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Abstract—In this paper, we formulate a two-stage distribution-
ally robust (DR) model for the optimal power flow (OPF) problem
in the presence of uncertainties from wind power generation
and load-based reserves. Assuming ambiguous distributions of
the random variables, we minimize the costs of generation,
reserves, and the worst-case expected value of the penalty cost
of violating constraints. We consider a lifted support and a
distributional ambiguity set parameterized by empirical means
and absolute deviations of the random variables. We adopt an
enhanced linear decision rule (ELDR) to derive a quadratic
programming reformulation of the DR-OPF model, and compare
its performance to that of a DR chance-constrained OPF model.
We study the optimal solution patterns of the two approaches,
compare their performance in out-of-sample simulations, and also
numerically justify the use of the ELDR.

Index Terms—load control, distributionally robust optimiza-
tion, enhanced linear decision rule

I. INTRODUCTION

Aggregations of electric loads can provide reserves to power
systems to help manage uncertain power injections from re-
newables and loads [1]. However, because load usage patterns
and ambient conditions are uncertain, we do not usually have
perfect distributional information about the capacities of load-
based reserves when we solve the optimal power flow (OPF)
problem [2].

To manage uncertainty from renewables, loads, and/or load-
based reserves researchers have applied robust and stochastic
optimization approaches to the OPF problem, e.g., [3]–[5]. A
common approach is to use chance constraints in which the
probability of constraint violation is restricted [3], [6]–[11].
To handle cases in which the uncertainty distributions are un-
known, recent work has developed distributionally robust (DR)
OPF approaches, e.g., [12]–[16], which ensure that constraints
are satisfied for all distributions within an ambiguity set. A
two-stage DR-OPF problem is posed in [16] for joint energy
and reserve dispatch with renewable generation.

Reference [17] develops a modular and tractable DR adap-
tive optimization framework by assuming the recourse decision
is an affine function of the uncertainties (i.e., a linear decision
rule (LDR)), which adapts decisions to uncertainties while
evaluating the worst-case expected value of the second-stage
cost over a distributional ambiguity set that incorporates the
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support and moment information. They propose an enhanced
LDR (ELDR), which lifts the uncertainty to a higher dimen-
sional space with auxiliary variables to address infeasibility
issues of the LDR in complete recourse problems. This method
has been applied to a unit commitment problem with uncertain
wind generation [18].

In this paper, we develop a two-stage DR-OPF model
to optimize energy and reserve dispatch under uncertainty
in renewable generation, load consumption, and load-based
reserve capacities. We use the method of [17], including the
ELDR, to reformulate and solve the DR-OPF model. We
compare the performance of the DR-OPF to that of a DR
chance constrained OPF (DR CC-OPF) model and show that,
in some circumstances, the DR-OPF produces solutions that
are lower cost than and comparably reliable to the DR CC-
OPF. However, in general, the performance of the DR-OPF
and the DR CC-OPF is similar. We also numerically justify
the applicability of the ELDR.

The remainder of this paper is organized as follows. In
Section II we formulate the two-stage DR OPF problem and
derive a quadratic programming (QP) reformulation. Section
III describes the computational setup and Section IV compares
the DR-OPF to the DR CC-OPF by showing their optimal
solution patterns and out-of-sample performance based on the
IEEE 9-bus system. In Section V, we conclude the paper and
present future research directions.

II. FORMULATION

In Section II-A, we propose a two-stage DR-OPF variant
of the single-stage DR CC-OPF model in [15], which as-
sumes the DC power flow model. The DR-OPF optimizes
energy dispatch in the first stage before realizing uncertain
wind generation, load consumption, and load-based reserve
capacities. Instead of measuring the uncertain outcomes using
chance constraints, we define second-stage auxiliary variables
as violations of constraints due to uncertainty, and penalize
the amounts of constraint violation. The uncertainties have
unknown distributions but we assume that we have historical
data from which we know the empirical mean values and
average absolute deviations, and we use them to construct an
ambiguity set of possible distributions (see Section II-B). In



Section II-C, we present a QP reformulation of the DR-OPF
by applying the ELDR from [17].

A. Two-stage DR-OPF Formulation

We use the same notation as in [15] and 〈·〉 to denote
a stacked column vector. The generation, generator-based
(G) and load-based (L) reserve capacities, and distribution
vectors (which provide a policy for allocating real-time sup-
ply/demand mismatch to reserve providers (see [9], [19])) are
defined as “here-and-now” (first-stage) decision variables, i.e.,
x = 〈PG, RG, RG, RL, RL, dG, dL〉, which is decided before
realizing the uncertainty.

DR-OPF:

min
x∈X

{
cTx〈1, PG, P 2

G, RG, RG, RL, RL〉+ sup
P∈F

EP [Q(x, z̃)]

}
,

where cx = 〈c0, c1, c2, cG, cG, cL, cL〉 is the cost vector
and z̃ includes all uncertain variables including wind power
production, load consumption, and load-based reserve capac-
ities (upper and lower), i.e., z̃ = 〈P̃W , P̃L, P̃L, P̃L〉. The
feasible region X consists of all constraints that do not involve
uncertainty, i.e.,

NG∑
i=1

PG,i =

NL∑
i=1

P fL,i −
NW∑
i=1

P fW,i, (1)

NG∑
i=1

dG,i +

NL∑
i=1

dL,i = 1, (2)

x ≥ 0, (3)

where (1) enforces power balance and (2) normalizes the
distribution vectors. The second term in the objective function
is the worst-case (maximum) expected cost incurred in the sec-
ond stage over an ambiguity set F of an unknown probability
measure P of z̃, which we will discuss in detail in Section II-B.
Let RG and RL be the actual reserves provided by generators
and loads, respectively, i.e., RG = −dGPm and RL = dLPm,
where Pm =

∑NW

i=1 (P̃W,i−P fW,i)−
∑NL

i=1(P̃L,i−P fL,i) is the
real-time supply/demand mismatch. Then,

Q(x, z̃) = min
y∈Y

cTy y, (4)

where the feasible region Y contains the following constraints

−Pline ≤ Bflow

[
0

B−1bus P̂inj

]
+ yline,l,

Bflow

[
0

B−1bus P̂inj

]
− yline,u ≤ Pline, (5)

PG ≤ PG +RG + yGl,

PG +RG − yGu ≤ PG, (6)
P̃L ≤ P̃L +RL + yLl,

P̃L +RL − yLu ≤ P̃L, (7)
−RG ≤ RG + yRGl,

RG − yRGu ≤ RG, (8)
−RL ≤ RL + yRLl,

RL − yRLu ≤ RL, (9)
y ≥ 0, (10)

where y = 〈yGl, yGu, yLl, yLu, yRGl, yRGu, yRLl, yRLu, yline,l, yline,u〉
consists of the “wait-and-see” (second-stage) recourse
variables, i.e., violations of the second-stage constraints
by decision x after realizing z̃. The cost vector
cy = 〈cGl, cGu, cLl, cLu, cRGl, cRGu, cRLl, cRLu, cline,l, cline,u〉
corresponds to the variable y. Constraints (5)–(9) limit
line flows, generation, load, generator-based reserves, and
load-based reserves, respectively.

B. Distributional Ambiguity Set

We use [I] to denote the set of indices: {1, . . . , I}. Consider
the random vector z̃ = [z̃i, i ∈ [I1]]

T ∈ RI1 of uncertainties
with I1 = NW+3NL, where NW is the number of wind power
plants and NL is the number of loads (and we assume all loads
can provide reserves). Recall P as the true distribution measure
of z̃, and let P0(RI1) be the set of all possible probability
measures of z̃ on RI1 . The distributional ambiguity set is

F =

P ∈ P0

(
RI1
)

:
EP[z̃] = µ
EP[|z̃i − µi|] ≤ σi, ∀i ∈ [I1]
P(z̃ ∈ V) = 1

 ,

(11)
where V is the support of z̃ specified as

V =
{
z̃ ∈ RI1 : zi ≤ z̃i ≤ zi, ∀i ∈ [I1]

}
. (12)

The three constraints in (11) require that i) the mean of the
random parameter matches a given vector µ (e.g., an empirical
mean), ii) the average absolute deviation is bounded by an
empirical value σi for each i ∈ [I1], and iii) all realizations of
z̃ are within the support V .

Following [17] and [20], we define a lifted ambiguity set
to encompass the primary random variable z̃ and an auxiliary
(or lifted) random variable ũ as

G =

Q ∈ P0

(
RI1 × RI2

)
:

EQ[z̃i] = µi, ∀i ∈ [I1]
EQ[ũi] ≤ σi, ∀i ∈ [I2]
Q((z̃, ũ) ∈ V̄) = 1

 ,

(13)



where V̄ is the lifted support set defined as

V̄ =
{

(z̃, ũ) ∈ RI1 × RI2 : z̃ ∈ V, |z̃i − µi| ≤ ũi, i ∈ [I2]
}
.

(14)
Here I2 is the dimension of ũ, which equals the dimension of
I1 in this paper since we associate one element of ũ with each
element of z̃. Since functions |z̃i−µi| are piecewise linear, we
can express the lifted support set V̄ in a general linear form

V̄ =
{

(z̃, ũ) ∈ RI1 × RI2 : Cz̃ +Dũ ≤ h
}
, (15)

where C ∈ RM0×I1 , D ∈ RM0×I2 , and h ∈ RM0 , with M0

as the number of constraints in the lifted support set V̄ .
The ambiguity set F is equivalent to the set of marginal

distributions of z̃ under probability Q, for Q ∈ G in (13).
Although sets F and G are essentially the same with respect
to z̃, the introduction of the auxiliary variable ũ increases
the flexibility of implementing the LDR (see [17] for more
discussions about this ambiguity set variant).

C. Reformulation using Enhanced Linear Decision Rule

The DR-OPF in Section II-A is intractable because y is
an arbitrary function of the uncertainty (see [5], [21]). To
overcome this intractability, following [17], we apply the
ELDR to restrict y to a class of affine functions of z̃ and
ũ, leading to a QP reformulation of the DR-OPF.

Let M1 be the number of constraints in Y , N1 be the
dimension of x, and N2 be the dimension of vector y. We
formulate Q(x, z̃) in (4) as

Q(x, z̃) = min
y

{
cTy y : A(z̃)x+By ≥ b(z̃)

}
, (16)

where A ∈ RM1×N1 , B ∈ RM1×N2 , and b ∈ RM1 . Functions
A and b are affinely dependent on z̃, i.e., A(z̃) = A0 +∑I1
i=1A

iz̃i, b(z̃) = b0 +
∑I1
i=1 b

iz̃i, where A0, A1, . . . , AI1 ∈
RM1×N1 , and b0, b1, . . . , bI1 ∈ RM1 . We apply the ELDR

y(z̃, ũ) = y0 +
∑
i∈W

y1i z̃i +
∑
j∈U

y2j ũj , (17)

where y0 ∈ RN2 , y1i ∈ RN2 and y2j ∈ RN2 are coefficients of
the uncertainties. The sets W ⊆ [I1] and U ⊆ [I2] reflect the
information dependency of adaptive decision y(z̃, ũ), which
depends on a subset of the uncertainties. By replacing y
in (16) with (17), we obtain the upper bound for β(x) =
supP∈F EP [Q(x, z̃)], given in [17],

β(x) = min
y0,y1,y2

sup
Q∈G

EQ
[
cTy y(z̃, ũ)

]
(18a)

s.t. A(z̃)x+By(z̃, ũ) ≥ b(z̃), ∀(z̃, ũ) ∈ V̄. (18b)

After taking the dual of the inner maximization problem, (18)
is equivalent to the monolithic minimization problem

β(x) = min
r,s,t,y0,y1,y2

r + sTµ+ tTσ (19a)

s.t. r + sTz̃ + tTũ ≥ cTy y(z̃, ũ) ∀(z̃, ũ) ∈ V̄ (19b)
(18b)
t ≥ 0, (19c)

where s ∈ RI1 , t ∈ RI2 , and r ∈ R are dual variables
associated with the three constraints in the ambiguity set G.
Note that (19) is a robust optimization model with uncertainty
set V̄ of (z̃, ũ). By moving every term of each constraint in
(18b) and (19b) to the left side, we consider optimization
problems with the left sides as objective functions subject to
constraints in the lifted support V̄ . Associating dual variables
with the constraints of the support V̄ , we then reformulate (19)
as a QP problem

min
r,s,t,y0,y1,y2,π

r + sTµ+ tTσ (20a)

s.t. r − cTy y0 ≥ πT
0 h (20b)

πT
0Ci = cTy y

1
i − si, i ∈W (20c)

πT
0Ci = −si, i ∈ [I1]/W (20d)
πT
0Dj = cTy y

2
j − tj , j ∈ U (20e)

πT
0Dj = −tj , j ∈ [I2]/U (20f)
A0
l x+Bly

0 − bl ≥ πT
l h, l ∈ [M1] (20g)

πT
l Ci = bil −Ailx−Bly1i , l ∈ [M1], i ∈W (20h)
πT
l Ci = bil −Ailx, l ∈ [M1], i ∈ [I1]/W (20i)
πT
l Dj = −Bly2j , l ∈ [M1], j ∈ U (20j)

πT
l Dj = 0, l ∈ [M1], j ∈ [I2]/U (20k)
π0 ≥ 0, πl ≥ 0, l ∈ [M1] (20l)
t ≥ 0, (20m)

where πl ∈ RM0 for l = 0, 1, . . . ,M1 are dual variables
of constraints in the lifted support set V̄ . We transform the
semi-infinite constraints (18b) and (19b) into a finite number
of dual linear constraints. The vector Ci is the ith column of
matrix C, Dj is the jth column of matrix D (both appearing
in the linear form (15) of the lifted support set V̄), and bil is
the lth element of vector bi. The vectors Ail and Bl represent
the lth row of matrices Ai and B, respectively. The number of
constraints in (20) grows polynomially in the size of sets W
and U .

III. COMPUTATIONAL SETUP

We solve the QP approximation of the DR-OPF (20) on the
IEEE 9-bus system from MATPOWER [22]. As in [15], we
add a single wind power plant to Bus 6 (75 MW rated capacity,
50 MW forecasted output) and assume that 30% of the load
at Buses 5, 7, and 9 (P fL = (90, 100, 125) MW) is uncertain
but can provide reserves. We assume the remaining 70% is
perfectly forecastable. We assume that all generator-based
reserves are higher-cost than load-based reserves, specifically,
cG = cG = 10× 1 and cL = cL = 5× 1, where 1 is a vector
of ones of appropriate size. We use the same procedure as
in [15] to generate 10,000 i.i.d. samples of P̃W , P̃L, P̃L, P̃L,
comprising the sample set Ω. As in [15], we assume that
a decision maker has partial knowledge of Ω, i.e., 20 data
points out of Ω. With these sample points, we calculate the
empirical mean values and average absolute deviations, used
as µ and σ in the lifted ambiguity set G. The upper bound
and the lower bound of z̃ in the lifted support V̄ are set



as the the maximum and minimum values in the 20 sample
set. Except the line flow constraints (5), the penalty costs
for violations on lower bounds cGl, cLl, cRGl, cRLl are 500 and
for upper bounds cGu, cLu, cRGu, cRLu are 1000. We vary cline,u
and cline,l between 250 and 400 to penalize yline,l and yline,u,
respectively, in Sections IV-A and IV-B. All computations are
performed on a Windows 10 machine with Intel(R) Core(TM)
i5-5200U CPU 2.20 GHz and 4GB memory. All optimization
problems are solved by CVX implemented in MATLAB with
Mosek 7.1.0.12 as the solver.

IV. COMPUTATIONAL RESULTS

We compare the solution patterns of the DR-OPF and the
DR CC-OPF in Section IV-A and out-of-sample performance
in Section IV-B. In Section IV-C, we demonstrate the linear
relationship between constraint violation amounts and uncer-
tain quantities to justify the use of the ELDR. In the DR CC-
OPF, instead of penalizing the violation of constraints (5)–(9)
in the objective function, individual DR chance constraints
are employed to ensure that the probability of violating these
constraints is less than ε ∈ [0, 1].

A. Solution Patterns

1) Uncongested system: We set cline,u = cline,l and vary their
values among {250, 280, 310, 340, 370, 400} for the DR-OPF.
For the DR CC-OPF, we vary the desired reliability 1 − ε
among {95%, 85%, 75%, 65%}. Figure 1 shows the solution
patterns under different costs/reliabilities when the system is
uncongested. The bars corresponding to PG1, PG2, PG3 are the
generation amounts at Generators 1–3. The bars corresponding
to R∗G = RG + RG and R∗L = RL + RL are the reserve
capacities at generators and loads, respectively. The bars
corresponding to R∗ are the total reserve capacities. The
solutions to PG are identical for both models. As shown in
Fig. 1a, for all values of cline,u = cline,l the total reserve capacity
is the same (i.e., 53.83 MW). This is because the total reserve
capacity is decided by the uncertainty support size and we keep
the same support size for all penalty cost choices. Moreover,
the second-stage expected penalty costs are all zero, because
the constraints (5)-(10) are easily satisfied in the uncongested
system. As shown in Fig. 1b, reserve capacities increase as
1 − ε increases, since more reserves can better manage the
uncertainties and thus ensure higher reliability.

2) Congested system: We decrease the line flow limit
between Bus 5 and Bus 6 from 150 MW to 40 MW to
produce congestion. As shown in Fig. 2a, no reserve capacity
is assigned to any generator for cline = 250 and 280, but for
cline ≥ 310, the generator at Bus 3 takes over for the load at
Bus 5. In contrast, in Fig. 2, the load at Bus 7 provides a larger
share of the reserves as 1− ε increases, and the generators do
not need to provide reserves. For both models, the total reserve
capacity is the same as in the uncongested system.

B. Out-of-Sample Test Results

1) Result comparison with similar costs: Using the con-
gested system, we consider cases with different congested

TABLE I: Comparison of cost, reliability, and total reserve
capacity for the DR-OPF and DR CC-OPF

Line Model Cost Reliability R∗

1-4 DR-OPF 4388.16 100.00% 53.83
DR CC-OPF 4401.08 100.00% 56.42

4-5 DR-OPF 4369.12 100.00% 53.83
DR CC-OPF 4382.05 100.00% 56.42

5-6 DR-OPF 4651.04 100.00% 53.83
DR CC-OPF 4655.00 99.95% 56.42

3-6 DR-OPF 4437.25 100.00% 53.83
DR CC-OPF 4450.17 100.00% 56.42

6-7 DR-OPF 4388.73 99.89% 53.83
DR CC-OPF 4396.97 99.78% 56.42

7-8 DR-OPF 4369.12 100.00% 53.83
DR CC-OPF 4382.05 100.00% 56.42

8-2 DR-OPF 4787.64 100.00% 53.83
DR CC-OPF 4800.56 100.00% 56.42

8-9 DR-OPF 4375.74 99.99% 53.83
DR CC-OPF 4382.06 98.45% 56.42

9-4 DR-OPF 4371.73 99.55% 53.83
DR CC-OPF 4382.07 98.45% 56.42

lines. In Table I, the column “Line” shows which line is
congested. For example, “1-4” means that we lower the flow
limit on the transmission line from Bus 1 to Bus 4 until it
is congested. For all the cases except “8-9”, we decrease the
flow limit to 60 MW. For “8-9”, we decrease the limit to
80 MW. For the DR-OPF, cline = 400; for the DR CC-OPF,
1− ε = 95%. Columns “Cost”, “Reliability”, and “R∗” show
the total cost, reliability, and reserve capacities. We calculate
the “Reliability” as the percentage of the 10,000 samples in
the set Ω in which a solution does not violate the limit of the
congested line. The costs in Table I only include the first-stage
cost in the DR-OPF model, which is the whole objective cost
in the DR CC-OPF. When a model produces a lower costs and
higher reliability we have bolded the results. In each bolded
cases, the DR-OPF is slightly cheaper than the counterpart DR
CC-OPF, while the reliability is the same or better than the
counterpart DR CC-OPF. The reserve capacities are the same
for each instance of each model since each instance of the
DR-OPF uses the same support size and since each instance
of the DR CC-OPF uses the same 1− ε, empirical mean, and
covariance for constructing its ambiguity set.

In Table II, we show results for nearly identical cost
solutions of the DR-OPF and the DR CC-OPF when line 1-4
is congested. In all cases, the desired reliability is lower than
that used to generate the results in Table I. In the first two
cases, the DR CC-OPF achieves higher reliabilities than the
DR OPF for the same cost solution, while in the last case the
DR OPF achieves a higher reliability than the DR CC-OPF.
These results indicate that as the desired reliability increases
the DR OPF performs (slightly) better than the DR CC-OPF
in terms of cost and reliability.

2) Comparison of violation amount: In addition to reliabil-
ities, in Fig. 3 we report histograms of the magnitudes of line
flow constraint violations corresponding to the results in Table
II. The lighter colored bars correspond to the DR CC-OPF and
the darker colored bars correspond to the DR-OPF. Since the
DR-OPF penalizes the the magnitude of constraint violations
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TABLE II: Comparison of cost, reliability, and total reserve
capacity under equivalent costs

cline/1− ε Model Cost Reliability R∗

320 DR-OPF 5007.29 92.31% 30.74
79.9% DR CC-OPF 5007.51 94.20% 25.80
338 DR-OPF 5048.54 95.44% 30.74
83.4% DR CC-OPF 5048.60 95.93% 29.01
350 DR-OPF 5098.47 97.72% 30.74
86.6% DR CC-OPF 5098.50 97.66% 32.90

we would expect its violations to be of a smaller magnitude
than those of the DR CC-OPF; however, we find that that the
results are similar.

C. Justification of the ELDR

In this section, we show that the inclusion of the auxiliary
variable ũ in (17) provides a better fit for the second-stage
decision variables than only including z̃ i.e., y(z̃) = ŷ0 +∑
i∈W ŷ1i z̃i, where ŷ0 ∈ RN2 is the constant and ŷ1i ∈ RN2

are the coefficients of the QP approximation (20) using all
the samples in set Ω to obtain ỹ and ũ = |z̃ − µ| for each
realization of z̃. To do this, we derive least square regressions

of ỹ versus z̃ (referred to as Regression 1) and versus 〈z̃, ũ〉
(referred to as Regression 2), respectively. We compute their
p-values and adjusted R-squared values (see [23]). If the p-
value is sufficiently small, i.e., ≤ 0.05, there is a significant
relationship between the variables in the linear regression
model. The adjusted R-squared value is the percentage of the
response variable variation explained by a linear model [23].

We lower the cost parameter cy , which increases the number
of violations, enabling regression with more data points. In
Table III, we show the adjusted R-squared values of the DR-
OPF for 0.010cy and 0.028cy for constraints (8) and (9), each
of which contain six inequalities. For both regressions, the p-
value results are less than 0.05. For all constraints, the adjusted
R-squared values of Regression 2 are higher than those of
Regression 1, which shows the explanatory power added by
the auxiliary variable ũ.

V. CONCLUSION

In this paper, we compared the performance of multi-
stage distributionally robust OPF and distributionally robust
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Fig. 3: Histogram of constraint violations under equivalent costs

TABLE III: Adjusted R-squared values of linear regressions

Penalty Constraint (8) 1 2 3 4 5 6

0.010cy
Regression 1 0.86 0.86 0.86 0.54 0.54 0.54
Regression 2 0.91 0.91 0.91 0.70 0.70 0.70

Penalty Constraint (9) 1 2 3 4 5 6

0.028cy
Regression 1 0.54 0.54 0.54 0.42 0.42 0.42
Regression 2 0.70 0.70 0.70 0.59 0.59 0.59

chance constrained OPF models including renewable, load,
and load-based reserve uncertainty. Out of sample tests showed
that the DR-OPF model yielded solutions with slightly better
reliability performance and lower cost than DR CC-OPF when
both models need to achieve high reliability (close to 100%).
When the reliability requirement is relatively low, DR-OPF
could perform worse than DR CC-OPF. We also provided
justification for the enhanced linear decision rule (used to
formulate the problem as a quadratic program) to show that the
inclusion of auxiliary variables strengthened its explanatory
power. For future research, a natural extension is to apply the
ELDR to a multi-stage DR-OPF problem.
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