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Distributionally Robust Chance-Constrained Optimal
Power Flow With Uncertain Renewables and

Uncertain Reserves Provided by Loads
Yiling Zhang, Siqian Shen, and Johanna L. Mathieu, Member, IEEE

Abstract—Aggregations of electric loads can provide reserves
to power systems, but their available reserve capacities are
time-varying and not perfectly known when the system opera-
tor computes the optimal generation and reserve schedule. In this
paper, we formulate a chance constrained optimal power flow prob-
lem to procure minimum cost energy, generator reserves, and load
reserves given uncertainty in renewable energy production, load
consumption, and load reserve capacities. Assuming that uncer-
tainty distributions are not perfectly known, we solve the prob-
lem with distributionally robust optimization, which ensures that
chance constraints are satisfied for any distribution in an ambi-
guity set built upon the first two moments. We use two ambiguity
sets to reformulate the model as a semidefinite program and a
second-order cone program and run computational experiments
on the IEEE 9-bus, 39-bus, and 118-bus systems. We compare the
solutions to those given by two benchmark reformulations; the
first assumes normally distributed uncertainty and the second uses
large numbers of uncertainty samples. We find that the use of load
reserves, even when load reserve capacities are uncertain, reduces
operational costs. Also, the approach is able to meet reliability re-
quirements, unlike the first benchmark approach and with lower
computation times than the second benchmark approach.

Index Terms—Chance-constrained optimal power flow (CC-
OPF), convex optimization, load control, moment-based ambiguity
set, uncertain reserves.

NOMENCLATURE

A. Numbers

Nline Number of transmission lines
NB Number of buses
NG Number of conventional generators
NW Number of wind power plants
NL Number of loads
m Number of chance constraints
n Number of decision variables
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B. Parameters

Pf
W ∈ RNW Forecasted wind production

Pf
L ∈ RNL Forecasted load consumption

PG, PG ∈ RNG Min/max generator production
Pline ∈ RN line Line flow limit
c Vector of energy/reserve costs
Bbus ∈ R(NB −1)×(NB −1) Bus susceptance matrix
Bflow ∈ RN line×NB Flow susceptance matrix
εi Violation probability of chance con-

straint i
C. Random Variables
˜PW ∈ RNW Actual wind production
˜PL ∈ RNL Actual load consumption
˜PL, ˜PL ∈ RNL Actual min/max possible load consumption

D. Auxiliary Random Variables

Pmis ∈ R Real-time supply/demand mismatch
RG ∈ RNG Actual generator reserve dispatch
RL ∈ RNL Actual load reserve dispatch
Pinj ∈ RNB Net power injections at each bus

E. Decision Variables

PG ∈ RNG Generator production
RG,RG ∈ RNG Generator up/down-reserve capacities
RL,RL ∈ RNL Load up/down-reserve capacities
dG, dG ∈ RNG Generator up/down distribution vectors
dL , dL ∈ RNL Load up/down distribution vectors

I. INTRODUCTION

F LEXIBLE loads, such as heating and cooling systems, co-
ordinated via load control algorithms are capable of pro-

viding reserves to power systems [1]–[6]. However, the capac-
ity (in MW) of reserves that loads could provide is generally
time-varying [7], [8]. For example, the reserve capacity of an
aggregation of air conditioners is a function of weather and load
usage patterns [9], which are uncertain. Therefore, when the
power system operator computes the optimal generation and re-
serve schedule, the future reserve capacity that will be available
from loads is not perfectly known. A conservative option would
be to forecast the expected reserve capacity and schedule only
a portion of it. Instead, we solve a chance constrained optimal
power flow (CC-OPF) problem that explicitly considers uncer-
tain reserves from loads, enabling us to more-effectively use this
resource.
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CC-OPF problems to manage renewable energy and load un-
certainty have been posed in [10]–[15], though none of this
work considers load reserves or their uncertainty. Ref. [16] for-
mulates a multi-period CC-OPF with uncertain load reserves.
It is solved with a robust reformulation [17] of the scenario
approach [18] that makes no assumption on the uncertainty dis-
tributions but requires large numbers of uncertainty samples.
Ref. [19] reformulates the problem assuming Gaussian uncer-
tainty. In practice, it may be difficult to obtain large numbers of
uncertainty samples and we would expect the uncertainty to be
non-Gaussian.

In this paper, which is an extension of our preliminary work
[20], we formulate a CC-OPF with uncertain load reserves and
reformulate it using distributionally robust (DR) optimization
[21], which makes no assumption on uncertainty distributions
and does not require large numbers of uncertainty samples.
For simplicity of exposition, we use single-period formulation,
rather than the multi-period formulation of [16], [19]. Using the
empirical mean and covariance (i.e., the first two moments) of
a small number of uncertainty samples, we construct two types
of convex ambiguity sets for the unknown distribution, yielding
a semidefinite programming (SDP) reformulation [22], and a
tractable second-order conic programming (SOCP) reformula-
tion [23]. We compare the two DR models with two benchmark
approaches, the first of which is an SOCP model obtained by
Gaussian approximation, and the second of which is a large-
scale quadratic programming (QP) model obtained by scenario
approximation.

There has been significant recent work on robust OPF, CC-
OPF, and DR optimization applied to power system prob-
lems. For example, [12] formulates a robust OPF problem in
which generator participation factors are chosen to ensure a
feasible solution for all possible renewable energy injections.
The formulation is extended to include chance constraints that
manage normally-distributed load forecast error. Ref. [24] fur-
ther extends the method to a multi-period formulation with
energy storage. The method assumes the uncertainty set is
known. CC-OPFs are posed by [10], [11], [14] and solved with
scenario-based methods [11] and analytical reformulation as-
suming normally-distributed uncertainty [10], [13], [14]. DR
optimization has been applied to the dynamic line rating prob-
lem [25] and to quantifying the probability of infeasible dispatch
given uncertain wind power injections [26]. The latter uses data-
determined uncertainty moments to derive an SDP formulation.
Ref. [15] proposes DR analytical reformulations of a security
constrained CC-OPF. Specifically, the mean, covariance, and
structured properties (e.g., symmetry or unimodality) of the
uncertainty are used to derive an upper bound for the inverse
cumulative distribution function, resulting in a linear program-
ming reformulation. Using upper bounds rather than moments,
as in [26] and our approach, results in conservative solutions.
Ref. [27] poses a robust CC-OPF problem assuming the uncer-
tainty is normally-distributed but the parameters of the normal
distributions are unknown. The paper develops a cutting-plane
approach that scales to large systems, and demonstrates the
computational efficiency by testing a network with 2209 buses.
Note that none of the papers cited in this paragraph consider
load reserves or their uncertainty.

The contributions of this study are to i) formulate a single-
period CC-OPF with uncertain load reserves; ii) reformulate the
CC-OPF, using DR optimization with two types of ambiguity
sets, as an SDP and an SOCP; and iii) compare the cost, reliabil-
ity, computational time, and optimal decisions of the approach
to that of two benchmark approaches. Beyond our preliminary
work in [20], in this paper we have i) corrected the formulation,
ii) added a more complete description of the SDP reformulation
and derived an SOCP reformulation by using a strengthened
ambiguity set, iii) generated results for the IEEE 39-bus and
118-bus systems (in [20] we considered only the IEEE 9-bus
system), iv) computed solutions to a variety of additional cases
to put the objective costs in context, and v) included compar-
isons of the optimal solutions, which give significant additional
insights into the performance of various approaches. Our results
show that the DR approach provides a good tradeoff between
cost, reliability, and computational tractability as compared to
the other approaches.

The paper is organized as follows. In Section II, we present
the CC-OPF and the DR reformulations. Section III presents the
two benchmark approaches. Sections IV and V present the com-
putational results of the three approaches for the IEEE 9-bus,
39-bus, and 118-bus systems, respectively. Section VI summa-
rizes the paper and discusses future research.

II. MODELING

We formulate a CC-OPF which minimizes the costs of
producing energy and providing reserves while ensuring that
stochastic constraints are satisfied with certain probabilities. We
consider a power system in which a fraction of the load at each
bus is flexible and can provide reserves by increasing/decreasing
its consumption from its baseline consumption. However, we
assume that each load’s minimum and maximum possible con-
sumption are uncertain. For example, the minimum/maximum
possible consumption of an aggregation of air conditioners or
heat pumps is a function of the number of air conditioners that
are operating, which is a function of outdoor temperature, which
is uncertain. Details on the underlying flexible load model used
within our formulation are given in Section V-B.

As in [11], [13], [14], we use the dc (i.e., linearized) power
flow approximation. Also, for ease of exposition and results
interpretation, we consider single period (e.g., 1 h), unlike [16]
which considers a multi-period OPF. We first formulate the CC-
OPF and then its DR variant.

A. Chance-Constrained Optimal Power Flow

The linear inequalities that involve random variables are

˜Ax ≥ ˜b =
{

PG ≤ PG + RG ≤ PG,

˜PL ≤ ˜PL + RL ≤ ˜PL,

− RG ≤ RG ≤ RG,

− RL ≤ RL ≤ RL,

− Pline ≤ Bflow

[

0

B−1
busP̂inj

]

≤ Pline

}

, (1)
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which limit generation, load, generator reserves, load reserves,
and line flows, respectively. The notation is defined in Section
I, with ·̃ used to denote random variables. The vector of net
power injections at each bus is Pinj ∈ RNB is CG (PG + RG ) +
CW
˜PW − CL ( ˜PL + RL ), where CG, CW , and CL are matrices

mapping generators, wind power plants, and loads to buses;
P̂inj ∈ RNB −1 contains the last NB − 1 rows of Pinj; Bbus is the
bus susceptance matrix (including the susceptances between
each bus except the slack bus, which is assumed to be Bus 1)
and so the quantity in square brackets is the vector of voltage
angles; and Bflow is the flow susceptance matrix (which is used
to compute the line flows by multiplying each line susceptance
by the difference in voltage angle across the line). The full
optimization problem is

[CC-OPF]:

min cT〈1, PG , P 2
G , RG , RG , RL , RL 〉 (2)

s.t. Pmis =
N W
∑

i=1

( ˜PW ,i − P f
W ,i ) −

N L
∑

i=1

( ˜PL ,i − P f
L ,i ) (3)

N G
∑

i=1

PG ,i =
N L
∑

i=1

P f
L ,i −

N W
∑

i=1

P f
W ,i (4)

N G
∑

i=1

dG ,i +
N L
∑

i=1

dL ,i = 1 (5)

N G
∑

i=1

dG ,i +
N L
∑

i=1

dL ,i = 1 (6)

RG = dG max{−Pmis, 0} − dG max{Pmis, 0} (7)

RL = dL max{Pmis, 0} − dL max{−Pmis, 0} (8)

P
(

˜Aix ≥ ˜bi

)

≥ 1 − εi ∀i = 1, . . . , m (9)

x = 〈PG , RG , RG , RL , RL , dG , dG , dL , dL 〉 ≥ 0, (10)

where we use 〈·〉 to denote a stacked column vector. The cost
vector c = 〈c0 , c1 , c2 , cG , cG , cL , cL 〉 corresponds to “here-and-
now” decisions made before realizing the uncertainty; (3) calcu-
lates the real-time supply/demand mismatch; (4) enforces power
balance; (5)–(6) normalize the distribution vectors, which pro-
vide a policy for allocating Pmis to generators and loads, as in
[11], [14]; and (7)–(8) compute the actual reserves provided by
generators and loads, respectively. We assume that there are m
constraints in (1), and use ˜Ai to represent the ith row of matrix ˜A
and˜bi to represent the ith entry of vector˜b. The number of rows
in matrix ˜A and entries in vector ˜b is (2Nline + 4NG + 4NL ).
Each chance constraint i in (9) should be satisfied with prob-
ability 1 − εi . The decision variables, listed in (10), are the
generator production, generator reserve capacities, load reserve
capacities, and distribution vectors. Note that the total reserve
requirement (i.e., the sum of all generator and load reserves ca-
pacities) is determined endogenously, and is a function of the
uncertainty.

We assume symmetric reserve dispatch, i.e., dG = dG and
dL = dL , since (7)–(8) become linear enabling DR reformula-
tion (the Gaussian approximation approach also requires this
assumption, while the scenario approximation approach does

not). However, we assume unsymmetrical reserve procurement
(as in CAISO and ERCOT [28]), i.e., RL is not enforced to
be equal to RL and RG is not enforced to be equal to RG .
Modeling symmetrical reserve procurement (as in MISO, PJM,
NYISO, and NE-ISO [28]) reduces the number of decision vari-
ables, does not change the form of the resulting optimization
problems, and increases the objective cost.

We could also reformulate the CC-OPF, using sample average
approximation, as a mixed-integer quadratic program. However,
in [20], via extensive computational studies, we demonstrated
that the formulation is computationally intractable, and leads to
solutions that are generally worse than solutions obtained by the
approaches in this paper, especially when the true distribution
of the underlying uncertainty is unknown. Therefore, we do not
include it here.

B. DR Reformulation

We first introduce the DR approach for reformulating the
CC-OPF, which builds an ambiguity set to bound the proba-
bility density function (pdf) of the underlying uncertainty. Our
approach follows that of [22], which we summarize here for
completeness. To the best of our knowledge, this is the first
application of this approach to a CC-OPF problem.

Consider each chance constraint i in (9). Suppose that
( ˜Ai,˜bi) = ( ˜Ai(ξi),˜bi(ξi)), where ξi includes the random vari-
ables affecting constraint i. Specifically, for all chance con-

straints except, ˜PL ≤ ˜PL + RL ≤ ˜PL , ξi = 〈 ˜PW , ˜PL 〉. For
˜PL ≤ ˜PL + RL , ξi = 〈 ˜PW , ˜PL, ˜PL 〉 and for ˜PL + RL ≤ ˜PL ,

ξi = 〈 ˜PW , ˜PL, ˜PL 〉. Then, the DR variants of the chance con-
straints are

inf
f (ξ i )∈D

Pξ i ( ˜Ai(ξi)x ≥ ˜bi(ξi)) ≥ 1 − εi ∀i = 1, . . . ,m.

(11)
Without loss of generality, we can define ˜Ai(ξi) and ˜bi(ξi) as
affine functions of ξi (see [29]), i.e.,

˜Ai(ξi) = Ai0 +
Ki
∑

k=1

Aikξi
k , ˜bi(ξi) = bi0 +

Ki
∑

k=1

bik ξi
k ,

where Ki is the dimension of ξi . Terms Ai0 and bi0 are the
deterministic parts of ˜Ai(ξi) and˜bi(ξi) and terms Aik and bik are
the affine coefficients of ξi

k ∀k = 1, . . . ,Ki . As a result, we can
reformulate the inner constraint of (11) as (Āx

i )Tξi ≤ b̄x
i , where

Āx
i = 〈bi1 − Ai1x, . . . , biK − AiK x〉 and b̄x

i = Ai0x − bi0 .
For simplicity, we drop the index i of ξi in the follow-

ing. Given data samples {ξ�}N
�=1 of ξ, we calculate the em-

pirical mean vector μ0 = 1
N

∑N
�=1 ξ� and covariance matrix

Σ0 = 1
N

∑N
�=1(ξ

� − μ0)(ξ� − μ0)T, and build an ambiguity set
[21]

D =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f(ξ) :

∫

ξ∈RK f(ξ)dξ = 1

(E[ξ] − μ0)TΣ−1
0 (E[ξ] − μ0) ≤ γ1

E[(ξ − μ0)(ξ − μ0)T] � γ2Σ0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

where RK is the support of ξ. The ambiguity setD is determined
by μ0 and Σ0 , and by parameters γ1 and γ2 . The three constraints
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in D ensure that (i) the integral of pdf f(ξ) is one; (ii) the true
mean of ξ lies in a μ0-centered ellipsoid bounded by γ1 ; and
(iii) the true covariance matrix lies in a positive semi-definite
cone bounded by γ2Σ0 . Ref. [21] describes how the values of
γ1 and γ2 can be chosen based on the data sample size, risk
parameter, and desired confidence. In practice, the values of γ1
and γ2 represent a decision maker’s risk preference and can be
used to change solution conservatism. In general, larger values
of γ1 and γ2 will lead to more conservative (robust) solutions.
We follow [21] and set γ1 = 0 and γ2 = 1.

We solve a minimization problem over the ambiguity set D
of f(ξ), specifically, [21], [22]

zD = min
f (ξ)

∫

RK

IA(ξ)f(ξ)dξ (12)

s.t.
∫

RK

f(ξ)dξ = 1 (13)

∫

RK

[

Σ0 ξ − μ0

(ξ − μ0)T γ1

]

f(ξ)dξ 	 0 (14)

∫

RK

(ξ − μ0)(ξ − μ0)Tf(ξ)dξ � γ2Σ0 , (15)

where IA(ξ) is an indicator function which equals 1 if ξ ∈
A = {ξ : (Āx

i )Tξ ≤ b̄x
i } and 0 otherwise, and (13)–(15) are the

constraints in set D in integral form. The generalized inequality
for symmetric matrices, X 	 Y , means that X − Y is a positive
semidefinite matrix; similarly, X � Y , means that Y − X is
a positive semidefinite matrix. A DR chance constraint i is
satisfied when zD ≥ 1 − εi .

Note that the set D could be very conservative as the worst-
case distributions consist of few discrete points [30]. Recent
literature investigated inclusion of structural properties (e.g.,
unimodality) to exclude discrete distributions from the ambigu-
ity set (see, e.g., [31], [32]). Others use higher order moments
and strengthened supports (e.g., [33]) to reduce the conservatism
of the DR approach. However, the construction of set D also
needs to ensure tractability of the reformulation. In the next
section, we propose an alternative ambiguity set that matches
the exact mean and covariance, which leads to a tractable SOCP
reformulation.

The DR chance constraints (11) are equivalent to the follow-
ing SDP model [22]:

γ2Σ0 · Gi + 1 − ri + Σ0 · Hi + γ1qi ≤ εiyi (16)
[

Gi −pi

−pT
i 1 − ri

]

	
⎡

⎣

0
1
2
Āx

i

1
2 (Āx

i )T yi + (Āx
i )Tμ0 − b̄x

i

⎤

⎦ (17)

[

Gi −pi

−pT
i 1 − ri

]

	 0 (18)

[

Hi pi

pT
i qi

]

	 0 (19)

yi ≥ 0, (20)

for i = 1, . . . ,m, where we use X · Y to denote the Frobenius
inner product of X and Y (i.e., X · Y = tr(XTY )) and yi ∈ R,
ri ∈ R, qi ∈ R, pi ∈ RK , Hi ∈ RK×K , and Gi ∈ RK×K . The
proof, given in [22], uses conic duality, and is summarized as
follows. Denote SK

+ as the set of symmetric positive semidefinite
K × K matrices. Define dual variables ri for (13), Gi for (14),
and

[

Hi pi

pT
i qi

]

for (15). The conic dual of (12)–(15) is [22]

zD = max
Gi ,Hi ,pi ,qi ,ri

−γ2Σ0 · Gi + ri

−Σ0 · Hi − γ1qi (21)

s.t. (ξ − μ0)T(−Gi)(ξ − μ0) + 2pT
i (ξ − μ0)

+ ri ≤ IA(ξ), ∀ξ ∈ RK (22)

Gi ∈ SK×K
+ (23)

[

Hi pi

pT
i qi

]

∈ S(K +1)×(K +1)
+ . (24)

As strong duality holds for the primal and dual problems, the
existence of feasible solutions to (11) is equivalent to having
zD ≥ 1 − εi , ∀i = 1, . . . ,m. After applying Lemma 1 in [22],
the SDP formulation (16)–(20) directly follows from the dual
formulation (21)–(24) by replacing the semi-infinite constraints
(22) by finite SDP constraints.

Importantly, note that the above approach for bounding the
unknown pdf f(ξ) is general and allows the uncertainty ξ to be
time-varying and correlated. The complete DR CC-OPF model
is

min
x,y ,r,H ,G ,p ,q

{(2) : (3) − (8), (10), (16) − (20) ∀i = 1, . . . m} .

C. An Alternative Ambiguity Set and DR Reformulation

In this section, we provide a DR reformulation based on an
alternative ambiguity set

D′ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f(ξ) :

∫

ξ∈RK f(ξ)dξ = 1

E[ξ] − μ0 = 0

E[(ξ − μ0)(ξ − μ0)T] = Σ0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

which requires that the true mean and covariance matrix of ξ,
given by any distribution in set D′, be exactly the empirical
mean μ0 and covariance Σ0 . When using γ1 = 0 and γ2 = 1
in the set D, we have D′ ⊂ D, and thus this set produces less
conservative solutions by placing more trust in μ0 and Σ0 .

With this ambiguity set, the problem can be reformulated as
an SOCP, which is more efficient to compute than the SDP refor-
mation using set D. Specifically, we rewrite the DR constraints
(11) as

sup
f (ξ)∈D′

Pξ

(

(Āx
i )Tξ ≥ b̄x

i

) ≤ εi ∀i = 1, . . . ,m, (25)
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which are equivalent to
√

(Āx
i )TΣ0Āx

i ≤
√

εi

1 − εi
(b̄x

i − (μ0)TĀx
i ) ∀i = 1, . . . ,m.

(26)
The derivation follows a variant of the Chebyshev inequality and
was given in [23] for general DR individual chance constraints.
We demonstrate the procedure and result for the DR CC-OPF
as follows. Consider a variant of the Chebyshev inequality for
random variable X with mean μ and variance σ2 as P [X ≥
(1 + δ)μ] ≤ σ 2

σ 2 +μ2 δ 2 for any constant 0 ≤ δ ≤ 1. According to
[34], there exists a distribution inD′ to make the inequality tight.
Then, the equivalence between (25) and (26) can be established
by letting

δ = −1 +
b̄x
i

E[(Āx
i )Tξ]

= −1 +
b̄x
i

(Āx
i )TE[ξ]

.

Therefore, by using a new ambiguity set D′, we can solve the
alternative DR CC-OPF model

min
x,y ,r,H,G,p,q

{(2) : (3)–(8), (10), (26)} .

III. BENCHMARK APPROACHES

We compare the DR approach to two benchmark approaches
used in the literature to solve CC-OPF problems. Both use sta-
tistical information and derive convex approximations for the
exact CC-OPF.

A. Reformulation via Gaussian Approximation

Assuming Gaussian uncertainty, the CC-OPF can be refor-
mulated as a convex program [13], [14]. Prior research has not
applied this approach to a CC-OPF with uncertain load reserves,
with the exception of [19], which used the multi-period CC-OPF
formulation from [16]. We briefly describe the derivation of the
convex program. First, consider constraints (9) in an equivalent
form

P
(

˜A′
i x̄ ≤ b′i

)

≥ 1 − εi i = 1, . . . , m, (27)

where only the constraint vector ˜A′
i is uncertain and the right-

hand side scalar b′i is deterministic. This is because for each
constraint i of the form (9) where both ˜Ai and ˜bi are random,
we can always define an artificial variable xb ∈ R and rewrite
˜Aix ≥ ˜bi as

− ˜Aix +˜bixb ≤ 0 ⇔ 〈− ˜Ai,˜bi〉T〈x, xb〉 ≤ 0,

for which we enforce xb = 1. Consequently, we have ˜A′
i =

〈− ˜Ai,˜bi〉, x̄ = 〈x, xb〉, and b′i = 0,∀i = 1, . . . , m in (27).
If ˜A′

i follows a multivariate normal distribution N (μi,Σi)
with μi and Σi being the mean and covariance of ˜A′

i , respec-
tively, then ˜A′

i x̄ − b′i follows a multivariate normal distribution
N (μT

i x̄ − b′i , x̄
TΣi x̄). As a result,

P ( ˜A′
i x̄ ≤ b′i) = Φ

(

b′i − μT
i x̄

x̄TΣi x̄

)

i = 1, . . . ,m, (28)

following which, constraints (9) are equivalent to

b′i − μT
i x̄ + Φ−1(εi)

√

x̄TΣi x̄ ≥ 0 i = 1, . . . ,m, (29)

where Φ−1(εi) denotes the εi-quantile of the standard normal
distribution. We rewrite (29) as

b′i − μT
i x̄ ≥ Φ−1(1 − εi)

√

x̄TΣi x̄ i = 1, . . . ,m, (30)

which are SOCP constraints if Φ−1(1 − εi) ≥ 0, i.e., 1 − εi ≥
0.5. This is a mild assumption since the chance constraints must
be satisfied with probabilities much higher than 0.5. The first
benchmark approach solves an SOCP model:

min
x

{(2) : (3)–(8), (10), (30)} .

If the uncertainties are not Gaussian, then the above model is a
convex approximation for the exact CC-OPF.

Given the definitions of Āx
i , b̄x

i , μ0 , Σ0 in (26) and
Ã′

i , b′i , μi, Σi , x̄ in (30), we can verify that b̄x
i − (μ0)TĀx

i

is equivalent to b′i − μT
i x̄, and (Āx

i )TΣ0Ā
x
i is equivalent to

x̄TΣi x̄, for all i = 1, . . . ,m. For a particular εi , the coefficient
√

(1 − εi)/εi (which would appear on the left side of (26) af-
ter dividing both sides by

√

εi/(1 − εi) ) is greater than the
corresponding coefficient, Φ−1(1 − εi), in (30). Thus, the DR
CC-OPF model with constraint (26) will result in more conser-
vative solutions than the Gaussian approximation approach.

B. Reformulation via Scenario Approximation

Ref. [18] proposes a scenario approximation method for CC
optimization problems by enforcing As

i x ≥ bs
i , ∀i = 1, . . . ,m

in all samples s in an approximate sample set Ωap. The samples
in Ωap could be (i) data observations or (ii) generated from a
known distribution by using Monte Carlo sampling. It usually
requires a large sample size |Ωap| to guarantee reliability 1 − εi

with high confidence. Each chance constraint i in (9) is replaced
with

As
i x ≥ bs

i ∀s ∈ Ωap. (31)

It is shown in [18] that |Ωap| ≥ 2
ε (ln 1

β + n) where 1 − β is the
confidence level and n is the dimension of the decision vector x.
Therefore, the second benchmark approach solves a QP model:

min
x

{(2) : (3)–(8), (10), (31)} .

A variant of this approach was applied in [11], [16], which use
a robust reformulation [17] that reduces the required number
of samples and the computational time. Moreover, one could
employ scenario reduction procedures from the sample average
approximation literature to further improve the solution time of
the above model.

IV. STUDIES ON THE IEEE 9-BUS SYSTEM

We first compute solutions for the IEEE 9-bus system using
the two benchmark approaches and the DR approach, assum-
ing unknown distributions of the uncertainties. We refer to the
approaches as:

1) A1: Gaussian approximation approach (SOCP)
2) A2: Scenario approximation approach (QP)



ZHANG et al.: DISTRIBUTIONALLY ROBUST CHANCE-CONSTRAINED OPTIMAL POWER FLOW WITH UNCERTAIN RENEWABLES 1383

3) A3: DR approach with ambiguity set D (SDP)
4) A4: DR approach with ambiguity set D′ (SOCP)
All computational tests are performed on a Windows 7 ma-

chine with Intel(R) Core(TM) i7-2600 CPU 3.40 GHz and 8GB
memory. All models are solved by CVX implemented in MAT-
LAB with MOSEK as the optimization solver [35].

A. Test System

We obtained parameters for the IEEE 9-bus system from
MATPOWER [36], and assume that generator reserves are more
expensive than load reserves, specifically, cG = cG = 10 × 1
and cL = cL = 9.8 × 1, where 1 is a vector of ones of appro-
priate size. If generator reserves are less expensive than load
reserves, the optimal solution is not to use load reserves as they
are uncertain and so less valuable to the system. If the cost of
generator and load reserves are set equal, the optimal solution
is generally to use a combination of both types of reserves.
This is because use of generator reserves can increase generator
production costs as generators are dispatched sub-optimally to
accommodate reserve provision, and this makes use of some
(less valuable) load reserves cost effective.

We add one wind power plant at Bus 6 with rated capacity
75 MW and forecasted output 50 MW. We assume 70% of the
load at each bus is perfectly forecastable and not flexible. The
remaining load at each bus is flexible but uncertain (in terms
of both consumption and min/max possible consumption). The
load forecasts are set equal to the test case loads.

B. Flexible Load Modeling

We assume that the flexible loads are aggregations of electric
heat pumps, and each load aggregation can be modeled as a
thermal energy storage unit [7], [8] with power capacity Pc ,
energy capacity Ec , and baseline power consumption PL , which
all vary with (uncertain) outdoor air temperature ˜θ. We use
Fig. 1 of [16] as a look-up table to determine Pc(˜θ), Ec(˜θ), and
˜PL = PL (˜θ).

If the power system operator does not provide a method
to manage the energy states of energy-constrained reserve re-
sources, the real-time reserve signal will determine the energy
states of the load aggregations at the end of each scheduling
period—a zero-mean signal will result in final energy states
equivalent to the initial energy states, while all other signals
will result in final energy states that are different than ini-
tial energy states. At the beginning of each scheduling pe-
riod, we can compute the capacity (in MW) of reserves that
each load aggregation can provide as a function of its fore-
casted Pc , Ec , PL , and its current energy state assuming, in
the worst case, that the real-time reserve signal will be equiv-
alent to its minimum or maximum over the entire scheduling
period (e.g., 1 hour). To mitigate the conservatism that re-
sults from computing reserve capacities in this way, several
power system operators in the U.S. are now managing the en-
ergy states of energy-constrained reserve resources. For exam-
ple, the California ISO uses the 5-minute energy market to

ensure that regulation signals are zero-mean over 15-minute
periods [37].

Assuming a one hour scheduling period and that a load aggre-
gation providing reserves must be able to operate at full capacity
for 15-minutes, which is consistent with [37], we compute

˜PL = max
(

PL (˜θ) − 4(Ec(˜θ)/2), 0
)

(32)

˜PL = min
(

PL (˜θ) + 4(Ec(˜θ)/2), Pc(˜θ)
)

(33)

where the first values within the min/max operators ensure that
the energy constraints are not violated and the second values
ensure that the power constraints are not violated. Specifically,
we assume that initially the heat pumps are operating normally,
and so their initial energy state is half their energy capacity.
Then, they can increase or decrease their aggregate power con-
sumption by four times Ec(˜θ)/2 (since there are four 15-minute
intervals in one hour) unless the resulting power consumption
would violate their power constraints, i.e., the aggregate power
must be between 0 and Pc(˜θ).

C. Random Sample Generation and Selection

We use forecasted and actual outdoor air temperatures from
eleven weather stations in Switzerland to compute tempera-
ture errors, and then add these errors to assumed temperature
forecasts at each load bus θf = [13, 10, 14]T ◦C to create tem-
perature samples, with which we compute samples of ˜PL , ˜PL ,

and ˜PL . We scale the samples to be consistent with our load
forecast assumptions. Additionally, we use scaled versions of
the wind power samples used in [16], which were computed
by applying the Markov chain mechanism developed in [38] to
forecasted and actual hourly wind power data from Germany
from 2006-2011.

We generate 10,000 i.i.d. samples of ˜PW , ˜PL , ˜PL , ˜PL , which
comprise the support set Ω. For A1, A3, and A4, we assume a
decision maker only has limited knowledge of Ω, and so we
randomly select 20 samples from Ω. With these samples, we
construct the ambiguity set of the unknown pdf by computing
their empirical mean and covariance, which we use to build
the SOCP constraints (30) in A1, the SDP constraints (16)–
(20) in A3, and the SOCP constraints (26) in A4. For A2,
we use the bound in [18] to choose the number of samples
for the approximate sample set Ωap in (31). Specifically, for
1 − εi = 95% and a confidence parameter β = 0.05, we select
900 random samples since the bound |Ωap| ≥ 2

ε (ln 1
β + n) =

932 where n = 21 is the dimension of decision variable vector
for the 9-bus system. For 1 − εi = 90% and β = 0.05, we select
500 random samples.

After solving the CC-OPF with A1–A4, we fix the optimal
solutions x and test their performance on all 10,000 samples
in the support set Ω. For each approach, we re-solve the op-
timization problem and test the solution ten times, and report
the average, maximum, and minimum objective cost, solution
reliability (the percent of samples for which the constraints are
satisfied when x is fixed), and CPU time.
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TABLE I
COST, RELIABILITY, AND CPU TIME OF A1–A4 FOR THE IEEE 9-BUS SYSTEM WITH NO CONGESTION

A1: Gaussian A2: Scenario A3: DR (SDP) A4: DR (SOCP)

1 − εi = 95% 90% 95% 90% 95% 90% 95% 90%

avg 4392.63 4330.41 4758.32 4738.73 4875.35 4633.57 4875.41 4633.61
Objective cost max 4478.08 4394.57 4895.40 4812.65 5102.61 4789.59 5102.65 4789.62

min 4308.60 4262.52 4678.17 4649.48 4652.84 4480.48 4652.92 4480.59

avg 84.47 75.63 99.65 99.57 99.43 97.45 99.65 97.95
Reliability (%) max 94.07 86.69 99.87 99.83 99.83 99.56 99.83 99.74

min 65.40 61.98 99.36 99.26 97.60 90.99 98.80 91.94

avg 0.03 0.03 15.21 3.51 0.47 0.46 0.44 0.37
CPU Time (s) max 0.05 0.06 15.41 3.85 0.55 0.53 0.36 0.41

min 0.03 0.02 14.88 3.34 0.34 0.41 0.39 0.34

D. Results and Solution Patterns

Table I shows the results for the 9-bus system with no con-
gestion (which occurs when we use the test case line flow lim-
its). We observe that A1 solves the fastest and A2 the slowest.
The CPU time taken by A2 also depends on the probability
of chance constraint violation as 1 − εi = 95% requires many
more samples than 1 − εi = 90%. In contrast, the solution time
of A1, A3, and A4 are independent of the probability of chance
constraint violation, and only depend upon the problem size.
Approaches A2, A3, and A4 yield higher objective costs than
A1. However, A1 results in much lower reliability since the
underlying uncertainty is not Gaussian, while A2, A3, and A4
result in reliabilities above the requirements. Note that A3 and
A4 perform similarly in terms of cost, reliability, and CPU
time. Since, given our choice of γ1 and γ2 , we have D′ ⊆ D,
A4 should result in objective cost values that are less than or
equal to those of A3 in each instance. However, in some in-
stances, due to solver limitations for handling SDP models,
some results produced with A3 are not fully optimized (i.e.,
CVX reported “solved/inaccurate”). In contrast, all of the re-
sults produced with A4 are fully optimized. Thus, A3 some-
times produces lower costs than A4. When 1 − εi = 90%, A1
performs substantially worse than when 1 − εi = 95%, while
A2, A3, and A4 yield similar reliability results as they are less
sensitive to the change in 1 − εi . In the remainder of the pa-
per, we use 1 − εi = 95%, which is more reasonable for power
systems.

To put the objective costs in context, we computed the solution
to three additional cases. Case 1 assumes no uncertainty, and
so we solve a deterministic problem that results in no reserve
procurement. Case 2 assumes wind and load uncertainty, but that
loads cannot provide reserves, which is consistent with power
system operation today. Case 3 assumes that loads can provide
reserves, and they are certain (in terms of both consumption and
min/max possible consumption) giving us an upper-bound on
the cost reductions possible with load reserves. Each is solved
with A3. The results for the uncongested system are shown
in Table II along with the comparable results of the complete
formulation (referred to as Case 4), i.e., the results of A3 for
1 − εi = 95% from Table I. Case 1 has the lowest cost, while
Case 2 has the highest. Comparing Case 2 and Case 3 gives

TABLE II
OBJECTIVE COSTS OF VARIOUS UNCERTAINTY CASES FOR THE IEEE 9-BUS

SYSTEM WITH NO CONGESTION (1 − εi = 95% ∀i).

Case 1 Case 2 Case 3 Case 4

avg 4099.97 4891.11 4352.64 4875.35
Objective cost max - 5122.41 4402.08 5102.61

min - 4664.12 4292.27 4652.84

Fig. 1. Optimal generator production and reserve capacities for each genera-
tor/load in the IEEE 9-bus system.

the maximum possible value of load reserves, while comparing
Case 3 and Case 4 gives the cost of load uncertainty.

We also explore the performance of the approaches under
congestion. Specifically, we decrease the line flow limit of the
transmission line between Buses 5 and 6 from 150 to 40 MW,
resulting in congestion on multiple lines. The results are shown
in Table III. All three approaches yield higher costs as compared
to the UC cases in Table I. A1’s reliability is poor; its optimal
solution can only satisfy the chance constraints in 78.69% of the
samples within Ω. In contrast, A2, A3, and A4 achieve higher
reliability than required. In each case, the CPU time increases
when the system is congested (C); however, the increase for A4
is small, especially as compare to the increase for A3.

In Fig. 1, we plot the optimal generator production and re-
serve capacities for each generator/load in each approach for
1 − εi = 95% for both the UC and C cases. The values plotted
are the average over the 10 runs and R∗ denotes the sum of
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TABLE III
COST, RELIABILITY, AND CPU TIME OF A1–A4 FOR THE IEEE 9-BUS SYSTEM

WITH CONGESTION (1 − εi = 95% ∀i).

A1 A2 A3 A4

avg 4428.72 4884.12 5030.31 5036.35
Objective cost max 4538.47 5036.97 5328.71 5330.85

min 4345.12 4789.28 4767.10 4767.12

avg 78.69 99.44 99.27 99.53
Reliability (%) max 91.94 99.79 99.81 99.85

min 63.52 99.12 97.93 98.43

avg 0.05 48.93 6.40 0.47
CPU Time (s) max 0.19 49.44 6.77 0.52

min 0.02 48.22 6.08 0.42

TABLE IV
RESERVES PROCURED BY A1–A4 IN THE IEEE 9-BUS SYSTEM

Generator Reserves Load Reserves Total Reserves

A1 4.7 × 10−5 29.86 29.86
UC A2 5.19 61.89 67.07

A3 0.34 78.77 79.11
A4 0.42 78.70 79.12

A1 1.2 × 10−4 29.86 29.86
C A2 13.06 54.01 67.07

A3 6.63 72.47 79.10
A4 24.91 54.21 79.12

the up and down reserve capacities, i.e., R + R. In Table IV
we show the optimal reserve procurement given by the three
approaches for 1 − εi = 95% for both the UC and C cases. In
the column “Generator Reserves” we list the sum of all genera-
tor reserves, i.e.,

∑3
j=1 R∗

G,j and “Load Reserves” are defined
similarly. The last column “Total Reserves” is the sum of the
generator reserves and load reserves. We can make several ob-
servations from Fig. 1 and Table IV. First, when the system is
not congested, the generator production is the same for each
approach; however, with congestion the generator production is
different for each approach and generators provide more of the
total reserves. A1 procures the fewest reserves (corresponding
to the lowest cost solution) and A3/A4 the most (correspond-
ing to the highest cost solution). For each approach, the total
reserves procured in the UC and C cases is approximately the
same.

V. STUDIES ON THE IEEE 39-BUS AND 118-BUS SYSTEMS

A. Test System and Sample Generation/Selection

We also tested all approaches on the IEEE 39-bus system and
both A1 and A4 on the IEEE 118-bus system. We were unable
test A2 or A3 on the 118-bus system as the required CPU times
were extremely large. However, it is worth noting that SDP
solvers are not yet mature and it is expected that it will become
feasible to solve large SDP problems in the near term, which
would make A3 more useful.

We obtained test system parameters from MATPOWER [36],
and again assume cG = cG = 10 × 1, and cL = cL = 9.8 × 1.

TABLE V
COST, RELIABILITY, AND CPU TIME OF A1–A4 FOR THE IEEE 39-BUS SYSTEM

WITH NO CONGESTION (1 − εi = 95%).

A1 A2 A3 A4

avg 39232.81 40822.56 40214.75 40223.52
Objective cost max 39351.18 40952.34 40489.98 40541.92

min 39060.95 40685.37 39772.05 39764.59

avg 85.13 99.89 93.89 99.65
Reliability (%) max 92.28 99.92 97.97 99.82

min 71.61 99.84 86.34 99.11

avg 0.10 998.11 427.05 0.76
CPU Time (s) max 0.12 1036.17 745.54 0.95

min 0.09 971.84 286.75 0.67

TABLE VI
COST, RELIABILITY, AND CPU TIME OF A1– A4 FOR THE IEEE 39-BUS

SYSTEM WITH CONGESTION (1 − εi = 95%).

A1 A2 A3 A4

avg 42350.49 45489.17 44765.94 44787.62
Objective cost max 42788.23 45871.69 45676.41 45744.09

min 41888.16 45187.54 43996.11 44070.00

avg 72.38 99.79 93.25 99.10
Reliability (%) max 86.90 99.87 98.23 99.77

min 60.47 99.70 85.74 96.60

avg 0.10 1003.45 502.69 0.72
CPU Time (s) max 0.12 1040.64 666.80 0.78

min 0.09 978.80 395.95 0.63

TABLE VII
OBJECTIVE COSTS OF VARIOUS UNCERTAINTY CASES FOR THE IEEE 39-BUS

SYSTEM WITH NO CONGESTION (1 − εi = 95%, ∀i).

Case 1 Case 2 Case 3 Case 4

avg 38629.05 40259.96 39423.98 40214.75
Objective cost max - 40581.04 39566.85 40489.98

min - 39796.61 39217.81 39772.05

For the 39-bus system, we add one wind power plant at Bus 6
with rated capacity 300 MW and forecasted output 200 MW. For
the 118-bus system, we add three wind power plants at Buses
6, 8, and 15, each with rated capacity 300 MW and forecasted
output 200 MW. We treat each wind power injection as an
uncorrelated random variable. For both systems, we assume
95% of the load at each bus is perfectly forecastable and not
flexible, and the remaining load is flexible but uncertain, with
the load forecasts set equal to the test case loads.

The temperature for each load bus is randomly selected be-
tween 10 and 15◦C, and we use the same procedures as used for
the 9-bus system to generate 10,000 i.i.d. samples of ˜PW , ˜PL ,
˜PL , ˜PL , which comprise the support set Ω. For A1, A3, and A4,
we still use 20 samples randomly picked from the set Ω. For the
39-bus system, A2 now requires 4000 samples within Ωap since
the number of decision variables increases to n = 103. More-
over, the number of chance constraints increases to m = 216 as
compared to m = 42 in the 9-bus system.

We run cases without and with congestion. To produce con-
gestion in the 39-bus system, we modify the test case line flow
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Fig. 2. Optimal reserve capacities R∗ for each generator/load in the IEEE 39-bus system.

TABLE VIII
RESERVES PROCURED BY A1–A4 IN THE IEEE 39-BUS SYSTEM

Generator Reserves Load Reserves Total Reserves

A1 0.01 61.60 61.61
UC A2 0.07 223.76 223.83

A3 2.64 159.03 161.67
A4 0.04 162.66 162.70

A1 15.59 46.02 61.61
C A2 56.01 167.82 223.83

A3 21.11 141.04 162.15
A4 37.83 124.89 162.72

limits by decreasing the flow limit of the line between Buses
2 and 3 from 500 MW to 350 MW and between Buses 13 and
14 from 600 to 200 MW. To produce congestion in the 118-bus
system, we set all line flow limits to 180 MW.

B. Results and Solution Patterns

For the 39-bus system, we report the objective cost, reliabil-
ity, and CPU time of approaches A1–A4 for the uncongested
system in Table V and the congested system in Table VI. For
comparison, the objective costs of Cases 1–4 (as defined in Sec-
tion IV-D) for the uncongested system solved with A3 are in
Table VII. Fig. 2 shows the optimal reserve procurement (aver-
aged over the 10 runs) in each approach in the uncongested and
congested systems and Table VIII summarizes the generator,
load, and total reserves procured by each approach in the UC
and C cases.

In the 39-bus system, A3 and A4 are less costly than A2, since
they procure less reserves. Again, A1 is the least expensive,
with the best CPU time and the worst reliability. Comparing A3
and A4, A4 achieves higher reliability with significantly lower
CPU time and only a slight increase in cost. A2’s reliability
is slightly better than A4’s (both are well-above the reliability
requirement), but its CPU time is three orders of magnitude
larger. It is also worth noting that A2 requires 5583.30 seconds

TABLE IX
COST, RELIABILITY, AND CPU TIME OF A1 AND A4 FOR THE IEEE 118-BUS

SYSTEM (1 − εi = 95%).

Uncongested Congested

A1 A4 A1 A4

avg 105 060 107 530 105 480 108 120
Objective cost max 105 430 108 790 105 860 109 390

min 104 710 106 360 105 110 106 920

avg 29.68 96.57 24.23 95.30
Reliability (%) max 44.62 98.71 40.90 98.63

min 13.89 92.58 10.11 89.49

avg 7.90 10.71 7.69 11.78
CPU Time (s) max 8.69 13.05 8.41 12.76

min 7.50 9.72 7.36 10.95

TABLE X
RESERVES PROCURED BY A1 AND A4 IN THE IEEE 118-BUS SYSTEM

Generator Reserves Load Reserves Total Reserves

A1 49.62 64.22 113.84
UC A4 94.85 206.23 301.07

A1 51.65 62.19 113.84
C A4 104.96 196.10 301.06

on average to read in data and construct the models (this time is
not included in “CPU seconds”) while the average time for A3
and A4 are 298.13 and 21.05 seconds, respectively.

Without congestion, the generator reserves are barely used
(they are not clearly visible in the plot, but the totals are listed
in Table VIII). However, with congestion generator reserves,
especially from generators 30 and 32 increase. Again, for each
approach, the total reserves procured by the system are approx-
imately the same in the UC and C cases.

For the 118-bus system, we report the objective cost, relia-
bility, and CPU time of A1 and A4 for the uncongested and
congested systems in Table IX. Table X summarizes the gener-
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ator, load, and total reserves procured by both approaches in the
UC and C cases. In both the UC and C cases, A4 achieves reli-
abilities above the requirement with modest CPU time (around
10 seconds) demonstrating that the approach should scale to
realistically-sized systems. In contrast, A1’s reliabilities are
well-below the requirement (25-30%, rather than the required
95%). However, the cost of A4’s solution is higher, since more
reserves are procured, as seen in Table X.

VI. CONCLUSION

In this paper, we posed a single-period CC-OPF with uncer-
tain reserves from loads. We reformulated the problem using
DR optimization and two different ambiguity sets resulting in
an SDP problem and an SOCP problem, and compared them
to two other reformulations. We conducted a number of com-
putational experiments on the uncongested and congested IEEE
9-bus, 39-bus, and 118-bus systems, and compared the results of
the four approaches in terms of objective cost, reliability, CPU,
and optimal solution. We find that use of load reserves, even
when their reserve capacities are uncertain, decreases system
operational costs. We also find that, in contrast to the Gaussian
approximation approach, the DR approach yields solutions with
reliabilities close to the specified requirements. Additionally,
both DR approaches require less computation time than the sce-
nario approximation approach, which requires large numbers of
uncertainty samples (900 for the 9-bus system and 4000 for the
39-bus system). Furthermore, the DR reformulation that uses
SOCP produces solutions with reliabilities above the require-
ments and requires only modest CPU time (approximately 10
seconds for the IEEE 118-bus system with multiple wind power
plants and congestion). In summary, the DR approach, which
relies on moments calculated from small uncertainty sample sets
(here we use only 20) but makes no assumption on the underly-
ing uncertainty distributions, provides a good tradeoff between
performance and computational tractability.

Future research includes quantifying the relationship between
result quality and the amount of data used to construct the
moment-based ambiguity set. We will apply the DR approach to
multi-period, larger-scale problems that better capture the com-
plex and correlated uncertainties associated with load reserves
and renewable energy. Additionally, we will explore methods
to include structural properties (e.g., unimodality), higher-order
moments, and/or strengthened supports of the random variable ξ
to reduce the conservatism of the solutions. The main challenge
will be deriving tractable reformulations or approximations of
the DR CC-OPF model.
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