, and baseline power consumption of
an aggregation of electric heaters modeled as a thermal energy storage unit.

broadcast control signals to all TCLs inducing on/off switching
actions achieving a desired aggregate power consumption PC,t.
When the ambient conditions are constant, the energy state St

of the aggregation evolves with time steps t of length �τ as

St+1 = St + (
PC,t − PB,t

)
�τ, (1)

where PB,t is the baseline aggregate power consumption, i.e.,
the consumption that would have occurred without external
scheduling. Actions which decrease (increase) consumption
relative to the baseline empty (charge) the storage unit.

A TCL aggregation’s baseline consumption, power capacity
(i.e., limits for PC,t), and energy capacity (i.e., limits for St)
are a function of a variety of time-dependent uncertain quanti-
ties such as ambient conditions and load usage patterns. Here,
we assume outdoor air temperature Tt alone determines the
baseline consumption PB(Tt), the power capacity PC(Tt), and
the energy capacity S(Tt), i.e.,

0 ≤ PC,t ≤ PC(Tt), 0 ≤ St ≤ S(Tt).

In [20], a method of computing PB(Tt), PC(Tt), and S(Tt) for
an aggregation of residential electric space heaters or air con-
ditioners is described. Here, we use this method to compute
these quantities for an aggregation of 1,000 heterogenous elec-
tric space heaters. Specifically, individual heaters are modeled
using the hybrid model first developed in [21] and [22] and
commonly used in load control research, e.g., [23]. We use
the heterogeneous heat pump parameters (including tempera-
ture set points, thermal capacitances, thermal resistances, etc.)
from [24], which were tuned using real data. Applying the
equations from [20], we obtain the results shown in Fig. 1.
We assume that the values in Fig. 1 are accurate for a given
outdoor air temperature but that our forecasts of outdoor air
temperature are uncertain. Hence Fig. 1 serves as a look-
up table which maps an outdoor air temperature forecast to
the baseline consumption, power capacity, and energy capac-
ity of a thermal energy storage unit. We neglect uncertainty
stemming from consumer interaction with the heaters, e.g.,
choosing to switch off heaters even when the indoor tempera-
ture is below the temperature set point. The formulation could
be easily extended to include additional uncertainties affecting
the aggregate load power/energy capacities. Furthermore, ther-
mal energy storage model error could be treated as uncertainty
and included in the formulation.
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When ambient conditions are changing, the energy state
equation (1) must be modified to take into account changes in
the energy capacity. Specifically, for heating loads, when Tt

increases, S may decrease (as shown in Fig. 1) because Tt+1
is within or above some heaters’ temperature range and those
heaters are no longer available for control. We can assume that
the aggregation of heaters that become unavailable in t+1 had
approximately the same percent energy state St/S(Tt) as the
aggregation of all heaters available in t. Therefore, when Tt

increases, we assume the percent energy state at the beginning
of time-step t + 1 is the same as the percent energy state at
the end of time step t. When Tt decreases, S(Tt) may increase
because heaters that were previously unavailable become avail-
able. We assume that the heaters that become available have
a 50% energy state. With these assumptions, the new energy
state equation is

St+1 = (
St + (PC,t − PB(Tt))�τ

)
min

(
S(Tt+1)

S(Tt)
, 1

)

+ 0.5 max
(
S(Tt+1) − S(Tt), 0

)
. (2)

Note that, while we focus on TCLs within this work because
TCL aggregations are well-suited to providing reserves and
their power/energy capacities are uncertain, our formula-
tion could be easily extended to accommodate any energy-
constrained load/storage aggregation with power/energy
capacity uncertainty. Ultimately any type of load/storage
aggregation or aggregations of diverse loads/storage can be
approximately modeled with (1), as demonstrated by a variety
of recent work, e.g., [10] and [25]–[28]. Generally an aggre-
gation’s power/energy capacity will be uncertain because of
disturbances and model error. For example, [25] develops a
method to approximate the power/energy capacity of aggre-
gations of electric vehicles; however, these capacities will
be uncertain because of disturbances (e.g., consumers con-
necting/disconnecting their electric vehicles at different times
than forecasted) and model error (i.e., the full set of bat-
tery dynamics/constraints are not represented by the aggregate
model) [10].

B. Generation-Load Mismatch

We consider two types of uncertainty: uncertainty on the
wind power forecast and uncertainty on the outdoor tempera-
ture forecast. If the system is operated based on the forecasts,
forecast error may create generation-load mismatch, which
should be compensated by reserves to maintain power balance.
When the controllable loads are unscheduled, they consume
the baseline power and hence the total generation-load mis-
match is the sum of the total wind power forecast error and
the total baseline power forecast error, i.e.,

Pm,t = 1T
(

PW,t − Pf
W,t

)
+ 1T

(
PB(Tt) − PB

(
Tf

t

))
, (3)

where PW,t and Pf
W,t are vectors including the actual and

forecast wind power production of each wind power plant,
respectively. Similarly, PB(Tt) and PB(Tf

t ) are vectors includ-
ing the actual and forecast baseline power consumption of
each controllable load aggregation, respectively. The vector 1

is a unit vector with the same dimension as the vector that it
is multiplied with, and so Pm,t is a scalar.

When the controllable loads are scheduled, their consump-
tion is no longer uncertain and hence the generation-load
mismatch is only the total wind power forecast error, i.e.,

Pm,t = 1T
(

PW,t − Pf
W,t

)
. (4)

In this case, as detailed later, both types of uncertainty will
affect the energy state trajectory.

C. Reserve Policies

We assume that secondary frequency control (i.e., automatic
generation control) compensates power mismatches on the
timescale of seconds to minutes and tertiary frequency control
is activated periodically to redispatch the system. We refer to
the former as “secondary reserves” and the latter as “redispatch
reserves,” which are comparable to real-time energy market
actions in the U.S. Traditionally, reserve capacities are deter-
mined via heuristic rules, for example, as a function of load
and renewable energy production forecasts, and are inputs to
the OPF. Reference [29] proposes an advanced dynamic proba-
bilistic reserve sizing method that uses nonparametric forecast
error distributions to determine required reserve capacities. In
contrast, minimum-cost adequate capacities of secondary and
redispatch reserves are outputs of our CC-OPF. We assume
both generators and controllable loads can provide secondary
reserves, but only generators provide redispatch reserves.

To determine the adequate secondary or redispatch reserve
capacity, we need to model the operating point after a control
action. In [8] the new generation set point Pnew

G is modeled
using an affine function of the power mismatch while [30]
differentiates between positive and negative generation-load
mismatch by using a piecewise affine function. Following [18],
we model Pnew

G and the new controllable load set point Pnew
C

using piecewise affine functions, which gives us the policies

Pnew
G,t = PG,t + dG,t max

(−Pm,t, 0
)− dG,t max

(
Pm,t, 0

)
, (5)

Pnew
C,t = PC,t + dL,t max

(
Pm,t, 0

)− dL,t max
(−Pm,t, 0

)
, (6)

where PG,t and PC,t denote the generator and controllable
load set points that maintain power balance for the forecasts
Pf

W,t and Tf
t . To achieve power balance under forecast error,

a positive mismatch decreases the power production of gen-
erators and increases the power consumption of controllable
loads as a function of the distribution vectors d ≥ 0, where
1TdG,t + 1TdL,t = 1 and 1TdG,t + 1TdL,t = 1, and each d is
treated as a decision variable. Adequate reserve capacities are
determined by the amount that the generators (controllable
loads) may need to increase/decrease their production (con-
sumption) as a function of Pm,t. The exact constraints used
within the optimization problem are defined in Section III; for
notational simplicity we define

f (d1, d2, x) = d1 max(−x, 0) − d2 max(x, 0). (7)
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D. Market Setup

Our multi-period OPF dispatches resources hourly over a
24-hour horizon, where �τ = 1 hour. Generator and control-
lable load set points and all reserve capacities are constant
within each hour. Secondary reserve may be activated at
any point within the hour but redispatch is activated every
�τ/n minutes, where n is the number of intra-hour redis-
patch intervals. Here, we use �τ/n = 5, 10, or 15 minutes.
Redispatch compensates not only the generation-load mis-
match but also unforecasted deviations in the energy state of
the controllable loads, similar to the California Independent
System Operator’s Regulation Energy Management func-
tionality [31]. Forecasted changes in the load energy state
result from differences between PC,t and PB(Tf

t ), as shown
in (1). Unforecasted changes result from load-based secondary
reserve actions used to compensate wind power forecast error
and baseline error resulting from temperature forecast error.
Hence, the actual change in load energy state in each time step
will be (PC,t +Rt −PB(Tt))�τ , where Rt is the reserve action.
When the system is redispatched, generator production and
controllable load consumption are adjusted to compensate for
unforecasted changes in the load energy state over the previous
�τ/n minutes. This ensures that the actual load energy
state trajectory is closer to the forecasted one, and increases
the ability of the controllable loads to continue providing
reserves.

We assume temperature forecast errors, and so baseline
power forecast errors, are constant within each hour whereas
wind power forecast errors may appear at any time within each
hour and may persist until the end of the hour. Fig. 2 shows
an example of how three types of forecast error affect reserve
actions.

1) Baseline power forecast error causes i) load energy
state deviations and ii) generator deviations (via redis-
patch) and load deviations that stop the increase of these
deviations.

2) Wind power forecast error causes i) load and genera-
tor deviations (via secondary reserves) to compensate
this error, ii) resulting load energy state deviations, and
iii) generator deviations (via redispatch) that compensate
the wind power forecast error and the load energy state
deviations.

3) Remaining load energy state deviations from the
previous hour (resulting from baseline power forecast
error in the previous hour and/or secondary reserve
actions in the last �τ/n-minute interval of the previous
hour) cause i) generator deviations (via redispatch) and
load deviations that drive the load energy state back to
zero, and ii) resulting load energy state deviations.

We show the responses to each of the three errors inde-
pendently for clarity; in reality all three errors will occur
simultaneously and the required generation/load deviations
will be the sum of those shown.

Given our assumptions, we only need to check that the
system constraints are satisfied at three intra-hour operating
points, i.e., if the constraints are satisfied at these points they
will be satisfied at all intra-hour operating points.

Fig. 2. An example of how forecast errors activate secondary and redispatch
reserves and influence the load energy state (n = 4). Dotted lines correspond
to responses to baseline power forecast error, continuous lines to wind power
forecast error, and dashed lines to the remaining load energy state deviation
from the previous hour.

Operating Point 1 corresponds to the end of any �τ/n-
minute interval, except the first, in which generators provide
redispatch to compensate load energy state deviations due to
the baseline power forecast error of the previous �τ/n-minute
interval and also provide secondary reserve actions. In Fig. 2,
this point is reached at the 30th minute.

Operating Point 2 corresponds to the end of any �τ/n-
minute interval, except the first, in which generators provide
redispatch to compensate the wind power forecast error, load
energy state deviations due to baseline power forecast error,
and load-based secondary reserve actions of the previous
�τ/n-minute interval, but do not provide secondary reserve
actions. In Fig. 2, this point is reached at the 45th minute.

Operating Point 3 corresponds to the end of the first �τ/n-
minute interval, in which generators provide redispatch to
compensate the remaining load energy state deviation from
the previous hour and may also provide secondary reserves
actions. In Fig. 2, this point is reached at the 15th minute.

III. CC-OPF FORMULATION

In this section, we present a CC-OPF formulation that co-
optimizes energy and reserves provided both by generators
and controllable loads under the market setup described in
Section II-D taking into account wind power and temperature
forecast uncertainty. The objective is to find the genera-
tion/controllable load set points (i.e., the dispatch), reserve
capacities, and distribution vectors that minimize the energy,
secondary reserve, and redispatch costs such that system
constraints are satisfied in a probabilistic sense.

A. Notation & Reserve Constraints

We use an optimization horizon Nt = 24 hours with hourly
steps t. Each load is comprised of an uncontrollable portion
PL,t, which is assumed known and constant over a time step
t, and a controllable portion PC,t. For each step t, we define
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the vector of decision variables as xt = 〈Pt, dt,Rt〉, where
we use angle brackets to stack column vectors into a sin-
gle column vector (i.e., 〈α, β〉 = [αT , βT ]T ) and Pt contains
the generator and load dispatch 〈PG,t, PC,t〉, dt the distri-
bution vectors 〈dGS,t, dGS,t, dLS,t, dLS,t, dGD,t, dGD,t〉 and Rt

the reserve capacities 〈RGS,t, RGS,t, RLS,t, RLS,t, RGD,t, RGD,t〉.
The subscripts GS/LS correspond to generation/load sec-
ondary reserves and GD to generation redispatch reserves.
Vector dGD,t = 〈dw

GD,t, db
GD,t, dwo

GD,t, dbo
GD,t〉 and dGD,t =

〈dw
GD,t, d

b
GD,t, d

wo
GD,t, d

bo
GD,t〉, where the component vectors cor-

respond to redispatch actions initiated for different reasons, as
described below. We use the subscript LD to denote variables
related to load adjustments initiated by a redispatch. We denote
the baseline power forecast error by �PB,t = PB(Tt)−PB(Tf

t )

and the total baseline power deviation by Pb
m,t = 1T�PB,t.

Since we choose PC,t (and the uncontrollable load is assumed
known), the generation-load mismatch Pm,t is given by (4).
We next describe the four types of reserve actions.

1) Secondary Reserves Due to Wind Power Forecast Error:
Wind power forecast error activates secondary reserves and
Pm,t is distributed to generators and controllable loads by
shifting their power injection by RGS,t and RLS,t, respectively.
Using the piecewise linear policy defined in Section II-C, the
constraints are

RGS,t = f
(
dGS,t, dGS,t, Pm,t

)
, (8)

RLS,t = f
(
dLS,t, dLS,t,−Pm,t

)
, (9)

1TdGS,t + 1TdLS,t = 1, (10)

1TdGS,t + 1TdLS,t = 1. (11)

2) Redispatch Compensating Secondary Reserve Actions:
After the secondary reserves have achieved power balance,
redispatch redistributes the power mismatch Pm,t to the genera-
tors and compensates unforecasted energy state deviations due
to prior load-based secondary reserve actions. Let the power
injection shift for the generators be Rw

GD,t and for the loads
be Rw

LD,t, which should be of the same magnitude and oppo-
site sign as RLS,t. To maintain power balance, the distribution
vectors should sum to one plus the portion of the mismatch
compensated by the loads. The constraints are

Rw
GD,t = f

(
d

w
GD,t, dw

GD,t, Pm,t

)
, (12)

Rw
LD,t = −RLS,t, (13)

1Td
w
GD,t = 1 + 1TdLS,t, (14)

1Tdw
GD,t = 1 + 1TdLS,t. (15)

3) Redispatch Due to Baseline Power Forecast Error:
Baseline power forecast error results in unforecasted energy
state deviations, which are compensated by redispatch. Let the
power injection shift for the generators be Rb

GD,t and for the
loads be Rb

LD,t. The generators should compensate Pb
m,t, while

the loads should shift by �PB,t. The constraints are

Rb
GD,t = f

(
d

b
GD,t, db

GD,t,−Pb
m,t

)
, (16)

Rb
LD,t = �PB,t, (17)

1Td
b
GD,t = 1, (18)

1Tdb
GD,t = 1. (19)

4) Redispatch at the Beginning of an Hour: Redispatch
is activated in the first �τ/n-minute interval to compensate
energy state deviations from the previous hour t − 1. The
constraints, similar to those above, are

Rwo
GD,t = f

(
d

wo
GD,t, dwo

GD,t, Pm,t−1

)
, (20)

Rbo
GD,t = f

(
d

bo
GD,t, dbo

GD,t,−Pb
m,t−1

)
, (21)

Rwo
LD,t = −RLS,t−1 (22)

Rbo
LD,t = �PB,t−1 (23)

1Td
wo
GD,t = 1TdLS,t−1, (24)

1Tdwo
GD,t = 1TdLS,t−1, (25)

1Td
bo
GD,t = 1, (26)

1Tdbo
GD,t = 1. (27)

B. Optimization Problem

Let c1 and c2 be the generation cost vector and
matrix, respectively, and cR be the reserve cost vector. The
optimization problem is

min
{xt}Nt

t=1

Nt∑

t=1

(
PT

G,t[c2]PG,t + cT
1 PG,t + cT

RRt
)
, (28)

subject to deterministic constraints and probabilistic con-
straints corresponding to the three points described in
Section II-D, which we describe in the following subsections.
All constraints should be satisfied for all t = 1, . . . , Nt.

1) Deterministic Constraints:

1TPinj,t = 0, (29)

−Pl ≤ APinj,t ≤ Pl, (30)

PG ≤ PG,t ≤ PG, (31)

PC

(
Tf

t

)
≤ PC,t ≤ PC

(
Tf

t

)
, (32)

0 ≤ St ≤ S
(

Tf
t

)
, (33)

0 ≤ St +
(

PC,t − PB

(
Tf

t

))
�τ ≤ S

(
Tf

t

)
, (34)

St+1 =
(

St +
(

PC,t − PB

(
Tf

t

))
�τ
)

min

⎛

⎝
S
(

Tf
t+1

)

S
(

Tf
t

) , 1

⎞

⎠

+ 0.5 max
(

S
(

Tf
t+1

)
− S

(
Tf

t

)
, 0
)
, (35)

S1 = 0.5S
(

Tf
1

)
, SNt+1 = 0.5S

(
Tf

Nt+1

)
, (36)

where Pinj,t = CGPG,t + CWPf
W,t − CL(PL,t + PC,t) and the

C matrices map the generators, wind power plants, and loads
to the buses. Constraint (29) enforces power balance given
the wind power forecast; (30), (31), and (32) encode the line,
generation, and controllable load capacity limits, respectively,
where A is a constant matrix that depends on the network
impedances [8]; (33) and (34) ensure that the load energy state
is within its limits at the beginning and end of each hour; (35)
specifies the evolution of the load energy state; and (36) sets
the load energy state at the beginning and end of the day to
50% of its maximum capacity (which corresponds to baseline
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operation). Since (35) is linear, (33) and (34) ensure that the
load energy state is within its limits throughout each hour.
Together these constraints ensure that the generator and load
dispatch corresponds to the wind power and temperature fore-
casts. This means that if the forecasts are perfect no reserves
are needed. Unless the forecast errors are single sign (i.e.,
all negative or all positive) the inequality constraints will be
redundant with their probabilistic counterparts.

2) Probabilistic Constraints: At Operating Point 1 gener-
ator production and controllable load consumption are

Pnew
G,t = PG,t + RGS,t + Rb

GD,t,

Pnew
C,t = PC,t + RLS,t + Rb

LD,t,

where the reserve shifts are given in (8), (9), (16), and (17).
The new power injection is

Pnew
inj,t = CGPnew

G,t + CWPW,t − CL(PL,t + Pnew
C,t ) (37)

and the constraints that must be enforced are

− Pl ≤ APnew
inj,t ≤ Pl, (38)

PG ≤ Pnew
G,t ≤ PG, (39)

0 ≤ Pnew
C,t ≤ PC(Tt), (40)

−RGS,t ≤ RGS,t ≤ RGS,t, (41)

−RLS,t ≤ RLS,t ≤ RLS,t, (42)

−RGD,t ≤ Rb
GD,t ≤ RGD,t, (43)

constraints (10), (11), (18), (19),

where (41)-(43) determine the generator secondary reserve
capacity, load secondary reserve capacity, and generator redis-
patch capacity, respectively. Note that load deviations due to

redispatch actions (i.e., Rb/bo/w/wo
LD,t ) only correct load energy

state deviations. Therefore, they are not considered reserve
actions and are not financially rewarded.

At Operating Point 2 generator production and controllable
load consumption are

Pnew
G,t = PG,t + Rw

GD,t + Rb
GD,t,

Pnew
C,t = PC,t + Rw

LD,t + Rb
LD,t,

where the reserve shifts are given in (12), (13), (16), and (17).
The new power injection is (37) and constraints that must be
enforced are

constraints (14), (15), (18), (19), (38) − (40),

−RGD,t ≤ Rw
GD,t + Rb

GD,t ≤ RGD,t. (44)

At Operating Point 3 generator production and controllable
load consumption are

Pnew
G,t = PG,t + RGS,t + Rwo

GD,t + Rbo
GD,t,

Pnew
C,t = PC,t + RLS,t + Rwo

LD,t + Rbo
LD,t,

where the reserve shifts are given in (8), (9), (20)–(23). The
new power injection is (37) and constraints that must be
enforced are

constraints (10), (11), (24) − (27), (38) − (42),

−RGD,t ≤ Rwo
GD,t + Rbo

GD,t ≤ RGD,t. (45)

We also need to ensure that the controllable load energy
capacity limits are satisfied. The following constraints are suf-
ficient to ensure that the load energy state remains within its
limits within [t, t + 1]. Specifically, since the energy state
dynamics are linear, the energy capacity limits are satisfied
within each interval of the hour, if they are satisfied at the end
of the first and last interval of the hour, i.e.,

0 ≤ St + (
PC,t + RLS,t − PB(Tt)

)�τ

n
≤ S(Tt), (46)

0 ≤ St +
(

PC,t − PB

(
Tf

t

)) (n − 1)�τ

n

+ (
PC,t + RLS,t − PB(Tt)

)�τ

n
≤ S(Tt). (47)

For simplicity, define x to be a stacked version of {xt}Nt
t=1

and let δt ∈ R
NW+NT denote the uncertainty vector in timestep

t, where NW is the number of wind power plants, i.e.,
PW,t ∈ R

NW , and NT is the number of temperature zones,
i.e., Tt ∈ R

NT . We require constraints that are affected by δt

to be satisfied with probability of at least 1−εt, where εt is the
violation level. Then, the optimization problem can be formu-
lated as a quadratic program with multiple chance constraints.
For each t = 2, . . . , Nt, the chance constraints can be written
compactly as

P(Ht(δt, δt−1)x + ht + gt(δt) ≤ 0) ≥ 1 − εt,

where Ht, ht, and gt are functions used to split each con-
straint into terms that have random variables that multiply
decision variables, terms that have neither random variables
nor decision variables, and terms that have random variables
but no decision variables, respectively. For t = 1, the chance
constraint is similar except that H1 depends only on δ1.

IV. SCENARIO-BASED SOLUTION METHODOLOGY

We solve the optimization problem using a probabilisti-
cally robust optimization method [11], [12] that is a mixture
of randomized and robust optimization, and is more compu-
tationally tractable than the scenario approach [32]. It does
not require assumptions on the probability distributions of
the uncertainty and provides guarantees on the probability of
constraint satisfaction.

The method includes two steps. In the first step, for each
t = 1, . . . , Nt, the scenario approach [32] is used to determine,
with a confidence of at least 1 − βt, the minimum volume set
that contains at least 1−εt probability mass of the uncertainty.
Let this set be denoted by �t. To compute this set, the number
of scenarios we need to use is given by

Ns,t ≤ 1

εt

e

e − 1

(
ln

1

βt
+ 4(NW + NT) − 1

)
.

In the second step, we use �t to formulate a robust problem
where the uncertainty is confined in this set. For each t =
2, . . . , Nt, the chance constraint is replaced by the following
robust constraint

Ht(δt, δt−1)x + ht + gt(δt) ≤ 0, ∀(δt, δt−1) ∈ �t × �t−1.
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For t = 1, the constraint is similar except that H1 depends
only on δ1 and we require the constraint to be satisfied for
all δ1 ∈ �1. Following [11], [12], any feasible solution satis-
fying the robust constraints will be feasible for the chance
constraints with a confidence of at least 1 − βt. To solve
the resulting convex problem, standard techniques for robust
optimization can be employed [33].

V. COST PARAMETER RULES

We next derive cost parameter rules that indicate which
reserve resource will be preferred. We base our analysis on
a simpler optimization problem and discuss how the results
give us intuition for the solution of the full problem.

For simplicity, we consider a cost function that minimizes
reserve costs only and we assume symmetric reserve deploy-
ment (i.e., d = d = d, where d is any distribution vector),
ignore the temperature error, and consider a single hour. Let
a scenario i ∈ {1, . . . , Nv} of the total wind power error
be denoted by wi, where Nv is the number of scenarios
that correspond to the vertices of the hyper-rectangular box
defining the robust uncertainty set. The reserve capacities R
will be determined by the worst case reserve actions, e.g.,
RGS = maxi(−dGSwi). Let �w denote the difference between
the extreme values of wi, i.e., �w = maxi(wi) − mini(wi).
Then the simplified optimization problem is

min
d

cT
GSdGS�w + cT

LSdLS�w + cT
GDdGD�w (48)

s.t. 1TdGS + 1TdLS = 1, (49)

1TdGD = 1 + 1TdLS, (50)

dGS, dLS, dGD ≥ 0. (51)

This problem has a trivial solution which schedules secondary
reserve capacity from the cheapest generator if min(cGS) ≤
min(cLS) + min(cGD) and from the cheapest load otherwise.
However, in the full problem, additional constraints (e.g., lim-
its on the amount of reserves each resource can contribute, line
limits) will generally require us to schedule reserve capacity
from multiple generators and loads.

We next derive a stronger cost parameter rule. First, we
remove �w from the cost function since it does not affect
the solution, and define J(d) = cT

GSdGS + cT
LSdLS + cT

GDdGD.
Assume that there exists a d(1) ∈ D1 where D1 is the feasibil-
ity set of (49)–(51), implying that both generators and loads
may provide secondary reserves. Assume also that there exists
a d(2) ∈ D2 where D2 is the feasibility set of (49)–(51) and an
additional constraint 1TdLS = 1, implying that only loads pro-
vide secondary reserves. We would like to find cGS, cLS, cGD

such that J(d(1)) ≥ J(d(2)), i.e., the cost of scheduling any
generator-based reserves is greater than or equal to scheduling
only load-based reserves.

Notice that for every [d(1)
GS, d(1)

LS , d(1)
GD] ∈ D1 there aways

exists [0, d(2)
LS , d(2)

GD] ∈ D2 and d(∗)
LS , d(∗)

GD such that d(1)
LS = d(2)

LS −
d(∗)

LS and d(1)
GD = d(2)

GD−d(∗)
GD. Let α denote the portion of reserves

provided by generators, i.e., 1Td(1)
GS = α. Then, 1Td(1)

LS = 1−α

and 1Td(1)
GD = 2 − α. Also, by definition, 1Td(2)

LS = 1 and

Fig. 3. Influence of temperature forecast profiles on baseline power and
capacity limits. (a), (b) Two temperature forecast profiles, where the black line
shows the temperature forecast and the gray area spans the forecast errors.
(c), (d) Baseline power and power capacity, where the solid gray line shows
the baseline power forecast, the dashed gray lines show the worst-case base-
line, the solid black line shows the power capacity limit forecast, and the
dashed black line shows the worst-case power capacity limit. (e), (f) Energy
capacity, where the solid gray line shows the energy capacity limit forecast,
the dashed gray line shows the worst-case energy capacity limit, and the dot-
ted lines show the tightening of the energy capacity limits due to baseline
errors for n = 12, 6, 4, respectively.

1Td(2)
GD = 2. Then, 1Td(∗)

LS = α and 1Td(∗)
GD = α. Therefore,

J
(

d(1)
)

= cT
GSd(1)

GS + cT
LSd(1)

LS + cT
GDd(1)

GD,

= J
(

d(2)
)

+ cT
GSd(1)

GS − cT
LSd(∗)

LS − cT
GDd(∗)

GD,

and so, if we select the cost parameters such that

cT
GSd(1)

GS − cT
LSd(∗)

LS − cT
GDd(∗)

GD ≥ 0, (52)

we achieve J(d(1)) ≥ J(d(2)). Since the cost parameters are
positive, (52) holds if

min(cGS)1Td(1)
GS − max(cLS)1Td(∗)

LS − max(cGD)1Td(∗)
GD ≥ 0

⇒ (min(cGS) − max(cLS) − max(cGD))α ≥ 0.

Since α ≥ 0, for any d(1) ∈ D1 we can construct a d(2) ∈ D2
such that

min(cGS) − max(cLS) − max(cGD) ≥ 0 (53)

⇒ J
(

d(1)
)

≥ J
(

d(2)
)
.

Similarly, assume that there exists a d(3) ∈ D3 where D3
is the feasibility set of (49)–(51) and an additional constraint
1TdGS = 1 (i.e., α = 1), implying that only generators provide
secondary reserves. We can also show that for any d(1) ∈ D1
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Fig. 4. Costs and secondary reserve (SR) distribution for 13 T cases. (a) Total, dispatch, and redispatch costs. (b) Examples of hourly distribution of the
secondary reserves for n = 12 and T cases #10 and #13. (c) Secondary reserve costs. (d) Total distribution of secondary reserves.

we can construct a d(3) ∈ D3 such that

max(cGS) − min(cLS) − min(cGD) ≤ 0 (54)

⇒ J
(

d(1)
)

≥ J
(

d(3)
)
.

VI. CASE STUDIES

A. Set-Up

We tested the approach on the IEEE 30-bus network using
cost/parameter settings from MATPOWER [34]. We modified
the network to include 4 wind power plants (i.e., NW = 4) con-
nected to buses 1, 2, 22, and 27 with capacities 10, 10, 20, and
10 MW, respectively. We also increased the line capacity limits
by 50%. We defined 13 temperature forecast profiles (referred
to as “T cases”), where the first corresponds to Fig. 3 (a), the
last to Fig. 3 (b), and intermediary cases shift all temperatures
by 1◦ C. We used load profiles from NREL [35] and modeled
all loads as partially controllable. Specifically, we assumed
two-thirds of each load in the first hour of the day correspond-
ing to T case #12 is controllable. Then, for the remainder of
the day, the portion of controllable load is determined by the
temperature. We assumed all loads are affected by the same
temperature, i.e., NT = 1, and symmetric reserve deployment,
though neither assumption is a requirement of the method. We
set the reserve costs to ensure generators reap profit from pro-
viding reserves and loads are generally preferred. Specifically,
we set each generator’s secondary reserve costs to be 5 times
its linear energy cost and redispatch costs to be equal to its
linear energy costs, and we set each load’s secondary reserve
costs to be 0.5 $/MW. Wind power and temperature forecast
error scenarios were generated using real data and the Markov
Chain Monte Carlo mechanism described in [36]. Specifically,
we used forecasted and actual hourly wind power data from
Germany and forecasted and actual hourly temperature data
from eleven weather stations in Switzerland to train a transition
probability matrix that we then used to generate the scenarios.
We set εt = 10% and βt = 10−4 ∀t = 1, . . . , Nt and so we
needed 447 uncertainty scenarios. We evaluated the empirical

violation probability using 10, 000 independent scenarios. All
optimization problems were solved using the solver MOSEK
via the MATLAB interface CVX. Computational times are
presented in Part II and on the order of tens of seconds for
the IEEE 30-bus network.

B. Results

Fig. 3 shows how the baseline power and energy capacity
limits are influenced by the forecast profiles and their errors,
and by the redispatch interval (i.e., 5, 10, or 15 minutes, cor-
responding to n = 12, 6, 4, respectively). To ensure a feasible
dispatch, the controllable load power consumption set points
should lie between the dashed black line and zero in (c),
(d), and the load energy state trajectory should lie between
the dotted lines corresponding to the redispatch interval in
(e), (f). Lower temperatures (left) lead to larger forecasted
reserve capacities (since more electric space heaters are avail-
able) and, subsequently, larger feasible regions. The number
of redispatch intervals influences the feasible region of the
load energy state trajectory, specifically, the more often the
system is redispatched the better it can manage forecast error.
In (f), for n = 6, 4, there is no feasible load energy state
trajectory.

Fig. 4 shows the costs and secondary reserve distributions
for all T cases. The cost parameters satisfy (53). As shown
in (a), the total operational costs decrease with temperature
since the controllable loads (heaters) need to consume less
power. However, as shown in (c), the secondary reserve costs
increase with temperature since loads provide less reserves, as
shown also in (d), in which we have plotted the sum of the
loads’ and generators’ distribution vectors over 24 hours (a
value of 24 corresponds to all secondary reserves being pro-
vided by loads). As shown in (b), generators have to provide
more reserves in the middle of the day when temperatures are
higher.

The worst-case empirical violation probability (over all T
cases and redispatch intervals) is 1.86% as compared to the
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Fig. 5. Allocation of secondary reserves as a function of load secondary
reserve costs and redispatch costs. Yellow (dark blue) corresponds to cases
in which loads (generators) provide all secondary reserves. (a) Area A cor-
responds to (53), Area B corresponds to (54), and Area C corresponds to
neither. (b) Results of each optimization run.

desired probability of 10%. This demonstrates the validity of
the scenario-based method but also its conservatism, which is
inherent since we are using a robust reformulation [11], [12].

Fig. 5 shows the allocation of secondary reserves as a func-
tion of the load secondary reserve costs and the redispatch
costs, allowing us to visualize the cost rules (53) and (54) for
n = 12 and T case #2. To create the plot, we fixed cGS (each
entry taking a value from 5 to 16.25 $/MW) and drew random
values for cLS and cGD that i) satisfied (53), corresponding to
set A; ii) satisfied (54), corresponding to set B; or iii) nei-
ther, corresponding to set C. For each set of cost parameters,
we solved the problem and calculated the total distribution of
secondary reserves to loads and generators. Cost parameter
vectors were mapped to the axes as follows: each value of the
axis up to 5 corresponds to the maximum entry of the vector
(i.e., the highest cost), each value beyond 16.25 corresponds
to the minimum entry of the vector (i.e., the lowest cost), and
each value in between corresponds to either the maximum or
minimum value of the vector. Based on the cost rules, we
would expect loads to provide all reserves for 5 − y − x ≥ 0
(area marked with an A) and generators to provide all reserves
for 16.25 − y − x ≤ 0 (area marked with a B), which is con-
sistent with the plot. Between the two lines (area marked with
a C), we can not predict the outcome based on the cost rules.
Note that the rules only apply when there is sufficient load
flexibility; otherwise the generators will provide reserves.

VII. CONCLUDING REMARKS

We formulated a multi-period CC-OPF to schedule power
production and both generator and load-based reserve capaci-
ties. We modeled controllable loads as thermal energy storage
units and designed a redispatch mechanism to manage their
energy states to reduce uncertainty propagation throughout
the time horizon. We considered uncertainty in both wind
power and outdoor temperature forecasts, where the latter
affects the available capacity from the controllable loads. We
solved the CC-OPF problem using probabilistically robust
optimization. Relations between the reserve cost parameters,
which determine when load-based reserves will be preferred
over generator reserves, were derived.
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