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Introduction

Figure 1: IEEE 9-bus system
with one wind farm.

Wind, solar, and other uncertain power generations
have increased to reduce the environmental impact
of the electric grid. Power system operators thus
will have to purchase more reserves to balance real-
time supply-demand imbalances stemming from the
large amount of uncertainty. Scheduling load-based
reserves is an especially challenging task because
the amount of available reserves is itself uncertain;
specially, it is a function of stochastic factors includ-
ing weather and load usage patterns. One option is
to offer the expected amount but explicitly consider
reserve uncertainty within a stochastic Optimal power flow (OPF) formulation. We for-
mulated a chance constraints to handle the uncertainty in load control reserve capcities.
Previously, a chance-constrained optimal power flow (CC-OPF) is reformulated by the
scenario approach (Margellos et al., 2014), which requires no assumptions of uncer-
tain distributions but does require significant numbers of uncertain scenarios, therefore,
data. In practice, such data may not be available. While, robust reformulations require
less data and are more conservative.

Objectives
The challenging part in CC-OPF problems (J-CC-OPF and I-CC-OPF) is how to refor-
mulate chance constraints (1) so that our problems are tractable.

P
(
Ãix ≥ b̃i

)
≥ 1− εi i = 1, . . . ,m. (1)

We provide a variety of methods to handle the chance constraints and investigate the
performance of methods given limited information about uncertainty distributions, which
is specified as follows
1. Investigate solution approaches that require knowledge of uncertainty distributions

and/or significant data: mixed-integer linear programming, reformulation via Gaussian
approximation, and scenario approximation.

2. Assume that we do not know the uncertainty distributions or their forms a-priori, and
do not have sufficient data for scenario approximation. We apply the distributionally
robust (DR) optimization approach to use “the value of data” to manage uncertainty.

Materials and Methods
We provide the key parts of reformulations in each method we are going to investigate
as follows
1. refomulate (1)
(a) A1: Mixed Integer Linear Programming (MILP) (Luedtke and Ahmed, 2008)

Asix ≥ bsi −Myis ∀s ∈ Ω, i = 1, . . . ,m (2)∑
s∈Ω

psyis ≤ εi, ∀i, and yis ∈ {0, 1} ∀s, i, (3)

where M is a large scalar coefficient.
(b) A2: Gaussian Approximation

Assume the uncertainty is Gaussian distributed.

b′i − µ
T
i x̄ ≥ Φ−1(1− εi)

√
x̄TΣix̄ i = 1, . . . ,m. (4)

(c) A3: Scenario Approximation (Campi et al., 2009)

Asix ≥ bsi ∀s ∈ Ωap. (5)

2. reformulate the DR variant

inf
f (ξ)∈D

Pξ(Ã
ξ
ix ≥ b̃

ξ
i ) ≥ 1− εi ∀i = 1, . . . ,m. (6)

(a) A4: Distributionally Robust Optimization
Given samples {ξi}Ni=1 of ξ, we first calculate the empirical mean and covariance ma-
trix as µ0 = 1

N

∑N
i=1 ξ

i and Σ0 = 1
N

∑N
i=1(ξ−µi0)(ξ−µi0)T, and then build a confidence

set (Delage and Ye, 2010)

D =

f (ξ) :

∫
ξ∈S f (ξ)dξ = 1

(E[ξ]− µ0)T(Σ0)−1(E[ξ]− µ0) ≤ γ1

E[(ξ − µ0)(ξ − µ0)T] � γ2Σ0

 .

(Jiang and Guan, 2013) Let ri,
[
Hi pi
pTi qi

]
, and Gi be the dual variables associated

with the three constraints in the above confidence set D, respectively. The individual
chance constraints (6) are equivalent to

γ2Σ0 ·Gi + 1− ri + Σ0 ·Hi + γ1qi ≤ εiyi (7)[
Gi −pi
−pTi 1− ri

]
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]
� 0,
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]
� 0, yi ≥ 0, i = 1, . . . ,m, (9)

where operator “·” in constraint (7) represents Frobenius inner product of two matri-
ces (i.e., A · B = tr(ATB)). This is a semi-definite program and can be solved by
commercial solvers.

Results and Discussion
We present the results of J-CC-OPF/I-CC-OPF that correspond to approaches A1/A1–
A4 on the IEEE 9-bus system (Figure 1). We use the same randomly selected 20 sam-
ples as A1 to derive the first and second moments that are needed by A2 and A4; for A3,
we randomly select 900, 500, 300 samples with 1 − εi = 95%, 90%, 85%, respectively.
The average, minimum, and maximum values of the objective values (i.e., Obj.), reliabil-
ity (i.e., Rel(%)), and CPU time (i.e., CPU) are given for each approach in Table 1. Since
the results under different risk levels for each approach are similar in their pattern. We
only give the results of I-CC-OPF from A4 under different risk levels in Table 2.

Table 1: Results for IEEE 9-Bus System with 1− εi = 95%

Table 2: Results of I-CC-OPF solved by the DR approach A4

A2–A4 use much shorter time to compute I-CC-OPF. Approach A3 takes the longest time
due to the large sample sizes it requires. Moreover, the solution time of A3 depends on
the number of samples we select, while those of A2 and A4 are independent of samples
sizes. The objective cost of A4 are averagely lower than that of A3, which is because A4
is less conservative and involved only with the moment information. As a trade-off, the
lowest reliability of A4 is less than that of A3.

Conclusions
The DR approach provides decision makers a nonparametric distribution-free method
for solving CC-OPF problems under ambiguous distributional information. It is less
computationally-intensive and requires less data than scenario-based methods. While
the DR approaches perform better than the Gaussian approxiamtion or sample average
approximation (MILP formulation).
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