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Insulin Resistance Exacerbates Genetic 
Predisposition to Nonalcoholic Fatty Liver 
Disease in Individuals Without Diabetes
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The accumulation of excess fat in the liver (hepatic steatosis) in the absence of heavy alcohol consumption causes 
nonalcoholic fatty liver disease (NAFLD), which has become a global epidemic. Identifying metabolic risk factors 
that interact with the genetic risk of NAFLD is important for reducing disease burden. We tested whether serum 
glucose, insulin, insulin resistance, triglyceride (TG), low-density lipoprotein cholesterol, high-density lipoprotein 
cholesterol, body mass index (BMI), and waist-to-hip ratio adjusted for BMI interact with genetic variants in or 
near the patatin-like phospholipase domain containing 3 (PNPLA3) gene, the glucokinase regulatory protein (GCKR) 
gene, the neurocan/transmembrane 6 superfamily member 2 (NCAN/TM6SF2) gene, and the lysophospholipase-like 
1 (LYPLAL1) gene to exacerbate hepatic steatosis, estimated by liver attenuation. We performed association analyses 
in 10 population-based cohorts separately and then meta-analyzed results in up to 14,751 individuals (11,870 of 
European ancestry and 2,881 of African ancestry). We found that PNPLA3-rs738409 significantly interacted with 
insulin, insulin resistance, BMI, glucose, and TG to increase hepatic steatosis in nondiabetic individuals carrying 
the G allele. Additionally, GCKR-rs780094 significantly interacted with insulin, insulin resistance, and TG. 
Conditional analyses using the two largest European ancestry cohorts in the study showed that insulin levels  
accounted for most of the interaction of PNPLA3-rs738409 with BMI, glucose, and TG in nondiabetic individuals. 
Insulin, PNPLA3-rs738409, and their interaction accounted for at least 8% of the variance in hepatic steatosis in 
these two cohorts. Conclusion: Insulin resistance, either directly or through the resultant elevated insulin levels, more 
than other metabolic traits, appears to amplify the PNPLA3-rs738409-G genetic risk for hepatic steatosis. Improving 
insulin resistance in nondiabetic individuals carrying PNPLA3-rs738409-G may preferentially decrease hepatic stea-
tosis. (Hepatology Communications 2019;3:894-907).

Nonalcoholic fatty liver disease (NAFLD) is a 
result of the excess accumulation of lipids in 
hepatocytes (hepatic steatosis) in the absence 

of heavy alcohol consumption.(1) Hepatic steatosis 
is also associated with the risk of developing dys-
lipidemia or dysglycemia(2) as well as cardiovascular 
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disease, which is the number one cause of death in 
individuals with NAFLD.(3,4) Hepatic steatosis may 
progress to advanced liver disease in the form of 
nonalcoholic steatohepatitis, fibrosis (cirrhosis), and 
cancer (hepatocellular carcinoma).(5-7) In the United 
States, the prevalence of hepatic steatosis in the adult 
population is between 10% and 30%; worldwide it is 

25%-45%.(8) While the pathogenesis of NAFLD is 
not entirely understood, both genetic factors and met-
abolic traits increase the risk of hepatic steatosis.

Heritability of hepatic steatosis ranges from 22% 
to 38% across all ancestries, suggesting that specific 
genotypes may predispose individuals to NAFLD.(1) 
Previously, the Genetics of Obesity-Related Liver 
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Disease Consortium conducted a genome-wide asso-
ciation study in 7,176 individuals of European ancestry 
(EA), with replication in histology-based samples.(9) 
This study identified that rs738409 (in patatin-like 
phospholipase domain containing 3 [PNPLA3]), a 
missense single nucleotide polymorphism (SNP) first 
associated with hepatic fat content a decade ago(10); the 
missense variant rs2228603 (in neurocan/transmem-
brane 6 superfamily member 2 [NCAN/TM6SF2]); and 
intronic variants rs12137855 (in lysophospholipase- 
like 1 [LYPLAL1]) and rs780094 (in glucokinase reg-
ulatory protein [GCKR]) were significantly associated 
with hepatic steatosis.(9) We and others have repli-
cated the association of these common variants with 
hepatic steatosis in other populations and ethnici-
ties,(11-13) and the associations are consistent between 
those of EA and African ancestry (AA) (direction of 
effect is similar).(11) Further, the G allele for rs738409 
was associated with susceptibility to nonalcoholic ste-
atohepatitis (odds ratio [OR], 2.64; 95% confidence 
interval [CI], 1.85-3.75; P < 1.0E–04), nonalcoholic 
steatohepatitis severity (OR, 1.85; 95% CI, 1.05-3.26; 
P < 3.5E–02), and fibrosis (OR, 1.95; 95% CI, 1.17-
3.26; P < 1.3E–02) in EA individuals.(14)

Traits that predispose to metabolic syndrome, 
i.e., higher body mass index (BMI),(15) dyslipidemia, 
hyperglycemia, and insulin resistance, are associated 
with hepatic steatosis.(2,3,16) Approximately 80%-
90% of adults with obesity (BMI ≥ 30 kg/m2) have 
hepatic steatosis,(17) while 20%-80% of individu-
als with hepatic steatosis also have higher levels 
of triglyceride (TG) and low-density lipoprotein 
(LDL) cholesterol but lower levels of high- density 
lipoprotein (HDL) cholesterol.(18) Diabetes is also 
commonly associated with hepatic steatosis.(19) 

How these modifiable metabolic traits interact with 
genetic variation to influence the risk for hepatic 
steatosis is not known.

In this cross-sectional study, we tested whether 
several metabolic traits interact with the four genetic 
variants associated with hepatic steatosis(9) to affect 
liver attenuation (LA), a computed tomographic 
quantitative measure that is inversely related to 
histologically measured liver fat.(20) The metabolic 
traits tested were insulin resistance (as homeostatic 
model of insulin resistance [HOMA-IR]), fasting 
insulin, fasting glucose, BMI, centralized fat depo-
sition measured by waist-to-hip ratio adjusted for 
BMI (WHRadjBMI), fasting TG, fasting HDL, 
and fasting LDL. We first carried out interaction 
analyses between each of these traits and each of 
the genetic variants in 10 separate population-based 
cohorts from seven different studies. We then 
meta-analyzed results by ancestry (EA, n = 11,870; 
AA, n = 2,881) and across cohorts in up to 14,751 
individuals. We then carried out conditional anal-
yses in the two largest EA cohorts in the study to 
determine the driving metabolic factor.

Participants and Methods
etHiCs statement

This study was approved by the Icelandic National 
Bioethics Committee (VSN 00-063) and the insti-
tutional review boards or equivalent committees of 
all participating studies. The principal investigator 
of each institution obtained written consent from 
participants.
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stuDy DesCRiption
The study was comprised of up to 14,751 individu-

als (EA, n = 11,870; AA, n = 2,881), and 56% of par-
ticipants were women. The sample derived from seven 
population-based studies participating in the Genetics 
of Obesity-Related Liver Disease Consortium: Age, 
Gene/Environment Susceptibility-Reykjavik (AGES), 
Old Order Amish (Amish), Coronary Artery Risk 
Development in Young Adults (CARDIA), Family 
Heart Study (FamHS), Framingham Heart Study 
(FHS), Genetic Epidemiology Network of Arteriopathy 
(GENOA), and Multi-Ethnic Study of Atherosclerosis 
(MESA). In total, 10 cohorts were included in the 
analysis as three studies contributed two ancestry 
groups (AA, EA). Each ancestry group was analyzed 
separately. CARDIA, MESA, and AGES have unre-
lated individuals, while FHS, Amish, GENOA, and 
FamHS are family-based studies. Detailed information 
about the characteristics and design of each study is 
provided in Supporting Table S1.

outCome VaRiaBle anD 
metaBoliC tRaits

The outcome variable was LA, measured noninva-
sively with computed tomography in Hounsfield units 
(HU).(21) LA is inversely proportional to liver fat, i.e., 
lower LA values indicate a higher fat content in the 
liver (more hepatic steatosis).(2) The procedures fol-
lowed by each cohort to measure LA are described in 
Supporting Table S2. Individuals with active malig-
nancies, focal lesions, or other incidental findings on 
computed tomography were excluded from the studies.

Metabolic traits of interest were harmonized 
across cohorts following standard clinical definitions. 
Overall adiposity was characterized by BMI (kg/m2)  
and abdominal adiposity by WHRadjBMI (cm). 
Because waist-to-hip ratio is correlated with both 
BMI and visceral fat, we chose to use WHRadjBMI 
to have a measure that is independent of overall fat-
ness (i.e., BMI) but reflects visceral adiposity and is 
easily measured in the clinic. Fasting insulin (mU/L) 
and fasting glucose (mmol/L) were measured from 
plasma or serum using standard laboratory tech-
niques detailed in Supporting Table S2. When fast-
ing glucose was measured from whole blood, it was 
converted to plasma glucose using a correction factor 
of 1.13.(22) HOMA-IR was assessed using fasting 
glucose (mmol/L) × fasting insulin (mU/L) divided 

by 22.5.(23) Each cohort assayed fasting TG (mg/dL) 
and fasting HDL (mg/dL), using methods described 
in Supporting Table S2. If fasting LDL (mg/dL) was 
assayed, it was used; otherwise, LDL was calculated 
using the Friedewald formula LDLF = (total choles-
terol [mg/dL] – HDL [mg/dL] – TG [mg/dL]/5.0),  
only if TG <400 mg/dL.(24)

Alcohol consumption, history of diabetes, and use of 
lipid-lowering medications were acquired by question-
naire. Total alcohol consumption, defined in drinks per 
week, was calculated from daily intake of beer, wine, 
and spirits. One drink was defined as a serving of 14 g  
ethanol, the same as a 12-ounce (354.88 mL) bottle 
or can of beer, 5-ounce (147.87 mL) glass of wine, or 
1.5-ounce (44.36 mL) shot of 80-proof spirits, such as 
gin, vodka, or whiskey.(25) Heavy drinking was defined 
as ≥8 drinks per week for women and ≥15 drinks per 
week for men.(26) Diabetes (type 1, type 2) was defined 
as having fasting plasma glucose levels ≥7 mmol/L 
(126 mg/dL), or self-reporting the use of insulin or 
oral antidiabetic medications, or having a physician’s 
diagnosis of diabetes. The use of statins was assessed 
from medication questionnaires.

genotyping anD imputation
Four common variants were included in the anal-

yses: rs738409, a missense variant in the PNPLA3 
gene; rs780094, an intronic variant within the 
GCKR gene that is in high linkage disequilibrium 
(r2 = 0.93) with rs1260326, a likely functional mis-
sense variant in this gene; rs2228603, a missense 
variant in the NCAN gene that is in high linkage 
disequilibrium (r2 = 0.798) with rs585422926, a 
likely functional missense variant in the TM6SF2 
gene; and rs12137855, an intronic variant in the 
LYPLAL1 gene. These variants were either directly 
genotyped (allele counts were coded 0, 1, or 2) or 
dosages were imputed from HapMap II or 1000G. 
Genotype calling algorithms and imputation meth-
ods are detailed in Supporting Table S3.

statistiCal analysis

Cohort-specific analyses
Analyses were performed separately in each ances-

try group (EA, AA). LA and metabolic traits, used as 
continuous variables in all analyses, were adjusted for 
sex, age, principal component estimates of ancestry, 
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and study-specific covariates, using linear regres-
sion as detailed in Supporting Table S2. LA was 
also adjusted for alcohol consumption, a continuous 
variable (drinks/week), and for scan penetrance using 
phantom or spleen density. Residuals from adjusted 
LA and metabolic traits were transformed using 
inverse normal transformation to reduce the influence 
of outliers and to standardize the phenotypes across 
cohorts. Inverse normal-transformed residuals of LA 
(LAivn) and each metabolic trait (MTivn) were used to 
fit the interaction models.

Each cohort tested for statistical interactions 
between each variant and each metabolic trait, using 
multivariable linear regression or mixed linear mod-
eling. LAivn was the dependent variable. The inde-
pendent variables were each SNP and MTivn, plus 
their interaction: LAivn = α + β1(SNP) + β2(MTivn) + 
β3(SNP × MTivn) + є. An additive model of inheri-
tance was assumed. Studies with family data (FHS, 
GENOA, Amish, and FamHS) used linear mixed 
models to account for family relatedness among par-
ticipants and computed robust standard errors (SE). 
Participants with diabetes (type1 and type 2) were 
excluded from the insulin, glucose and HOMA-IR 
models, and those taking statins were excluded from 
the LDL model. As a secondary analysis, BMI was 
included as a covariate in the models to investigate 
whether the effect of the interaction between each 
SNP and each metabolic trait on LAivn occurred inde-
pendent of overall adiposity. Associations were carried 
out using MMAP,(27) R,(28) and SAS(29) software.

meta-analyses
We conducted fixed-effects meta-analyses by ances-

try and overall on the parameter estimates (β coeffi- 
cient and SE) for the main effects and interac-
tion effects. We used the inverse variance weighting 
method implemented in METAL.(30) Using Cochran’s 
Q test,(31) we tested for heterogeneity of effects across 
all analyses. Within ancestries and focusing on inter-
actions, we found evidence of heterogeneity only for 
the interaction between TG and GCKR in the EA 
cohorts. We did not find any heterogeneity for the 
interaction in the meta-analyses between the two 
ancestry groups (EA versus AA); thus, we report the 
combined ancestry meta-analyses. To determine the 
level of statistical significance while accounting for 
multiple testing, we applied a Bonferroni correction 

that consisted of grouping correlated traits into three 
metabolic domains: insulin-glucose, adiposity, and lip-
ids. The critical P value α = 0.05 was divided by 12  
(4 variants × 3 metabolic domains) to obtain a corrected 
P value. Meta-analyses results and heterogeneity tests 
were considered significant if P ≤ 4.17E–03 (two-
tailed). As a secondary analysis to investigate whether 
the statistically significant interactions were consis-
tent between sexes, we fit the interaction models in 
men and women separately and meta-analyzed results 
within each sex.

Conditional analyses in FamHs and 
FHs

To determine whether the interaction of BMI, 
glucose, or TG with PNPLA3-rs738409 was inde-
pendent of insulin, we analyzed each trait’s interac-
tion effect before and after including insulin in the 
model. The analyses were performed with EA indi-
viduals in FamHS and replicated in FHS. We chose 
these two cohorts because they are the two largest 
cohorts in the study; together they represent more 
than one third of our total sample. Individuals with 
diabetes and/or missing information for the meta-
bolic traits of interest were excluded, resulting in a 
sample of 2,280 individuals in FamHS and 2,581 
in FHS. After adjusting LA for phantom in both 
cohorts and for field centers in FamHS, LA residu-
als were transformed using inverse normal transfor-
mation to approximate normality. LAivn were used as 
the dependent variable. Using linear mixed models, 
we first regressed LAivn on either BMI, glucose, or 
TG and their interaction with PNPLA3-rs738409 
(Supporting Text). We then added insulin to the 
models and its interaction with PNPLA3-rs738409 
and the metabolic trait (either BMI, glucose, or TG). 
Insulin and TG were log-transformed due to the 
presence of influential outliers. Models were adjusted 
for age, sex, and alcohol consumption (drinks/week) 
and for genotype batch effects in FamHS. Results 
from conditional analyses in each cohort were then 
meta-analyzed.

The conditional models included principal compo-
nents to adjust for population stratification. Because 
the principal components were not associated with 
LAivn in either cohort and their inclusion in the con-
ditional models did not change the inferences, we 
present the models without them. We also performed 
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conditional analyses after excluding individuals from 
FamHS (n = 231) and FHS (n = 371) who reported 
heavy alcohol use (≥8 drinks per week for women and 
≥15 drinks per week for men) (Supporting Tables 
S10-S12).(26) Because the inferences were unchanged, 
we included all individuals to increase power and 
adjusted for alcohol as a covariate. Additionally, 
we conducted the conditional analyses with log- 
transformed HOMA-IR instead of log-transformed 
insulin (Supporting Tables S13-S15). Insulin and 
HOMA-IR provided similar inferences. Because glu-
cose explained significantly less of the variation in 
LAinv, we focused on insulin over HOMA-IR because 
there was no added benefit of measuring glucose on 
variance explained by HOMA-IR than with just 
measuring insulin.

illustration in FamHs of the 
interaction Between insulin and 
PNPLA3-rs738409 in individuals 
Without Diabetes

To assess the interaction effect of insulin with 
PNPLA3-rs738409 on hepatic steatosis prevalence 
in FamHS, we plotted the percentage of individu-
als with LA ≤60 HU per PNPLA3-rs738409 gen-
otype by the lowest and highest quartile of insulin. 
Individuals with diabetes and/or missing informa-
tion for insulin were excluded and ancestries were 
combined to obtain a sample of n = 2,725, which 
was divided into quartiles of insulin. LA and insu-
lin were not adjusted or transformed. The LA 
cut-off point of ≤60 HU, which corresponds to a 
liver:spleen ratio of 1.1, has been shown to identify 
individuals with moderate to severe macrovesicular 
steatosis (≥30% of the liver parenchyma with fat) at 
histology with a high diagnostic accuracy.(32) In the 
literature, ≥30% liver fat suggests moderate to severe 
hepatic steatosis.(33)

Results
Demographics and clinical characteristics across 

the study cohorts are presented in Table 1. The mean 
age ± standard deviation (SD) across cohorts ranged 
from 49.47 ± 3.86 to 76.38 ± 5.46 years old. All cohorts 
included more women than men. The mean ± SD 

of LA across cohorts ranged from 55.05 ± 12.28 
HU to 65.40 ± 9.83 HU. In those without diabe-
tes, mean ± SD of fasting insulin levels ranged from 
8.30 ± 5.73 to 13.02 ± 10.22 mU/L and fasting blood 
glucose levels ranged from 4.90 ± 0.58 to 5.49 ± 0.50 
mmol/L. The lowest mean ± SD for HOMA-IR in 
those without diabetes was 1.99 ± 1.27 and the high-
est was 3.14 ± 2.69. The mean ± SD of BMI ranged 
from 27.00 ± 4.49 to 32.71 ± 7.37 kg/m2. Several 
cohorts reported mean fasting TG >100 mg/dL. 
Mean ± SD for fasting LDL cholesterol in nonstatin 
users was borderline high in Amish (141.31 ± 38.66 
mg/dL) and AGES (146.84 ± 35.73 mg/dL). Across 
cohorts, the range of fasting HDL cholesterol was 
within the recommended limit of ≥40 mg/dL. Heavy 
drinking varied among studies, with GENOA having 
the lowest percentage (0%) and CARDIA the highest 
(37%).

PNPLA3-rs738409 anD  
GCKR-rs 780094 inteRaCt WitH 
seVeRal metaBoliC tRaits

We found significant interactions for PNPLA3- 
rs738409 and GCKR-rs780094 with several met-
abolic traits in combined ancestries after adjusting  
for multiple comparisons (Table 2; Supporting Table 
S4). PNPLA3-rs738409 interacted with insulin 
(P = 4.79E–14), HOMA-IR (P = 4.68E–15), glu-
cose (P = 1.26E–03), BMI (P = 8.13E–08), and TG 
(P = 2.95E–03). As each of these metabolic traits 
increased, a decrease in LAivn (i.e., higher fat content 
in the liver) became more pronounced in the presence 
of the G allele at PNPLA3-rs738409 compared to the 
presence of the C allele. Additionally, GCKR-rs780094 
interacted with insulin (P = 4.57E–04), HOMA-IR 
(P = 1.32E–03), and TG (P = 4.17E–03). As levels 
of insulin, HOMA-IR, and TG increased, a decrease 
in LAivn (i.e., higher fat content in the liver) became 
more pronounced in the presence of the T allele at 
GCKR-rs780094 compared to the C allele. All inter-
actions remained significant after adjusting for BMI 
(Supporting Table S5), suggesting that overall adipos-
ity did not alter these effects. We did not find evidence 
of significant interactions between any of the four 
genetic variants and WHRadjBMI, LDL, or HDL. 
Although the interaction between WHRadjBMI and 
PNPLA3-rs738409 did not reach the Bonferroni 
significance level, it was borderline significant. This 
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suggests that a larger sample size may be needed to 
detect an interaction. Alternatively, the lack of statis-
tical significance could be because WHRadjBMI does 
not represent overall fatness to the extent that BMI or 
other anthropometric measurements do.

We also carried out meta-analyses in men and 
women separately to investigate possible sex differ-
ences, focusing only on the statistically significant inter-
actions with PNPLA3-rs738409 and GCKR-rs780094 
(Supporting Table S6). Women made up 56% of our 
study sample. The interaction effects of insulin and 
HOMA-IR with PNPLA3-rs738409 did not differ 
between men and women, and both reached statistical 
significance (for insulin, women, P = 3.24E–11; men, 
7.24E–05; for HOMA-IR, women, P = 1.62E–11; 
men, P = 2.88E–05). For glucose, the interaction effect 
was slightly less in men than in women (smaller beta) 
and did not reach significance in men. These results 
suggest that sex did not alter the interactions between 
PNPLA3-rs738409 and insulin/HOMA-IR and that 
the interaction effect of glucose was still present only 
in women in the present study. Further, the interaction 
effects of BMI with PNPLA3-rs738409 were similar 
between men and women and reached significance in 
both (P = 1.20E–03 and P = 3.39E–05, respectively). 
The interaction effect of TG with PNPLA3-rs738409 
did not reach statistical significance in either sex. 
Moreover, the interaction effects of both insulin and 
HOMA-IR with GCKR-rs780094 reached signifi-
cance only in women (P = 1.02E–03 and P = 6.46E–04,  
respectively). Similarly, the interaction of TG with 
GCKR-rs780094 was significant only in women 
(P = 8.71E–04). Stratifying by sex substantially redu-
ced our sample size and as a result, power.

ConDitional analyses 
suggest tHat insulin may 
meDiate tHe inteRaCtion 
eFFeCt oF Bmi, tg, anD 
gluCose on laivn in 
inDiViDuals WitHout 
DiaBetes

We observed that the interaction of insulin with 
PNPLA3-rs738409 had a greater effect on LAivn 
(hepatic steatosis) than that of BMI, TG, or glucose. 
To determine if the interaction of BMI, TG, or glucose 
with PNPLA3-rs738409 was independent of insulin, we 
carried out conditional analyses in FamHS and FHS 

and meta-analyzed results. We found that the interac-
tion of BMI (P = 7.57E–02), TG (P = 3.49E–01), or 
glucose (P = 9.09E–01) with PNPLA3-rs738409 was no 
longer statistically significant after including insulin as a 
main effect and interactor with PNPLA3-rs738409 and 
the respective metabolic trait in the models (Supporting 
Tables S7-S9). In contrast, the interaction of insulin 
with PNPLA3-rs738409 remained significant after con-
trolling for BMI, TG, or glucose (Pinsulin–BMI = 4.04E–
04; Pinsulin–TG = 3.24E–06; Pinsulin–glucose = 8.40E–08), 
although the effect sizes and P values were attenuated. 
These results suggest that insulin may account for most 
of the interaction effect of BMI, glucose, and TG with 
PNPLA3-rs738409 on LAivn. Previously, we reported 
that PNPLA3-rs738409 explained 2.4% of the variance 
in hepatic steatosis, estimated by LA, in EA individu-
als.(11) In the present study, PNPLA3-rs738409, insulin, 
and their interaction together explain as much as 8% 
of the variance in hepatic steatosis in the two largest 
EA cohorts, excluding individuals with diagnosed dia-
betes. This suggests that insulin levels/insulin resis-
tance may be a key contributor to NAFLD. Excluding 
heavy drinkers from the conditional analyses did not 
change our inferences regarding PNPLA3-rs738409 
(Supporting Tables S10-S12). We were not powered to 
carry out these analyses for GCKR-rs780094.

inteRaCtion eFFeCt 
oF insulin WitH PNPLA3 
on HepatiC steatosis 
pReValenCe in FamHs

We assessed the interaction effect of insulin with 
PNPLA3-rs738409 on hepatic steatosis prevalence 
in individuals without diabetes (Fig. 1). In the lowest 
quartile of insulin levels (≤5.20 mU/L), the percent-
age of individuals with ≥30% liver fat (i.e., moderate 
to severe hepatic steatosis) was 23.42%, 35.81%, and 
39.47% for CC, CG, and GG individuals, respec-
tively. In the highest quartile of insulin levels (≥13.06 
mU/L), the percentage of individuals with ≥30% liver 
fat was 54.44%, 76.32%, and 94.29% for CC, CG, and 
GG individuals, respectively. The data show that as 
insulin levels increase, the percentage of individuals 
with moderate to severe hepatic steatosis increases. 
However, among those with the GG genotype, this 
effect is magnified. The difference in the percentage of 
individuals with moderate to severe hepatic steatosis 
increases by 55 percentage points between the lowest 
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and highest insulin quartiles among those with the 
GG genotype and increases by 41 percentage points 
among heterozygotes, while that difference increases 
only by 31 percentage points among those with the 
CC genotype. These data suggest that insulin has a 
strong effect on exacerbating the accumulation of liver 
fat in individuals without diabetes who have one or 
two G alleles at PNPLA3-rs738409.

Discussion
In a sample of 14,751 EA and AA individuals, 

we found interactions between PNPLA3-rs738409 
and insulin, HOMA-IR, BMI, glucose, and TG on 
LAinv (hepatic steatosis) after adjusting for differences 
in age, sex, and alcohol consumption. We also found 

interactions between GCKR-rs780094 and insulin, 
HOMA-IR, and TG on LAinv. Conditional analyses in 
more than 5,000 EA individuals suggest that insulin, 
more than glucose, BMI, or TG, drives the interaction 
with PNPLA3-rs738409 to affect LAinv in those with-
out diabetes. We did not see significant interactions 
between PNPLA3-rs738409 and BMI, TG, or glucose 
once insulin was accounted for, whereas the reverse was 
not true. That is, there was still evidence for an interac-
tion between PNPLA3-rs738409 and insulin even after 
accounting for the other metabolic traits. These results 
persist after accounting for alcohol intake, sex, and 
overall adiposity. We estimated in FamHS and FHS 
that as much as 8% of the variance in hepatic steatosis 
is explained by PNLPA3-rs738409, insulin, and their 
interaction in EA individuals without diabetes. In our 
previous study, PNPLA3-rs738409 alone explained only 
2.4% of hepatic steatosis variance in EA individuals.(11)

Our findings suggest that individuals without dia-
betes with PNPLA3-rs738409-G and high insulin 
levels may have a particularly high risk for hepatic 
steatosis. The PNPLA3 gene encodes adiponutrin, 
an enzyme found on the membrane of lipid droplets 
within hepatocytes.(34) Its function may be to break 
down TG stored in the droplets, helping regulate 
hepatic TG content.(34,35) The missense polymor-
phism rs738409 (C>G) in PNPLA3 substitutes the 
amino acid isoleucine for methionine at residue 148 
(I148M), changing the configuration of adiponutrin’s 
catalytic site and rendering the enzyme inactive.(10,36) 
The accumulation of the inactive enzyme on lipid 
droplets is associated with TG buildup in hepato-
cytes.(36) Humans and mice carrying one or two cop-
ies of the I148M mutation (rs738409 CG or GG 
genotype) accumulate excess TG in lipid droplets and 
show more pronounced hepatic steatosis and NAFLD 
than those without the mutation.(35,36)

It is possible that having high insulin levels in addi-
tion to the PNPLA3-rs738409-G allele may result in a 
strong synergistic effect that exacerbates the accumula-
tion of fat in the liver of individuals without diabetes, 
predisposing them to NAFLD. Insulin resistance stim-
ulates the hydrolysis of TG in adipose tissue, releasing 
fatty acids in the bloodstream, which are taken up by 
the liver in an unregulated manner, promoting the 
accumulation of TG in hepatocytes.(37) Higher insu-
lin levels also activate fatty acid synthesis in the liver, 
further driving the formation and storage of TG.(34) 
In addition, insulin resistance elevates plasma glucose, 

Fig. 1. Percentage of individuals without diabetes in FamHS 
with ≥30% fat in the liver (moderate to severe hepatic steatosis) 
is shown per PNPLA3-rs738409 genotype in the lowest and 
highest quartile of insulin levels. The number of individuals (n) 
in the lowest (blue circle) and highest (red circle) insulin quartiles 
are shown by genotype. As the level of insulin increases, the 
percentage of individuals with ≥30% fat in the liver increases more 
markedly with increasing copies of the G risk allele (nonparallel 
lines show interaction). Among those with the GG genotype, 
the difference (∆) in the percentage of individuals with moderate 
to severe liver fat increases by 55 percentage points between the 
lowest and highest insulin quartiles. In contrast, this difference 
is lower among those with the CG genotype (41%) and CC 
genotype (31%).
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which is sequestered by the liver, phosphorylated, and 
metabolized to make glycerol and acetyl-coenzyme A, 
the building blocks for the synthesis of TG.(34,38) In 
this context, it is possible that increased lipid synthesis 
and fatty acid delivery to the liver may combine with 
the inability of hepatocytes to dispose of TG from lipid 
droplets due to the presence of PNPLA3-rs738408-G 
and lead to increased hepatic steatosis. High insulin 
levels and PNPLA3-rs738409-G may also be involved 
in molecular feedback loops that increase hepatic ste-
atosis. Insulin resistance and increased insulin levels 
augment the activity of transcription factors, such as 
sterol regulatory element binding protein 1c.(39) These 
transcription factors may promote TG synthesis in 
the liver and up-regulate the expression of PNPLA3 
I148M by binding to its promoter in a positive-feed-
back loop.(39) In this way, insulin and PNPLA3 I148M 
may synergize to promote hepatic steatosis. This con-
jecture is also consistent with the enhanced risk of 
steatosis and liver damage, as evident by elevated liver 
enzymes and liver fat content seen with liver-directed 
long-acting insulin analogues in type 2 diabetics car-
rying the PNPLA3 variant.(40)

When taken together, results show evidence that 
insulin and PNPLA3-rs738409 interact to have an 
important role in hepatic steatosis and as a result, 
NAFLD. Consequently, lowering the risk of hepatic 
steatosis and its liver complications in individuals with 
PNPLA3-rs738409-G may be achieved by reducing 
insulin resistance and concomitant high levels of insu-
lin. One way to accomplish this could be through life-
style changes that include increased exercise, weight 
loss, and better nutrition.(41) For example, decreasing 
exposure to carbohydrate-rich diets, which adversely 
increase insulin levels, may mitigate risk.(42,43) Also, 
treatments that target insulin resistance may be of 
greater benefit for preventing or treating hepatic 
steatosis than drugs that simply lower glucose. For 
example, insulin-sensitizing medications, such as 
pioglitazone, may be an option; it has already been 
shown to improve NAFLD, although at the expense 
of weight gain.(44) More studies are warranted to bet-
ter understand the effect of the relationship between 
insulin levels and PNPLA3-rs738409-G on hepatic 
steatosis in different populations.

We also observed significant interactions of 
PNPLA3-rs738409 with BMI, glucose, and TG. Our 
results support the findings of Stender et al.(45) who 
reported that high BMI augmented the effect of 

PNPLA3-rs738409-G on hepatic steatosis, conferring 
susceptibility to NAFLD. Graff et al.(46) also showed 
an interaction effect between PNPLA3-rs738409 and 
visceral fat content, a measure of metabolic dysfunction. 
However, we found that the effect of BMI in exacer-
bating hepatic steatosis in the presence of PNPLA3-
rs738409-G is attenuated by controlling for insulin 
levels in the model. We made the same observation 
for glucose and TG, suggesting that insulin/insulin 
resistance in the presence of PNPLA3-rs738409-G 
may confer most of the risk for hepatic steatosis on its 
own or through other metabolic intermediates.

Studies have reported an association between LDL 
and hepatic steatosis.(47,48) However, our study did not 
find an interaction between any of the genetic variants 
considered and LDL. This suggests that for individ-
uals carrying PNPLA3-rs738409-G, reducing insulin 
levels or insulin resistance may have a greater effect 
on reducing the risk of hepatic steatosis than reducing 
LDL.

In addition to PNPLA3, we found that GCKR 
interacts with insulin resistance to increase suscepti-
bility to hepatic steatosis. GCKR encodes the glucoki-
nase regulatory protein, which has an important role 
in glucose metabolism.(49) The glucokinase regulatory 
protein binds to the glucose metabolizing enzyme glu-
cokinase to inhibit its role in the uptake and storage 
of dietary glucose through stimulating de novo lipo-
genesis.(49) The variant rs780094/rs12060326 in the 
glucokinase regulatory protein reduces its ability to 
inhibit glucokinase.(49) This results in increased activ-
ity of glucokinase in the liver, which promotes de novo 
lipogenesis. When this mutation is combined with 
insulin resistance, it may amplify de novo lipogenesis 
to promote hepatic steatosis. We did not replicate the 
interaction between TM6SF2 and BMI reported by 
Stender et al.(45); however, our results show a similar 
trend. The interaction was borderline nonsignificant 
in the combined ancestry meta-analyses (interaction 
effect size, βint = –0.05; P = 5.89E–02). Some dif-
ferences between Stender et al. and this study may 
explain why we did not detect a statistically significant 
interaction. First, Stender et al. used proton magnetic 
resonance spectrometry to measure steatosis, which 
is a more sensitive measure than computed tomogra-
phy. Second, they used the genotyped missense vari-
ant rs58542926; we used the proxy imputed variant 
rs2228603. The two variants are in high-linkage dis-
equilibrium (D’ = 0.926, r2 = 0.798). Third, Stender 
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et al. combined the heterozygotes (EK) and homo-
zygotes (KK) and compared them to those without 
the risk allele (EE). These three differences may have 
increased their power to see the weak effect they 
reported.

Our study has several limitations. It is a cross- 
sectional design that cannot prove temporal cau-
sality of insulin exposure on increasing hepatic 
steatosis. Because we used population-based cohorts 
that lacked biopsy information, we do not know 
whether we included individuals with advanced 
stages of NAFLD, such as nonalcoholic steatohep-
atitis, fibrosis, or cirrhosis. We also could not dif-
ferentiate peripheral insulin resistance from hepatic 
insulin resistance with our data. Moreover, even 
though HOMA-IR was highly correlated to a sin-
gle value of insulin (r2 = 0.98) in individuals who 
were euglycemic, we do not have direct measures of 
dynamic glucose regulation. Therefore, functional 
studies are needed to gain more insight into the bio-
logical processes driving our observations. Finally, 
our study did not include the missense variant, 
rs641738, at the membrane bound O-acyltransferase 
domain containing 7/Transmembrane channel-like 
4 (MBOAT7/TMC4) locus. It has been associ-
ated with hepatic fat accumulation.(50) In our prior 
association analyses,(11) we did not see an associa-
tion between MBOAT7/TMC4 and LA (β = –0.03; 
P = 0.15). Because our inclusion criterion for vari-
ants was that they needed to be associated with LA 
and we could not substantiate the association of 
MBOAT7/TMC4 in our sample, we excluded it.

In conclusion, to our knowledge, this is the larg-
est study examining the interaction between multiple 
metabolic traits and four genetic variants on hepatic 
steatosis in multiple cohorts representing two different 
ancestry groups. Our findings suggest that insulin lev-
els/insulin resistance more than other correlated met-
abolic traits, including glucose, TG, and BMI, interact 
with genetic variants in PNPLA3 to promote hepatic 
steatosis. Through conditional analyses, we show 
that insulin levels explain the interactions observed 
between PNPLA3-rs738409 and BMI as well as the 
interactions between PNPLA3-rs738409 and glucose 
and TG in almost 5,000 EA individuals without dia-
betes. Our work suggests that improving insulin resis-
tance and reducing insulin levels in individuals who 
are prediabetic and who carry fatty liver-promoting 
alleles at PNPLA3-rs738409 may offer preferential 

benefit and mitigate their risk of developing NAFLD. 
Although PNPLA3 genotype information is not cur-
rently used to make clinical decisions, it may be help-
ful in the future not only to risk stratify individuals but 
also to tailor their treatment. Our work contributes to 
the understanding of the pathophysiology of NAFLD 
and informs further interventional research to better 
diagnose and/or treat individuals with increased risk 
of NAFLD.
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