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Abstract— Aggregations of electric loads, like heating and
cooling systems, can be controlled to help the power grid
balance supply and demand, but the amount of balancing
reserves available from these resources is uncertain. In this
paper, we investigate data-driven optimization methods that are
suited to dispatching power systems with uncertain balancing
reserves provided by load control. Specifically, we consider a
chance-constrained optimal power flow problem in which we
aim to satisfy constraints that include random variables either
jointly with a specified probability or individually with different
risk tolerance levels. We focus on the realistic case in which we
do not have full knowledge of the uncertainty distributions and
compare distribution-free approaches with several stochastic
optimization methods. We conduct experimental studies on the
IEEE 9-bus test system assuming uncertainty in load, load-
control reserve capacities, and renewable energy generation.
The results show the computational efficacy of the distribution-
ally robust approach and its flexibility in trading off between
cost and robustness of solutions driven by data.

I. INTRODUCTION

In U.S. competitive electricity markets, system operators
dispatch generators to provide energy and reserves by solving
an optimal power flow (OPF) problem. The objective of
the OPF problem is to minimize system-wide energy and
reserve costs subject to the physical constraints of the system.
Traditionally, the OPF problem is solved as a determinis-
tic optimization problem, using forecasted demand/supply
values. The amount of reserves procured is commonly a
heuristic function of the expected demand/supply uncertainty.
Large amounts of uncertainty in power systems motivates
stochastic optimization approaches for determining reserve
capacities and scheduling generation and reserves. Past work,
e.g., [1]-[3], has focused on managing uncertainty stemming
from renewable energy production and load consumption.

Flexible electric loads, such as heating and cooling sys-
tems, coordinated via load control algorithms, are also capa-
ble of providing reserves [4]. Scheduling load-based reserves
is an especially challenging task because the amount of avail-
able reserves is itself uncertain; specifically, it is a function of
stochastic factors including weather and load usage patterns
[5]. One option for offering these uncertain reserves to the
system is to be conservative and offer only a fraction of the
expected amount. Another option is to offer the expected
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amount but explicitly consider reserve uncertainty within a
stochastic OPF formulation. Ref. [6] formulated a chance-
constrained optimal power flow (CC-OPF) problem to handle
uncertainty in load control reserve capacities, load consump-
tion, and renewable energy production, and solved it with
probabilistically robust design [7]. The method is a robust
reformulation of the scenario approach [8], which requires
no assumptions on or knowledge of uncertainty distributions
but does require significant numbers of “scenarios,” and
therefore data. In practice, such data may not be available,
and robust reformulations, which require less data, are often
overly conservative.

Our goal is to investigate the performance of a variety
of methods to solve CC-OPF problems given limited infor-
mation about uncertainty distributions. We first investigate
solution approaches that require knowledge of uncertainty
distributions and/or significant data: mixed-integer linear pro-
gramming (MILP), reformulation via Gaussian approxima-
tion, and scenario approximation. Then, assuming we do not
know the uncertainty distributions or their forms a-priori, and
do not have sufficient data for scenario approximation, we
apply distributionally robust optimization [9], to demonstrate
“the value of data” for managing uncertainty.

The contributions of this paper are twofold. First, we apply
distributionally robust optimization to CC-OPF problems
with uncertain reserves. Second, we conduct computational
experiments to compare the distributionally robust solu-
tions to solutions generated with more standard stochastic
optimization approaches. Specifically, we compare objec-
tive function values, reliability, and CPU time. Our results
demonstrate that distributionally robust optimization pro-
vides a better trade off between solution cost and robustness.

The remainder of the paper is organized as follows. In
Section II, we describe the CC-OPF models with joint and
individual chance constraints, which are solved via mixed-
integer linear programming reformulations. Section III con-
siders an equivalent conic program of the individual CC-
OPF model by assuming Gaussian distributed uncertainty.
When the distribution is not Gaussian, this convex program
is an approximation of the original CC-OPF model. Section
IV introduces a distributionally robust optimization approach
that uses the first two moments to construct a confidence
set of possible distributions. Using this set, we reformulate
the robust chance constraints as equivalent conic duals and
the CC-OPF problem as a convex program. Section V
describes the simulation setup and Section VI compares the
performance of the different approaches. We summarize the
paper and state future research directions in Section VII.
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II. MODELING CC-OPF VARIANTS

We consider a power system with Np buses, Ng genera-
tors providing energy and reserves, Ny wind farms produc-
ing random energy, and NNy load aggregations consuming
random energy. Additionally, load aggregations can provide
reserves via load control, but the available reserve capacity
is also random. The goal is to minimize the expected costs
of producing energy and providing generator/load reserves
subject to power balance, generator/load constraints, and line
limits. In line with most work on stochastic OPF (e.g., [3],
[10], [11]), we use the DC power flow approximation. Also,
for ease of exposition and results interpretation, we formulate
single-period problems, unlike [6] which considered multi-
period problems with dynamic constraints.

A. Joint and Individual CC-OPF Models

We present two types of CC-OPF models, where the
risk of undesirable outcomes is bounded i) jointly or ii)
individually. Decision variables include energy production
at generators P € RNG | generators’ up- and down-reserve
capacities Rg, R, € RNG, and loads’ up- and down-
reserve capacities Ry, R; € RM.. The actual generator
reserves Rg € RV¢ and load reserves Ry € RV depend
upon actual energy production and consumption. Following
the techniques used in [3], [10], we define additional de-
cision variables dg,d, € R™V¢ and dp,d; € RNt named
“distribution vectors” to distribute real-time supply/demand
mismatch P, € R to generators and loads. The generators’
production Pg is scheduled to cover the difference between
the sum of forecasted loads Pf € RN: and the wind
forecast Pf, € RNV ie., Po = S04 PL, — M Pl ..
where i denotes the i element of the assomgted vector.
The actual wind power Py, the actual load Pr, and the
actual minimum and maximum load [E 1, Pr] are random
variables. Let ¢ = [cg,c1,¢2,Cq,¢q,CL,¢r]T be the cost
vector and [£G7ﬁg] be the min/max generator production.
We formulate a joint CC-OPF model as:

[Joint-CC-OPF]:

min CT[l,PG,PC2;7§G7EGaEL7EL] (D
Nw Ny
st. P, = Z(Pw,i - PJVZ) - Z(PLJ - sz) 2
i=1 i=1
Nc NL _
Zda,i"‘zdbi =1 3
i=1 i=1
Nc NL

Y dgi+ Y dp;=1 €
Rg = dg max{—P,,,0} — d, max{P,,,0} 5)
Ry = dp max{P,,,0} — d; max{—P,,,0} (6)
P(sz’z;)z1_e (7)
T = [PGaRCv'aEGvELvELvdeandLvaL] 2 07 (8)

where (2) calculates the real-time supply/demand mismatch.
Constraints (3)—(4) normalize the distribution vectors, and

(5)—(6) compute the reserve capacity from generators and
from loads, respectively. The joint chance constraint (7)
guarantees that Az > b holds with probability 1 — ¢ where
Ax > b is a set of linear constraints:

Az >b={P; < Ps+Rg < Pg,
ELS-IBL‘FRLS%Ly

_EG < RG < §G7
_EL S RL S RL)
_Hine S Bﬁow 1A é Hine}a (9)
bus * 1nj
where Py = Cg(Pa+Ra)+Cw Py —CrL(PL+RL) € RV
is a vector with the net power injection each bus; P €

RNE=1 is the last N — 1 rows of Py; Cg, Cw, and Cp,
are matrices that map generators/loads to buses; Byow is the
flow admittance matrix; By, is the bus admittance matrix;
and Py, 18 a vector containing the line flow limits.
Alternatively, we _analyze another CC-OPF model where
the constraints in Ax > b are guaranteed individually with
pre-specified probability levels. We formulate it as:

[Individual-CC-OPF]:

min (1)
s.t. (2)—(6), (8)
P(Az>b)21-6 i=1...,m, (10)
where m is the number of constraints in A:c > b. We assume
that A; represents the i row of matrix A and b; is the i
entry of vector b. Therefore, each constraint ¢ in (7) has
exactly one row with probability 1 —¢;. In practice, decision
makers can choose values of ¢; according to the importance
of satisfying each constraint.

B. Solution Approaches

To solve either the joint or individual CC-OPF models, we
first assume that full distributional information of all random
variables is available. Assuming the reserve is symmetric,
ie., dg = do = dg and d;, = d; = dr, we can reformulate
the models as mixed-integer linear programs, and obtain
optimal solutions using off-the-shelf optimization solvers.

Al. Mixed-integer linear programming (MILP) approach
To solve the Joint-CC-OPF, we use the Monte-Carlo
sampling method to generate finite realizations (samples) of
the uncertainty. We enforce Ax > b in sufficient numbers of
samples. This is known as the Sample Average Approxima-
tion (SAA) approach [12] for deriving objective bounds and
feasible solutions to general chance-constrained programs.
Denote () as the set of samples, p° as the probability of
realizing sample s € €, and (A°,b%) as the realization of
(A,b) in sample s. For each s € (), define a binary logic
variable zg such that z;, = 0O indicates that A%x > b° and
zs = 1 indicates that A°x < b°. We reformulate the joint
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chance constraint (7) as
Alx >b° — Mz, Vs € Q,
Z EQpszS <e, and z; € {0,1} Vs € Q,

Y
(12)

where M is a large scalar coefficient. Constraints (11) use
big-M coefficients to enforce A°x > b°® when 2z, = 0 in a
subset of scenarios s in §2. Constraints (12) ensure that the
probability of violating A%z > b°, Vs € Q is no more than
€, and all z, variables are binary valued. We reformulate the
Joint-CC-OPF by replacing (7) with (11)—(12).

Similarly, corresponding to individual constraints (10),
define binary variables Yl _to indicate the satisfaction status
of gach cogstraint A;x > b; in scenario s, such that y; =0
if A;x > b; and y; = 1 otherwise. As a result, constraints
(10) are equivalent to

A > 05 — My  Vs€Q, i=1,....m
> P S i Vi and gk e 0,1} Vs, 4,

where M® is a sufficiently large coefficient for each i =
1,...,m.

(13)
(14)

III. SPECIAL CASES AND APPROXIMATIONS

In this section, we study special cases of the Individual-
CC-OPF in which we can derive convex programs to com-
pute optimal results. We also use the results to derive convex
approximations for general cases.

A2. Reformulation via Gaussian approximation

Assuming Gaussian distributed uncertainty, we reformu-
late the Individual-CC-OPF as a convex program, similar to
[10], [11], which, unlike our formulation, do not consider
load-based reserves.

Without loss of generality, we consider constraints (10) in
an equivalent form

P(Zﬁgbg)zl—ei i=1,...,m, (15)
where only the constraint vector Z; is uncertain and the right-
hand side scalar bj is deterministic. Given a chance constraint
i of the form (10) where both A; and b; are random, we
define an artificial variable z; € R and rewrite A;x > b; as

A +gi1'b <0 & (—gmgi)T(l”xb) <0,

for which_we enforce x, = 1. Correspondingly, we have
A; = (—Ai,bi), T = (x,xb), and b; = O,Vi = 1,...,m in
the above constraint (15).

When A follows a multivariate Gaussian distribution,
denoted by N ~ (p;,%;) with p; and ¥; representing the
mean and covariance of Al, respectively, the random out-
come ALz’ — b} follows a multivariate Gaussian distribution
N ~ (u]z -V, 278,;7). Therefore,

_ LT
P(A;fgb;)—<1><w> i=1,...

16
DI (16)

?m7

following which, we replace (10) by deterministic constraints

V=2 + 0 Y e)VETSiz >0 i=1,...,m, (17)

where ®~1(¢;) is the ¢;-quantile of the Gaussian distribution.
We rewrite (17) as

V= pulz >0 Y1 —e)VaT8 i=1,...

The above are second-order cone constraints if ®~1(1—¢;) >
0, i.e., 1 —¢; > 0.5, which is a mild assumption since a
chance constraint is normally closely related to the quality
of service and thus needs to be satisfied with probability
higher than 0.5.

(18)

7m7

A3. Scenario approximation

Ref. [8] proposed scenario approximations for solving
individual chance constraints by enforcing Aiz > b5, Vi
in all scenarios s of an approximate sample set {2,,. The
scenarios in {2,, could be i) data observations or ii) generated
from known distributions using the Monte Carlo sampling
approach. The advantage of this approach is that it does
not require binary variables z% as in the SAA method in
Al. However, to ensure solution quality, it usually requires
a large sample size |(),,| to guarantee the reliability 1 — €
with high confidence. To use this approach for this problem,
we replace each chance constraint in (10) with

Ajx > b Vs € Qyp. (19)

Remark Both Al and A2 require full distributional knowl-
edge, while A3 requires large sample sizes and significant
computation. (It is shown in [8] that Q| > 2(Ing + n)
where € is the risk parameter, 1 — 3 is the confidence level,
and n is the dimension of z.) The restrictions of these
approaches motivate the search for new data-driven methods.

IV. DISTRIBUTIONALLY ROBUST OPTIMIZATION

When full distributional information of the uncertain pa-
rameters is not available, we can use methods that rely on
historical data, statistical inference, and optimization, such
as distributionally robust optimization [9].

Ad4. Data-driven distributionally robust optimization

This approach builds a confidence set to bound the prob-
ability density function (pdf) of the uncertainty distribution.
Solutions are reliable with respect to a family of unknown
distributions, and the quality of the result is correlated to the
quantity of data. Additionally, solutions are less conservative
than those produced by robust optimization methods and
require less computation than those produced by scenario-
based methods.

We describe the approach using a generic stochastic
program formulated as minge 4 E¢[c(a, )] where a is a
decision vector and ¢ € RX is a random vector, both
affecting the random outcome of an objective cost function
c(a,&). The goal is to minimize the expected cost given
the distribution of ¢ with pdf f(£). When the exact f(¢)
is not known we can build a confidence set D of possible
pdfs for describing the uncertainty £. The distributionally
robust variant of the stochastic program, which minimizes
the worst-case expected cost over the choice of f(&) € D, is

min max E¢le(a, §)]. (20)

acA f(§eD
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For the chance constraints (10), suppose that (/L,E) =
(Af, bf) is determined by the uncertainty . The distribution-
ally robust variant requires that

min ]P’g(ﬁgx ng) >1—¢, Vi=1,...,m.

21
f(§)eD @h

Without loss generality, assume that ﬁf and Ef are affine
combinations of random variable &, i.e.,

K K

A = A5+ Y AS e, =05+ > b5&  (22)
k=1 k=1

where Zfo and gfo represent the deterministic part of /If

and bf, and Afk and bfk for k = 1,...,K are the affine
coefficients. We reformulate (21) as:

K K
A5 + Z A5 | > b5 + Z b3
k=1 k=1

K K
= A+ Y (M) & =T+ DK
k=1 k=1

= AfE=0, (23)
with A7 = [AS,z—15,,. .. ,ngx—ng] and b¥ = —AS z+
Efo. We use the first and second moments of £ to build the
confidence set D (see, e.g., [13]). The details are as follows.

Given samples {¢}Y | of &, we calculate the empirical
mean and covariance matrix as pg = + Zf\il ¢ and X =

LSV (€ — o) (€F — o) T. We build a confidence set

(B[] — po) TS0 (BIE] — po) €m ¢
E[(€ — po)(€ — 1) "] = 7250

where S represents a convex support set of random . The
set D is determined by the estimated mean p, covariance
matrix Yo and by the values of v; and 79, which reflect how
likely & is close to the empirical mean p in terms of the
correlations given by Y. The three constraints in D ensure
that i) values of f(£) sum to 1 over the support set S; ii)
the mean of ¢ lies in an ellipsoid of size 7; centered at the
empirical fi; iii) the true covariance matrix lies in a positive
semi-definite cone bounded by a matrix inequality v23.
H; pi

;r 4qi
G, be the dual variables associated with the three constraints
in D, respectively. The individual chance constraints (21) are
equivalent to

D=1 f(©):

For individual constraints in (21), let 7, , and

V2o - Gi+1—r; + 30 - Hi +11¢: < €y, 24
Gi  —pi 0 LAz
7"I' b = 1/ Az\T 721: TZ 7|’ (25)
-p; l1—m (AP yi + (AF) "o — b
G —op H  »
L NSO ISl Y (26)
-p; 1-—m; p; 4

3

5

2

Fig. 1. IEEE 9-bus network, with added wind generation.

T3k

and y; > 0,V¢ = 1,...,m, where the operator in
(24) represents the Frobenius inner product of two matrices
(ie., A-B = tr(ATB)). Note that the above approaches
for bounding the unknown f(§) are general and allow the
uncertainty £ to be time-varying, correlated, and endogenous.

V. SIMULATION SETUP

For our computational experiments, we use the IEEE 9-
bus system, shown in Fig. 1, with reserve costs cg =
ce = [5,6,7] (corresponding to buses 1, 2, and 3) and
¢ = ¢; = [1,1,1] (corresponding to buses 5, 7, and 9).
Parameters relevant to the DC power flow approximation
were calculated with data obtained from MATPOWER [14].
We add one wind generator at bus 6 with rated capacity 75
MW and forecasted output 50 MW. We use load forecasts
of Pg = [90,100,125]" MW and assume 80% of the load
at each bus is perfectly forecastable and uncontrollable. We
assume the remaining load at each bus is controllable but
uncertain (in terms of both consumption and min/max load).

We assume the controllable loads are aggregations of elec-
tric heating loads, which can be modeled as energy storage
units with power and energy capacities that vary with outdoor
air temperature [15]. While, in practice, load uncertainty is
a function of a variety of complex and correlated factors [5],
for simplicity, we assume that, given a temperature forecast
or realization, ﬁL, EL, and Pj can be determined from
a look-up table. Therefore, we consider only two types of
uncertain variables: temperature and wind power infeed.

We use the same look-up table as was used in [6] to
determine load consumption (Pr), power capacities, and
energy capacities of aggregations of residential heat pump
heating systems as a function of outdoor air temperature.
We scale these values to ensure that our assumed temperature
forecasts, i.e., T = [13,10, 14]T °C, produce the assumed
load forecasts. To determine the minimum and maximum
load (P;, P1), we assume a load aggregation providing re-
serves must be able to operate at full capacity for 15-minutes
and must operate within its power capacity. Specifically,

BL = max(PL — 4(Ecap/2)7 0),
ﬁL = min(4(Ecap/2) + PL7 Pcap)a

where E,, is the energy capacity (i.e., maximum energy
increase plus maximum energy decrease from the baseline
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energy consumption) and P, is the power capacity (i.e.,
maximum power consumption).

We use forecasted and actual outdoor air temperatures
from eleven weather stations in Switzerland to compute
temperature errors, and then add these errors to the assumed
temperature forecasts to create temperature samples. Note
that this method assumes the error is independent of the
magnitude of the temperature forecast, which is not particu-
larly realistic. In future research, a model could be used to
generate more realistic temperature error samples. However,
in practice, we would need to collect significantly more data
to be able to apply scenario approximation (which points to
the key drawback of this approach).

We use the same wind power scenarios as in [6]. In that
paper, forecasted and actual hourly wind power data from
Germany from 2006-2011 were used together with a Markov
chain mechanism [16], to generate the appropriate number of
scenarios (again, we were unable to obtain sufficient amounts
of real data). Here, since we assume a wind forecast of
two-thirds of rated capacity, we extract wind power errors
associated with a real wind power forecast of approximately
two-thirds of rated capacity, and we scale these errors as a
function of our assumed rated capacity.

We follow the above procedures to randomly generate
10,000 samples of sets of parameters Py, Pr, P;, Pr,
denoted by . We use € = ¢; = 5%, 10%, 15%. Recall that €
is the risk tolerance in the joint chance constraint (7) in the
Joint-CC-OPF and ¢; is the risk tolerance for violating the
i chance constraint (10) in the Individual-CC-OPF.

We randomly select data samples with appropriate sizes
from set 2, and test all four approaches (A1-A4). For the
MILP approach (Al), we solve the MILP reformulations
of the Joint-CC-OPF and Individual-CC-OPF. For other ap-
proaches (A2-A4), we solve the Individual-CC-OPF models.
For approaches Al, A2, and A4, we pick 20 arbitrary
samples from 2. When ¢; = 5%, 10%, 15% under the same
confidence level 1 — 3; = 0.95, the scenario approximation
approach (A3) requires =~ 900, 500, 300 random samples,
respectively, for approximating each individual chance con-
straint ¢ (note n = 21 in our problem). For the distribution-
ally robust approach (A4), we construct the confidence set
of the unknown pdf of £ by matching the first and second
moments of the 20 samples, while the Gaussian approxima-
tion approach (A2) uses the same moment information for
constructing the conic constraint (18).

The computations are performed on a Windows 7 machine
with Intel(R) Core(TM) 17-2600 CPU 3.40 GHz and 8GB
memory. All models are solved by CVX implemented in
Matlab with MOSEK as the optimization solver.

VI. COMPUTATIONAL RESULTS

To compare the solutions of the approaches, we compare
the CPU time, objective values, and solution reliability.
To assess the reliability of a particular solution, we test
the optimal solution x on all 10,000 samples in set 2,
and determine the percentage of the samples in which the
constraints are satisfied jointly.

TABLE I. Comparison of the results of Joint-CC-OPF and Individual-CC-
OPF solved by Al

l—€eorl—¢ = 9500% 90.00%  85.00%

average 1348.79  1347.57 1345.16

Objective cost  min 1327.77 132733 1327.33

max 1363.47 1363.47 1362.11

average 77.01 73.44 68.38

Joint Reliability (%) min 7.69 1.11 1.11
max 94.83 94.83 91.66

average 2.04 2.20 2.53

CPU seconds ~ min 1.39 1.50 1.54

max 3.84 3.71 4.70

average 1345.60 1343.09  1340.72

Objective cost ~ min 1336.43 133547  1332.26

max 1356.52 135839  1358.18

average 72.13 67.77 60.35

Individual Reliability (%) min 45.75 39.30 29.31
max 89.57 91.21 88.27

average 5876.22  4737.06  2308.63

CPU seconds ~ min 130.96 3.06 3.29

max 32816.60 131206.17 127438.50

First, we compare the results of the Joint-CC-OPF
and Individual-CC-OPF given by Al. For ¢ = ¢;
5%, 10%, 15%, we perform 100 repetitions and report re-
sults in Table I, which presents the average, minimum, and
maximum values of the objective cost, reliability, and the
CPU time for solving instances of the two models. We
observe that the Individual-CC-OPF solutions have lower
objective costs since we can be more flexible in satisfying
constraints individually at different risk tolerance levels com-
pared with satisfying them jointly. However, the cost benefit
is not obvious since it takes significantly longer to solve
the Individual-CC-OPF since its MILP reformulation has
many more binary variables and constraints. Both models can
achieve sufficiently high reliability (i.e., the max reliability
values can be higher than the required 1 — €), but do not on
average. Solutions of the Joint-CC-OPF yield more diverse
reliability results, and can perform poorly (i.e., the min
reliability values can be much less than the required 1 — €).

Next, we present the results of 100 repetitions of solving
different variants of Individual-CC-OPF with approaches A2,
A3, and A4. The average, minimum, and maximum values
of the objective values, reliability, and CPU time are given in
Tables II-IV for each approach and each risk tolerance level.
Comparing the results, the distributionally robust approach
A4 outperforms the other two in terms of the objective
cost and reliability. All the three approaches require less
CPU time to solve the Individual-CC-OPF as compared to
approach Al. A3 takes the longest time amongst the three
approaches due to its large sample sizes. Moreover, the
CPU time of A3 depends on the number of samples we
select, while the CPU time of approaches A2 and A4 are
independent of the sample size. The objective cost values of
A4 are lower on average than the ones yielded by A3 because
A4 is less conservative, employing moment information and
bounding the worst case probability for any distribution that
matches the moments. As expected, A3 yields the highest
objective cost and the highest reliability since it requires
no constraint violation for a large subset of samples in set
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TABLE II. Results of Individual-CC-OPF solved by the Gaussian approxi-
mation approach A2

TABLE IV. Results of Individual-CC-OPF solved by the distributionally
robust approach A4

1—¢ = 9500% 90.00% 85.00% 1—¢ = 9500% 90.00% 85.00%
average 1348.97 1343.53 1339.87 average 1392.64 1369.23 1359.97
Objective cost min 1339.61 1336.14 1333.80 Objective cost min 1352.46 1346.62 1346.62
max 1357.95 1350.66 1345.73 max 1457.81 1385.24 1372.75
average 82.15 70.03 58.87 average 99.50 97.97 94.51
Individual Reliability (%) min 64.79 51.12 39.90 Individual Reliability (%) min 91.40 91.40 83.29
max 94.40 86.32 76.68 max 99.96 99.70 99.18
average 0.63 0.61 0.62 average 6.63 6.98 6.95
CPU seconds min 0.59 0.59 0.59 CPU seconds min 6.13 4.73 6.27
max 0.72 0.64 0.72 max 8.19 8.44 7.83
TABLE III. Results of Individual-CC-OPF solved by the scenario approxi-
ACKNOWLEDGMENT

mation approach A3

1—¢ = 9500% 90.00% 85.00%

average 1407.72 1391.90 1383.31

Objective cost min 1370.76  1364.91 1360.71

max 1525.17 1487.74 1521.52

average 99.59 99.27 98.85

Individual Reliability (%) min 98.76 97.82 96.30
max 99.91 99.89 99.83

average 54.96 17.69 8.75

CPU seconds min 53.74 15.93 8.53

max 56.91 19.45 9.22

Q. Approach A4 generally yields higher objective cost than
A2, but much better reliability since A2 assumes Gaussian-
distributed uncertainty and does not yield sufficiently high
rates of reliability for any risk tolerance level (i.e., even
the max reliability values in Table II are much lower than
the required 1 —¢;, Vi = 1,...,m.) Therefore, A4 is a
much more reliable optimization approach than Al and A2
for solving the Individual-CC-OPF and also has significantly
shorter CPU time than both Al and A3.

VII. CONCLUDING REMARKS

In this paper, we studied CC-OPF problems in which
the risk of undesirable outcomes is bounded by joint or
individual chance constraints. We modeled uncertainty from
several sources including renewable energy production, load
consumption, and, importantly, load-based reserve capacities.
We compared the results of four approaches, in terms of the
objective value, reliability, and CPU time. Under the real-
istic assumption that the distribution of uncertain variables
is not known, we showed that the distributionally robust
optimization reformulation yields high reliability at relatively
low cost and CPU time (especially as compared to scenario
approximation approaches). This provides decision makers a
nonparametric distribution-free method for solving CC-OPF
problems under ambiguous distributional information.

Future research includes more computational tests of each
approach using more diverse reference samples and sample
sizes. We are also interested in quantifying the relationship
between result quality and the amount of data we use to
construct the confidence set of the probability distribution
function. Additionally, we aim to test the distributionally ro-
bust approach on multi-period problems that capture the full
complex and correlated uncertainty associated with reserves
provided by loads.

Special thanks to M. Vrakopoulou for providing the wind
power scenarios.
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