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Abstract 

Acute myeloid leukemia (AML) is diagnosed in >20,000 people/year in the 

United States alone and is associated with a poor prognosis. AML arises due to 

altered transcriptional programs resulting from mutations and chromosomal 

rearrangements. Frequently, this altered transcription is a consequence of 

epigenetic deregulation. Indeed, over 70% of AML patients harbor mutated 

epigenetic modifiers1, which regulate chromatin accessibility and gene expression. 

Aberrant expression of the HOXA gene cluster, which can result from epigenetic 

deregulation, drives transformation of ~50% of AML, including those associated 

with poor prognosis2–5. One manner in which the HOXA gene cluster becomes aberrantly 

expressed is through 11q23 chromosomal translocations involving the Mixed Lineage 

Leukemia 1 (MLL1) gene6–10. These events result in the formation of fusion genes 

encoding MLL fusion oncoproteins which transcriptionally activate oncogenes, including 

the HOXA cluster5,7,11. Our lab and others have demonstrated that the Polymerase 

Associated Factor complex (PAF1c), an epigenetic regulator complex, interacts directly 

with and recruits wildtype MLL1 and MLL-fusion oncoproteins to target loci like HOXA9 

and MEIS112,13. The PAF1c-MLL interaction is required for leukemia cell proliferation, 

but dispensable for normal hematopoiesis14. Mutations and aberrant expression of 

subunits of the PAF1c are observed in various malignancies, suggesting that the PAF1c 

must be tightly regulated for proper cellular development15–17. However, the biochemical 

regulation of the PAF1c that allows for its dynamic regulation of gene expression in AML 

is not fully understood.  

To better understand the regulation of the PAF1c, we use a proteomics approach to 

identify novel interaction partners of the PAF1c in AML cells. This study reveals a novel 

interaction between the PAF1c and the H3K9 methyltransferase SETDB1. The PAF1c-

SETDB1 interaction represses the target genes Hoxa9 and Meis1 in murine MLL-AF9 

driven leukemic cells and human AML cell lines. SETDB1 mediated transcriptional 



 xv 

repression is correlated with an increase in promoter H3K9 trimethylation (H3K9me3). 

These data suggest that SETDB1 epigenetically represses pro-leukemic gene expression in 

AML. Therefore, we next explore the biological impact of SETDB1 expression and 

H3K9 methylation on AML. We note that expression of SETDB1 in AML patient 

samples is significantly lower compared to normal hematopoietic cells. Further, 

higher SETDB1 expression correlates with a significantly better overall survival in 

AML patients. These data are consistent with SETDB1 negatively regulating 

pro-leukemic genes and suggests that SETDB1 expression and H3K9 methylation 

levels may be correlated with AML patient prognosis. We demonstrate that 

overexpression of SETDB1 significantly delays MLL-AF9 mediated leukemogenesis 

in vivo by inducing differentiation of leukemic cells. We also explore how chemical 

inhibition of H3K9 methylation affects AML transformation. Treatment with H3K9 

methyltransferase inhibitor UNC0638 is antagonistic to established AML cell growth. In contrast, 

UNC0638 preserves mouse hematopoietic stem and progenitor cells (HSPCs) in 

culture and increases the amenability of bone marrow cells to be transformed by the 

MLL-AF9 oncogene. Transcriptome analyses demonstrate that overexpression of 

SETDB1 downregulates Hoxa and pluripotency gene programs. ChIP-sequencing 

and ATAC-sequencing of AML cells show that overexpression of SETDB1 leads to the 

acquisition of a more compact, epigenetically silenced chromatin state at the promoters 

of genes that are critical for AML, including Dock1 and MLL-AF9 target genes Hoxa9 

and Six1, and others. Together, these data reveal a previously unrecognized role for 

SETDB1 and H3K9 methylation in suppressing AML by epigenetically silencing pro-

leukemic target genes and promoting differentiation.  
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Chapter 1 Introduction 

1.1 Transcription and epigenetic regulation in normal and malignant 
hematopoiesis 

Hematopoiesis is a tightly regulated process that is critical to both the 

establishment and the homeostasis of the blood system18. The process of 

hematopoiesis is largely governed by tightly regulated transcription of factors that cause 

cells to make specific lineage fate decisions. Furthermore, deregulation of these 

transcription processes leads to diseases and defects of the hematopoietic system19. 

Specifically, hematopoietic cancers are malignancies associated with transcriptional 

deregulation19. Epigenetic regulation of transcription is critical to normal hematopoietic 

development and epigenetic deregulation is common in hematopoietic malignancies. 

Therefore, epigenetic deregulation has become an area of great interest with regards to 

studying hematologic cancers1,20,21. 

 

Hematopoiesis 
Hematopoiesis is the process by which blood cells develop and are regenerated 

throughout the lifespan of an organism22. During the process of adult hematopoietic 

differentiation, primitive cells with high self-renewal capacity and pluripotency, i.e. the 

ability to differentiate into different cell types23, give rise to all primitive and mature blood 

cells in the myeloid, lymphoid, and erythroid lineages. Hematopoietic stem cells (HSCs) 

are the most primitive blood cells and are pluripotent, giving rise to multiple different 

hematopoietic lineages as well as other tissue subtypes24. Within the HSC population 

are two subpopulations of cells: long-term HSCs (LT-HSCs) and short-term HSCs (ST-

HSCs). LT-HSCs have a high self-renewal capacity and are responsible for sustaining 

the HSC population25. LT-HSCs can differentiate into ST-HSCs, which are highly 

proliferative and can differentiate to give rise to more lineage committed progenitor 

cells26,27. ST-HSCs differentiate to become multipotent progenitor cells (MPPs), which in 

turn differentiate into progenitor cells that are fully committed to either a myeloid or 
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lymphoid lineage. These cells are known as Common Myeloid Progenitors (CMPs) or 

Common Lymphoid Progenitors (CLPs) 28. In the lymphoid lineage, CLPs then make 

lineage decisions to give rise to the mature lymphoid cells, including Natural Killer (NK) 

cells, T cells, and B cells28. These mature lymphoid cells are primarily associated with 

immune system processes, with B cells and T cells functioning in adaptive immunity and 

NK cells functioning in the innate immune response29,30. In the myeloid lineage, CMPs 

exhibit the capacity to give rise to two additional types of progenitor cells: 

Megakaryocyte/ Erythroid Progenitors (MEPs) and Granulocyte/ Macrophage 

progenitors (GMPs) 28. Interestingly, MEPs can also arise directly from MPPs or even 

HSCs31. MEPs differentiate to give rise to the terminally differentiated erythrocyte cell 

population, which are responsible for the transportation of oxygen and carbon dioxide 

throughout the body32.  MEPs also differentiate to become megakaryocytes28. 

Megakaryocytes in turn can differentiate to produce platelets, which function in wound 

healing and other critical organismal processes33. GMPs differentiate to become 

basophils, neutrophils, eosinophils, and mast cells, which are all fully mature myeloid 

cells that function in a variety of critical processes, including infection response, 

inflammation, and vasodilation34,35. GMPs also give rise to monocytes, which in turn can 

differentiate into macrophages, cells that are involved in phagocytosis and immune 

response35. In summary, HSCs self-renew and differentiate in order to produce 

progenitor and terminally differentiated blood cells that encompass a wide variety of cell 

types that function in diverse processes. These lineage defining processes are the 

result of tightly regulated changes in specific gene programs. Aberrations in these 

processes can lead to hematopoietic deficiencies, immune disorders, and various 

malignancies. It is therefore critical to understand the regulatory processes involved in 

hematopoiesis.  

As these differentiation processes take place, lineage specific gene programs 

must be turned on, while gene programs associated with self-renewal and potency are 

progressively turned off2. Hematopoietic stem and progenitor cells (HSPCs) have 

distinct gene expression profiles, which includes high expression of genes associated 

with self-renewal such as the Homeobox A (HOXA) cluster of genes and others2,36,37. As 

these cells differentiate, the expression of these self-renewal gene programs is 
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progressively downregulated (Figure 1-1). Additionally, the expression of genes that are 

associated with lineage specific functions are upregulated. For instance, in mature 

blood cells we see high expression of KLF3, which plays an important role in erythroid 

cell maintenance38. There are several mechanisms by which these gene programs are 

regulated, including gene activation by lineage specific transcription factors and 

changes in the epigenome that lead to changes in the transcriptome. 

 

Lineage Specific Transcription Factors 
 Transcription is the cellular process by which DNA template is used by protein 

machinery to produce RNA. RNA polymerase II (RNAPII) dependent transcription is 

associated with the production of mRNA, among other subtypes of RNA39. mRNA is the 

template by which proteins are produced through the process of translation, and 

proteins are one of the primary effectors of cellular changes and identity. Therefore, the 

process of RNAPII dependent transcription is a critical regulatory step in establishing 

gene expression programs that define various cellular states and cellular processes, 

including development40,41. Transcription is regulated in part by many different protein 

networks that consist of a wide variety of transcription factors and cofactors40,41. 

Frequently, the regulation of transcription consists of a dynamic interplay between 

factors and cofactors that are associated with active gene transcription and those that 

drive gene repression and silencing42. Deregulation of these transcriptional networks is 

associated with aberrant regulation of cellular processes and the development of 

disease states43. Transcription factors play a critical role in HSC maintenance as well as 

Figure 1-1: Changing gene programs during hematopoietic differentiation. Shown here is a 
model representing changes in specific gene expression programs as primitive HSCs and 
hematopoietic progenitor cells differentiation to become fully mature blood cells. As cells undergo 
myeloid differentiation, gene programs associated with pluripotency and self-renewal must be 
progressively downregulated while differentiation gene programs and lineage specific genes become 
activated. 

HSCs Progenitors Mature Blood Cells 

Blood Cell Development:

Gene programs:
Pluripotency
Self-renewal

Differentiation
Lineage Specificity
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the regulation of lineage fate determination throughout the process of hematopoietic 

differentiation19,44.  

HSCs require activated gene programs that allow for self-renewal and continuous 

repopulating ability24. Some of the transcription factor genes associated with self 

renewal of HSCs are Homeobox protein B4 (HOXB4), which is required for the 

proliferation of HSCs45,46;  IKAROS, which is associated with maintaining the self-

renewal capacity of LT-HSCs25; GATA-2, which is a pro-survival and pro-proliferative 

gene in HSCs47–49; and Stem cell leukemia/ T-cell acute lymphocytic leukemia protein 1 

(SCL/TAL1), which is required for the long term potential of HSCs, and is also important 

for the development of more mature blood cells18,50,51.  

During the process of hematopoietic differentiation, there are many proteins that 

are required to drive specific fate decisions. These proteins are known as lineage 

specific transcription factors and are critical regulators of blood cell development52. 

Deregulation of the genes encoding these proteins is also associated with the disease 

states, including the development of malignancies53. For the sake of simplicity, some of 

the more well-studied transcription factors that govern myeloid lineage fate are reviewed 

here. Beginning with the earliest stage of myeloid differentiation, SCL/TAL1 has been 

established as an important regulator of not only HSCs, but also the differentiation of 

cells in the myeloid lineage54, where it plays a critical role in regulating the cell cycle and 

proliferation capacity of monocytic progenitors55. Another transcription factor required 

relatively early in the myeloid differentiation process is PU.1. PU.1 is an E-26 

transformation specific (ETS) domain containing protein and transcription factor that 

activates myeloid specific gene programs to drive MPP differentiation to GMPs and 

more terminally differentiated myeloid cells56. Interestingly, PU.1 is also required to 

sustain the quiescence of HSCs, indicating that it plays a role in both the maintenance 

of stem cells as well as driving hematopoietic differentiation57. It is important to note that 

some lineage decisions that are dependent on PU.1, like many other lineage fate 

decisions, also depend on other transcriptional regulators. Frequently, there is a 

balance of expression between different lineage factors that are all expressed in 

common progenitor cells52. For instance, PU.1 and the erythroid associated protein 

GATA binding factor 1 (GATA-1) act antagonistically to each other’s’ transcription factor 
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functions58. The differentiation of cells in the myeloid and erythroid lineages are 

therefore dependent on a balance of PU.1 and GATA-1 expression. PU.1 high 

expression pushes cells to a monocytic lineage decision, whereas low expression of 

PU.1 shifts the balance to GATA-1 driven transcription of genes associated with 

terminal erythroid differentiation59. Another protein that plays a crucial role in early 

progenitor cell fate decisions of myeloid differentiation is CCAT/enhancer binding 

protein a (C/EBPa). The lineage decisions that are impacted by the C/EBP family of 

genes are directly influenced by the expression of other, collaborating genes. C/EBPa 

drives myeloid differentiation60, and is specifically expressed in progenitors that are 

committed to the granulocyte/ macrophage lineage61. However, it has been 

demonstrated that GATA-2 co-expression with C/EBPa can push these cells toward 

eosinophil differentiation52. This again suggests that the lineage fate decisions in 

hematopoiesis are dependent on a complex balance of the expression of different 

factors. Interestingly C/EBPa has been reported to be required only through the CMP-

GMP transition, and is not necessary for the terminal differentiation of these 

progenitors62. Further along the myeloid differentiation path are genes associated with 

regulating the differentiation of more mature myeloid cells, including terminal 

differentiation. For instance, Zinc finger protein GFI-1 (GFI-1) is required for neutrophil 

differentiation, and is expressed in lineage committed cells to cause them to commit to a 

final mature cell type63–65. These transcription factors make up just a small part of the 

total machinery required to define a fully functional hematopoietic system. In summary, 

these factors form a complex network in which a precise balance of regulation is 

required to sustain hematopoietic potential and drive the development of the various 

mature blood cell lineages. These cell fate decisions can also be affected by other 

biochemical regulators, such as epigenetic modifiers. 

 

Epigenetics as a mode of transcriptional regulation  

One manner in which lineage specific transcription factors and other 

transcriptional processes are regulated are through changes in the proximal or distal 

epigenetic landscape, as well as through interactions with the epigenetic modifying 

machinery66–68. Epigenetics refers to heritable changes in gene expression that are not 
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explicitly encoded by the genomic sequence, but instead are attributable to regulatory 

mechanisms such as changes in chromatin conformation and compaction. Chromatin is 

the scaffold of DNA, RNA, and proteins that makes up chromosomes, which is the 

structure that contains the genetic information for a cell. Cells contain ~ 3 meters of 

DNA that must be packaged to fit within a cell but must also be available when needed 

for various molecular processes, including transcription69. As a result of this balance, 

chromatin exists in a variety of states of compaction, from forming fully compact mitotic 

chromosomes, to open chromatin that is associated with active transcription, and a full 

spectrum of compaction and decompaction in between69,70. Cells effect changes in 

chromatin compaction or availability through chromatin remodeling proteins, which 

oftentimes are recruited based on the recognition of the epigenetic landscape at a given 

region of the genome71. Consequently, the epigenome is critical in mediating the 

availability and therefore the transcriptional output of the genome. This makes it another 

important mode of transcriptional regulation in hematopoiesis20,21,72. These changes in 

chromatin conformation play an important role in all biological processes, including cell 

development and the initiation, prognosis, and progression of malignancy72. Therefore, 

the epigenetic modifying proteins that induce these changes are particularly important to 

understand in the context of normal and malignant hematopoiesis.  

There are a wide variety of epigenetic changes and mechanisms that affect the 

epigenome. Some of the most well studied types of epigenetic modifications involve 

RNA interference (RNAi), which involves various classes of RNA that can modulate 

chromatin availability or silence transcription or translation of specific targets73; chemical 

modifications on the DNA, such as methylation, which function by recruiting chromatin 

remodelers in order to effect changes in chromatin availability74; and histone 

modifications, which are covalent post translational modifications (PTMs) on histone 

proteins75. These different epigenetic changes frequently depend on each other to affect 

a functional change in the chromatin, often working in a stepwise fashion to establish a 

specific chromatin state or forming feedback loops to maintain the epigenomic state of 

the chromatin73. Epigenetic modifiers involved in the deposition, removal, and 

recognition of PTMs on histones are reviewed here. These modifiers play an important 
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role in development and are recurrently mutated, rearranged, or aberrantly expressed in 

hematopoietic malignancies1. 

 

Histone modifications 
Histone proteins form a nucleosome octamer complex that is the basic unit of 

DNA packaging75. DNA is wound around this octamer, which can then be tightly packed 

with other histone octamers to make fully condensed, inaccessible chromatin, which is 

known as heterochromatin76. Heterochromatin makes up regions of the chromosome 

where little or no transcription takes place and are important for the structural integrity of 

the chromosome, genome stability, and packaging of chromatin76. It also marks genes 

that are associated with development that have been silenced because they are not 

necessary for or compatible with the given cell lineage76. Histone octamers can also be 

moved by chromatin remodeling proteins in order to create a permissive state of 

chromatin known as euchromatin. Euchromatin is the region of the genome where 

active transcription can occur76.  

The histone proteins that make up the nucleosome octamer contain disordered 

N-terminal “tail” regions that can be chemically modified in a variety of ways, and these 

modifications can lead to changes in chromatin conformation or effect changes in 

transcriptional state75. These tails have been shown to be phosphorylated, acetylated, 

methylated, glycosylated, sumoylated, and ubiquitinated, among others77. Importantly, 

these modifications have profound effects on the chromatin state, by recruiting 

chromatin remodelers to either compact or de-compact chromatin, depending on the 

specific combination of modifications that are present at a given region of the 

genome69,75,78. There are several different types of proteins involved in establishing this 

“histone code”79 and in effecting the chromatin structural changes that the modifications 

dictate. These proteins are known as writers, readers, and erasers. They function by 

depositing, recognizing and binding to, or removing PTMs on histone tails75. 

 

Epigenetic writers, readers, and erasers 
 Proteins that contain catalytic domains that function by depositing covalent 

modifications on histone tails are known as epigenetic writers. There are many families 
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of proteins responsible for modifying histone tails, including lysine methyltransferases 

(KMTases), arginine methyltransferases (PRMTs), histone acetyl transferases (HATs) 

ubiquitin ligases, kinases, and sumoylases, among others80. In contrast, the proteins 

that have function by removing PTMs from histone tails are known as epigenetic 

erasers. Some families of erasers are lysine demethylases (KMDases), arginine 

demethylases, histone deacetylases (HDACs), deubiquitinating enzymes (DUBs), and 

phosphatases80. Proteins that recognize and bind histone modifications are known as 

epigenetic readers. Examples of epigenetic readers and a few of their known binding 

sites include bromodomain proteins, which can bind to acetylated histones; PHD 

domain containing proteins, which can bind to acetylated and methylated histones; and 

tudor domain containing proteins, which can bind to methylated lysine residues71. These 

domains may also bind to other modified histones and have functions independent of 

their interactions with histone tails. Frequently, epigenetic writers and erasers contain 

reader domains, that aid in recruiting writers or erasers71. Chromatin remodelers such 

as proteins in the Remodel the structure of chromatin (RSC) complex are also 

frequently epigenetic readers, allowing for them to be recruited to regions of the 

genome that have been marked for compaction or decompaction71. Another class of 

reader are transcription factors that recognize and bind to specific epigenetic 

modifications66. For example, General transcription factor IID (TFIID) is recruited by and 

engages a histone PTM, Histone 3 Lysine 4 trimethylation (H3K4me3) through the Plant 

homeodomain (PHD) fingers of its TBP associated factor 3 (TAF3) subunit. TFIID is one 

of the first protein complexes to bind promoter regions to initiate transcription and 

H3K4me3 is a modification associated with active promoters, suggesting that TAF3’s 

affinity for H3K4me3 allows for it to be recruited to promoters marked for active 

transcription. The dynamic interplay of these proteins and the modifications they 

modulate has important effects on chromatin availability and transcriptional output. 

 Epigeneticists have identified a large number of histone modifications that play 

important roles in the availability of chromatin and suspect that even more exist that 

have yet to be fully studied. Some of the most common modifications that play a role in 

modulating transcription are lysine and arginine methylation of histone 3 (H3), 

acetylation of H3, and ubiquitination of histone 2B (H2B)43,69,75,81. Some of the H3 lysine 
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(H3K) residues that are methylated that are associated with affecting transcriptional 

output are H3K4, H3K9, H3K27, H3K36, and H3K7982. These residues can be mono, di, 

or trimethylated (me1/me2/me3), and frequently the different degrees of methylation 

have different functional effects on the chromosome by recruiting different proteins82. 

Some of the writers associated with depositing lysine methylation include SET1A/B and 

MLL1/2/3/4, which deposit H3K4 methylation83; the SUV39H family, which deposits 

H3K9 methylation77; EZH1/2 which is associated with H3K27 methylation84; SETD2/3, 

ASH1L, and NSD1/2/3 which deposit H3K36 methylation85,86; and DOT1L, which is the 

only known mammalian H3K79 methyltransferase8. Erasers of lysine methylation 

include the JARID1 family of proteins, which removes H3K4 methylation; the JMJD1 

family of H3K9 demethylases; the JMJD3 family which demethylates H3K27; and the 

JHDM1 family of proteins, which is associated with H3K36 methylation87. Interestingly, 

there are also several families of lysine demethylases with less specific substrate 

specificity, including the JMJD2 family, which can demethylate H3K9 and H3K3688; the 

PHF family of H3K9/K27 demethylases89; and LSD1, which demethylates both H3K4 

and H3K988. To date, only one study has identified a bona fide H3K79 demethylase, 

JMJD1B90, so further studies may be required to understand the full extent of the 

dynamics surrounding this modification.  

Many of the same lysine residues that can be methylated also undergo 

acetylation (ac), which is a mutually exclusive mark from methylation and is frequently 

antagonistic to the chromatin state that is induced by methylation on the same 

residue91. Some of the residues that are acetylated include H3K4, H3K9, H3K14, 

H3K27, and H3K36, though the relationship between H3K4ac and H3K36ac and 

transcription is less well known92. These acetylation marks are deposited by histone 

acetyltransferases (HATs), and GEN5 and p/CAF are the two HATs responsible for 

depositing the majority of H3Kac modifications81. Another pair of HATs that are well 

studied in the context of development and disease are E1A binding protein p300 (p300) 

and its paralog Creb binding protein (CBP). P300/CBP can acetylate H2,H3, and H4, 

are involved in a variety of signaling pathways, and have important implications in 

malignancy, especially solid tumors93. There are two families of histone deacetylases 

(HDACs) including the HDAC family and the Sirtuin (SIRT) family of HDACs, however 
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the substrate specificity of these enzymes is not well understood81. Ubiquitination of 

lysine 120 on H2B (H2Bub) is another critical modification that is crucial for active the 

regulation of transcription94. This ubiquitination is deposited by the E3 ubiquitin ligase 

complex RNF20/4095, in coordination with the E2 ubiquitin ligase RAD694. H2Bub is 

removed by deubiquitinating enzymes such as USP22, which is a member of the Spt-

Ada-Gcn5-acetyltransferase (SAGA) complex that acts a transcriptional co-activator96. 

Deubiquitination of H2B is likely important for nucleosome turnover following RNAPII 

dependent transcription97,98. In summary, there are many different proteins associated 

with modulating a wide array of PTMs on histones, and it is important to understand the 

functions of these modifications in the context of cellular development and malignancy. 

 Several epigenetic modifications are associated with transcriptional activation 

and elongation. H3K4me3, H2Bub, and H3K9ac are modifications that frequently 

accumulate at the promoter regions of genes that are actively transcribed by RNAPII99. 

H3K4me1 alone is a modification associated with poised enhancers, which are 

enhancers that are predetermined to be activated, such as lineage specific enhancers, 

but are not yet active100. H3K4me1 together with H3K27ac are found to mark active 

gene enhancers101. H3K79me2 is a mark associated with transcriptional elongation and 

is often seen marking the gene bodies of actively transcribed genes99. H3K36me2 is 

thought to be important for the initiation of RNAPII dependent transcription85. Together, 

these combinations of histone modifications are associated with active transcription. 

 In contrast, many histone modifications are also associated with repressed or 

silenced regions of the chromatin. H3K9me2/3 are associated with transcriptional 

repression and silencing at euchromatic genes76,102. These modifications also 

accumulate in heterochromatic regions of the genome, so they are important for both 

genome stability as well as transcriptional regulation. H3K27me3 is a repressive mark 

that is found at enhancer regions of the genome101. H3K36me3 is associated with 

posttranscriptional silencing of a gene and marks the gene body after RNAPII 

transcribes it85. H3K36me3 has also been shown to be present on heterochromatin, 

suggesting that it too plays a role in maintaining genomic stability and chromosomal 

structure85. With respect to transcription, epigenetic modifiers and modifications effect 

changes in chromatin states that range from permissive for active transcription to 
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silenced heterochromatin (Figure 1-2). Because transcription is such an essential 

aspect of regulating blood cell development, these various histone modifications and the 

proteins associated with modulating them are interesting both in the sense of 

understanding normal hematopoiesis as well as examining deregulation that results in 

malignancy.  

  The proteins that write, read, or erase histone modifications play critical functions 

in regulating transcription. In blood cell development, there is a tight transcriptional 

control that is required to maintain blood homeostasis, but there are also dynamic 

changes in gene programs that must take place for cells to make lineage decisions and 

differentiate. Deregulation of these dynamic processes can directly affect blood cell 

development and contributes to malignancy21,66. 

Figure 1-2: Epigenetic writers, readers, and erasers modulate chromatin states. A-D) Different 
states of chromatin permissibility to transcription are shown. Moving from A to D shows how an active 
gene might become silenced by epigenetic changes. A) An active RNAPII-bound gene promoter is 
shown. Two transcription factors (TF) that are important for active transcription are shown. B) An 
epigenetic eraser protein has removed an epigenetic modification that recruits one of the critical TFs to 
the promoter region. RNAPII cannot actively transcribe without this TF. C) An epigenetic writer protein 
is depositing a modification associated with repressing transcription. D) An epigenetic reader that 
functions by remodeling chromatin has been recruited by the repressive mark and has compacted the 
chromatin, silencing the promoter. 
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Polycomb group and trithorax group proteins: an example of dynamic epigenetic 
regulation 

A well-studied example of dynamic epigenetic regulation of transcription involves 

the antagonistic relationship between Polycomb group (PcG) proteins and Trithorax 

group (TrxG) proteins. PcG proteins were identified as essential repressors of 

Homeobox (Hox) genes in Drosophila. Hox genes are essential regulators of proper 

anterior-posterior development in Drosophila, and they play critical roles in human 

development and malignancy103,104. PcG mutations lead to inappropriate expression of 

Hox genes, which lead to developmental defects in anterior-posterior segmentation of 

the flies105,106. Similarly, TrxG proteins were discovered when mutations in the genes 

encoding them were found to phenocopy a loss of Hox gene expression, and also lead 

to anterior-posterior defects106,107. These contrasting effects of perturbing PcG and TrxG 

proteins lead to the hypothesis that these proteins act antagonistically to each other. 

These proteins are highly conserved from Drosophila to mammals, with an 

important example found in MLL1108. MLL1 was discovered primarily due to its tendency 

to take part in chromosomal translocations that are recurrent in leukemia, and it has a 

high homology to Drosophila TrxG proteins108. Similarly, Enhancer of zeste homolog 2 

(EZH2) and its associated complex, Polycomb repressive complex 2 (PRC2) were 

found to function similarly to the Drosophila PcG proteins in regulating gene 

expression106,109. Indeed, these proteins act antagonistically to each other to regulate 

the transcription of genes, such as HOX genes, by deposition of histone modifications 

associated with different chromatin states110. MLL1 is an H3K4 trimethyltransferase, 

depositing a modification associated with active transcription83. Conversely, EZH2 

deposits H3K27me3, a modification associated with repression of transcription84. 

Mutations or deregulation in either can lead to aberrant upregulation or downregulation 

of their regulatory targets. For instance, translocations in MLL1, which cause the 

hyperactivation of a subset of MLL1 targets, lead to aberrant upregulation of the HOXA 

cluster of genes in leukemias7,111. Similarly, low expression of EZH2 in myelodysplastic 

syndrome (MDS) is associated with higher expression of the HOXA-D clusters of genes 

due to lower HOX-associated H3K27me3112. These data demonstrate a critical balance 
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between these protein groups is necessary for cell homeostasis, and that deregulation 

of this balance is associated with disease states. This is a good example of deregulated 

transcriptional and epigenetic regulation that is commonly associated with 

hematopoietic malignancy. 

 

Transcriptional and epigenetic deregulation in acute myeloid leukemia 
Genetic aberrations such as mutations or chromosomal aberrations in 

hematopoietic cells can lead to the initiation of hematologic malignancies113,114. These 

malignancies include myeloproliferative neoplasm (MPN), MDS, and acute or chronic 

leukemias, including acute lymphoblastic leukemia (ALL), chronic lymphoblastic 

leukemia (CLL), chronic myeloid leukemia (CML) and acute myeloid leukemia 

(AML)113,114. Specifically, many hematologic malignancies arise from the deregulation of 

gene programs in HSPCs113. Leukemia is a cancer that is initiated in blood cells and is 

associated with the deregulation of hematopoietic differentiation115. Leukemic initiation 

can result from a block in the expression of gene programs that are associated with 

driving differentiation and lineage specific functions of mature blood cells. Another 

aspect of leukemic initiation involves aberrant overexpression of gene programs that 

must be progressively downregulated as HSPCs differentiate into mature blood cells, 

such as pro-proliferative gene programs and genes associated with promoting self-

renewal116,117. These genetic aberrations accumulate until there is the initiation of a 

leukemia that has a high capacity for self-renewal and is less capable of differentiating 

to mature blood cells116,117. 

AML develops when this deregulation of the hematopoietic differentiation process 

occurs during myeloid cell development due to a deregulation of specific gene 

programs3,118. Therefore, AML is a disease associated with transcriptional deregulation, 

including epigenetic deregulation. In fact, a recent whole genome sequencing study 

revealed that over 70% of AML patients harbor mutations in genes encoding epigenetic 

modifiers1. AML is an aggressive malignancy, with an overall five-year survival rate of 

only 26%, and is associated with a poor prognosis both children and adults119. Standard 

treatments for AML involve broadly cytotoxic chemotherapies, which affect the body’s 

normal cells as well as the cancerous cells119. These therapies have severe, 
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debilitating, and even deadly side effects. Therefore, there is a clear unmet need for 

targeted therapies that allow for a more precise treatment of leukemia cells while 

reducing dangerous side effects associated with cytotoxicity. This relies on a strong 

understanding of the molecular mechanisms that lead to deregulated transcription in 

AML. 

 

Transcription factor deregulation in AML 
 Myeloid-specific transcription factors are mutated in over 20% of AML1, and 

aberrant expression of other transcription factors, like HOXA genes, occur in more than 

50% of AMLs2,37. A few of the most commonly deregulated transcription factors in AML 

are reviewed here. 

 

RUNX1 

Runt related transcription factor 1 (RUNX1) is a highly conserved transcription 

factor that has been shown to be required for hematopoietic development by 

maintaining HSPC self-renewal capacity120. RUNX1 exhibits loss of function mutations 

in AML, and mutated RUNX1 is associated with poor prognosis in patients120. However, 

other groups have shown that RUNX1 promotes survival of murine AML cells as well121. 

These data suggest its function may be more dynamic than just suppressing cell growth 

 

CEBPa 

 CEBPa is a myeloid specific transcription factor that is necessary for specific 

lineage fate decisions, such as the differentiation of an MPP to a GMP. CEBPa  is also 

frequently mutated in AML. Interestingly CEBPa mutation is considered to be an 

independent marker for favorable prognosis in AM122. CEBPa has loss of function 

mutations in AML, but it is also required for leukemic transformation123. This suggests 

that the level of CEBPa is critically regulated in normal myeloid development and is also 

important for the establishment of myeloid malignancies123.  
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Hoxa9/Meis1 

 HOXA9 is a member of the homeobox (HOX) family of proteins. These proteins 

are transcription factors that are highly conserved and are associated with cell 

development in many different tissues103. There are four orthologous clusters of HOX 

genes in the mammalian genome, labelled HOXA/B/C/D37. The HOXA/B proteins have 

been shown to be critical for normal hematopoietic development. For instance, HOXB4 

is a regulator of HSC self-renewal capacity, and forced expression of it has been shown 

to expand HSC colony forming capacity ex vivo45. Similarly, HOXA9 is highly expressed 

in HSPCs and skews commitment of embryonic stem cells to a hematopoietic lineage36. 

HOXA9 and its cofactor MEIS1 are associated with promoting self-renewal and are 

progressively downregulated during hematopoietic differentiation (Figure 1-3A) 
36,37,124,125. However, aberrant expression of HOXA9 and MEIS1 prolongs the self-

renewal capacity of hematopoietic cells and blocks differentiation, resulting in 
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Figure 1-3: HOXA9 and MEIS1 are important regulators of self-renewal and are aberrantly 
upregulated in AML. A) RNA-seq expression values of Hoxa9 and Meis1 in different hematopoietic 
cell types. Hoxa9 and Meis1 are progressively downregulated as cells become more differentiated. B) 
TCGA AML patient survival data showing overall survival stratified by gene expression of HOXA9 or 
MEIS1. The patient samples are divided by those with expression above the median or below the 
median (n=173).  
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malignancy36,124,125. HOXA9 is of particular interest in the context of AML because it is 

aberrantly upregulated in over 50% of AMLs2,37. Furthermore, high expression of 

HOXA9 and its cofactor MEIS1 are considered to be poor prognostic markers in AML 

(Figure 1-3B)3,4,11. 

HOXA9 and MEIS1 are transcription factors that directly interact4. These proteins 

also bind to PBX3, which is an additional cofactor in HOXA9/MEIS1 driven 

transcription126. Importantly, they have been shown to share binding sites with myeloid 

specific transcription factors like PU.1127 and CEBPa128, which are also frequently 

deregulated in AML. HOXA9/MEIS1 transcriptionally activates targets, such as IGF-1, 

which has oncogenic functions in AML129. They are also shown to play a role in 

repression of target genes, like ARF and INK4, which are tumor suppressors in AML130. 

This demonstrates a two different molecular functions for HOXA9/MEIS1 that both drive 

leukemogenesis. Therefore, therapeutically targeting factors that control HOXA9 and 

MEIS1 transcription is of biomedical interest. 

 HOXA9/MEIS1 can be aberrantly upregulated through a variety of mechanisms. 

One common mechanism of upregulation is mutation of Nucleophosmin 1 (NPM1). 

These mutations lead to the cytoplasmic accumulation of NPM1, which drives HOXA9 

and MEIS1 expression, though the mechanism not clearly understood131. HOXA9 is 

also upregulated due to loss of function mutations in the epigenetic repressive EZH2 

gene, a PcG protein known to repress HOX gene expression112. Another example of 

this is found in inactivating mutations of ASXL1, the encoded protein of which has been 

shown to associate with the EZH2 containing complex PRC2 and drive repression of 

HOXA9132. Finally, various chromosomal rearrangements have been shown to be 

associated with driving high HOXA9 and MEIS1 expression. These rearrangement 

events include NUP98 translocations, rearrangements resulting in expression of the 

CALM-AF10 fusion, and translocations of the TrxG homolog MLL12,37. Due to their 

frequency and associated poor prognosis, MLL rearrangements are of particular interest 

in the development of AML and will be further reviewed here. The aberrant expression 

of HOX genes in malignancy is a good example of how cancer associated deregulation 

of transcription factors is frequently tied to the deregulation of epigenetic modifiers. 
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Epigenetic deregulation in AML 
Epigenetic deregulation has emerged as an important contributor to oncogenesis 

and disease progression in a variety of malignancies, including leukemia69,133–135. One 

class of epigenetic regulation implicated in blood malignancies involves the post 

translational modifications of histones134,136–138. Histone modifying proteins are 

commonly mutated, rearranged, aberrantly expressed and required in leukemias, 

providing potential therapeutic targets. Several of the most commonly deregulated 

epigenetic modifiers in AML are reviewed here. 

 

KDM6A 

KMD6A (UTX) exhibits the highest mutation rate of any demethylase in 

hematopoietic malignancies139,140. KDM6A is an H3K27 demethylase73. KDM6A 

exhibits loss of function mutations in myeloid malignancies. Normally, KDM6A 

functions by repressing gene programs driven by the transcription factor ETS 

domain containing proteins, which are pioneering transcription factors that include 

the myeloid specific factor PU.1141. These factors can be oncogenic when 

aberrantly expressed141. Further, KDM6A upregulates tumor suppressor genes, 

such as GATA protein driven genes141. Additionally, low expression of KDM6A are 

associated with relapse of AML after chemotherapy treatment142. These data 

implicate KDM6A as a tumor suppressor in myeloid malignancies. 

 

EZH2 

EZH2 is a PRC2 associated H3K27 methyltransferase that is associated with 

repressing gene targets143. EZH2 exhibits loss of function mutations in MDS and 

AML, suggesting that it has tumor suppressive functions84. As discussed previously, 

EZH2 normally functions by repressing HOX gene expression. In myeloid 

malignancies EZH2 is shown to repress expression of oncogenes such as 

HOXA937,144. However, EZH2 is also a potential therapeutic target in MLL-fusion 

driven AML, where it is required for cell growth145. Interestingly, depletion of EZH2 

does not affect HOXA9 levels in MLL-rearranged leukemia and instead induces 

differentiation by relieving repression of differentiation associated genes, such as G-
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CSF145,146. These data suggest that EZH2 plays an important but context 

dependent role in myeloid malignancies. 

 

MLL translocations 

MLL1 is a conserved histone methyltransferase of the SET domain 

superfamily of methyltransferases. The Su[var]3-9, enhancer of zeste, trihorax 

(SET) domain found on the C-terminal domain of MLL1 is a catalytic domain that is 

responsible for the trimethylation of H3K4. MLL1 also contains a CxxC domain that 

is critical for its DNA binding function147–149 and four plant homeodomain (PHD) 

fingers that are important for protein-protein interactions, localization, and 

recognition/ binding to H3K4me312,150,151. Yu and colleagues demonstrated that 

MLL1 is required for embryonic development, and loss of MLL1 leads to defects in 

the skeletal and hematopoietic systems, among others152. Interestingly, the authors 

show that MLL1 is required for maintained expression of target genes such as 

Hoxa7, but is not required for their activation, suggesting it plays a role in 

transcriptional memory/maintenance. MLL1 has been shown to be critical for adult 

hematopoiesis, where MLL1 null bone marrow cells are incapable of reconstituting 

lethally irradiated bone marrow, suggesting that MLL1 is absolutely required for 

HSC maintenance153. Furthermore, MLL1 is shown to function as a critical regulator 

of Hox genes in normal hematopoietic development154. As previously mentioned, 

Hox genes are crucial genes in the development of many tissues, including the 

blood system, and play an important role in the self-renewal capacity of 

HSPCs104,153,154. Remarkably, the self-renewal capacity of HSPCs can be rescued 

in MLL null cells by re-expression various Hox genes individually, such as Hoxa9153. 

This suggests that the regulation of Hox gene expression is a primary function of 

MLL1 in HSPCs. Mechanistically, MLL1 is one side of an antagonistic regulation 

duo that includes trithorax group proteins, such as the MLL1 containing complex 

COMPASS, and polycomb group proteins, such as the EZH2 containing complex 

PRC242. While COMPASS is responsible for the deposition of H3K4me3 to effect 

transcriptional activation, PRC2 deposits H3K27me3, a mark associated with 

repression of target genes42. Interestingly, recent work has suggested that the 



 19 

methyltransferase activity of MLL1 is not required for hematopoiesis, but its critical 

function is the recruitment of MOF, an H4K16 acetyltransferase, to Hox genes to 

maintain active transcription155. Regardless, MLL1 and COMPASS appear to be 

requisite in the maintenance of HSPC self-renewal capacity. The expression of Hox 

genes, therefore, is dependent on the balance or lack thereof of the trithorax group 

protein or polycomb group protein levels and capacities to localize to target genes. 

In summary, MLL1 is a dynamic regulator of HOX genes and its regulation is crucial 

to maintaining the appropriate expression of HOX genes in HSPCs. Therefore, 

deregulation of MLL1 has dramatic consequences in hematopoiesis. 

MLL1 is of particular interest in the field of hematology due to its high rate of 

translocation in leukemia. MLL rearrangements are present in approximately 10% of 

leukemias overall, with a disproportionate number of infant leukemias and therapy 

related leukemias represented156,157. Between 70-80% of infant leukemias and 70% 

of therapy related leukemias harbor an MLL translocation156. Leukemias harboring 

these translocations are associated with a particularly poor prognosis, and little 

progress has been made in developing successful therapies to combat MLL-fusion 

driven leukemia158. MLL1 contains a region of high genomic instability that leads to 

frequent DNA double strand breaks that can then lead to rearrangements with other 

chromosomes, which are known as 11q23 chromosomal rearrangements159. This 

rearrangement leads to MLL-fusion transcripts, which in turn are translated to 

oncogenic MLL-fusion proteins which consist of the N-terminal domain of MLL and 

one of over eighty different fusion partners160. Some of the most common fusion 

partners of MLL include AF4, AF9, AF10, ENL, and ELL160. Another common 

mechanism of MLL rearrangement is partial tandem duplications (PTD), wherein 

exons 5-11/12 of MLL1 are duplicated and re-inserted into the MLL1 locus161.  

These rearrangement events can lead to the development of an AML, ALL or mixed 

lineage leukemia.  

MLL rearrangements have been studied extensively in the context of AML. 

Though there are many fusion partners for MLL translocations, the mechanism by 

which these rearrangements drive malignancy is consistently observed as an 

upregulation of the HOXA cluster of genes, MEIS1, and other genes associated 



 20 

with self-renewal13,104,162. The manner in which these genes are upregulated relies 

on the protein-protein interactions formed with the MLL-fusion proteins. Given the 

variability of fusion partners that are found in MLL rearrangements, there is likely 

not just one protein complex formed with MLL-fusions, but rather many different 

complexes that are context dependent156,157,160. Some of the known protein 

interactors that play a critical role in MLL rearranged leukemogenesis include Menin 

(MEN1) and Lens epithelial derived growth factor (LEDGF), with MEN1 serving as 

an interaction that connects MLL to the chromatin binding LEDGF protein163,164. 

Yokoyama and colleagues demonstrated that both of these interactions were 

required for MLL-ENL driven leukemia, and that the MLL-fusion-MEN1-LEDGF 

interaction is conserved regardless of fusion partner163,164. Additionally, some of the 

most common fusion partners of MLL are a part of transcriptional regulating super 

complex of proteins. The bona-fide members of this complex are disputed, though 

many groups have reported common proteins that exist in this complex. This 

complex is known by different groups as the elongation assisting proteins (EAP) 

compex165, the super elongation complex (SEC)166 or the AF4 family/ENL family/P-

TEFb (AEP) complex167. Some of the proposed members of the complex include 

ENL, AF4 and AF5, all of which are translocation partners of MLL. Additional 

proteins that associated with this complex include the Positive transcription 

elongation factor (P-TEFb)167; DOT1-like (DOT1L), which is an H3K79 

methyltransferase associated with active transcription165; the PAF1c, which is an 

epigenetic co-modifying complex that is associated with transcriptional regulation13; 

and Bromodomain containting protein 4 (BRD4), which is a chromatin binding 

protein that is connected to MLL through P-TEFb and the PAF1c. Notably, BRD4 

has been demonstrated as a valuable therapeutic target to treat MLL-fusion driven 

leukemias168,169. These protein-protein interactions are interesting in the context of 

therapeutic development and understanding the dynamic interactions that regulate 

MLL-fusion driven leukemia. Of particular interest is the PAF1c, because it has 

been recently shown that the PAF1c-MLL interaction is critical for MLL-driven 

leukemias but is dispensable for normal hematopoietic cell growth14. The PAF1c will 

be more thoroughly reviewed here. 
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1.2 The Polymerase Associated Factor Complex in Development and Disease 

The polymerase associated factor complex (PAF1c) is an epigenetic co-

modifying complex and transcription co-factor that plays an important role in the 

regulation of a large subset of genes in both yeast and mammals16,170–172. The PAF1c, 

since its discovery in yeast and subsequent discovery in mammals, has been 

associated with regulating both activation and repression of transcription in 

development, and has been shown to play a critical role in a variety of malignancies99.  

 

The PAF1c is a transcriptional co-regulating complex 
The PAF1c is a highly conserved, six-subunit protein complex that is involved in 

a variety of transcriptional processes. The PAF1c was first discovered in yeast as a 

RNAPII associated complex. The proteins that make up the PAF1c include Polymerase 

Associated Factor 1 (PAF1), Cell Division Cycle 73 (CDC73), Left Open Reading Frame 

1 (LEO1), and Cin Three Requiring 9 (CTR9)173–177. Restore TBF Function 1 (RTF1) is a 

core component of the yeast PAF1c, but has been found to be a more transient 

interacting partner of the complex that has independent functions in mammals16,177,178. 

Additionally, there is a mammalian specific PAF1c component that is not found in the 

yeast complex, WD Repeat Domain 61 (WDR61/SKI8)179 (Figure 1-4).  
The PAF1c binds directly to both the phosphorylated and unphosphorylated tail 

of RNAPII177,180–182.  Cryogenic electron microscopy (CryoEM) on yeast PAF1c proteins 

demonstrates that this interaction consists of multiple contacts between the PAF1c and 

RNAPII. First, the heterodimer formed between Paf1 and Leo1 binds to the RNAPII 

subunit Rpb2181. A second set of interactions consists of an interaction between Cdc73 

and the RNAPII subunits Rpb3/11181. These two separate interaction domains are 

bridged by Ctr9, so that the PAF1c covers a large surface of the external RNAPII 

machinery181. We can speculate that this structure may present a good platform for 

recruitment of the epigenetic modifiers that are known to play a critical role in PAF1c 

mediated regulation of transcription99. The PAF1c is also known to bind to a variety of 

RNAPII associated transcription factors, such as the DRB sensitivity inducing factor 

(DSIF) complex, which contains SPT4/5 proteins and is a critical regulator of all RNAPII 
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dependent transcription181–183; pTEFB, which is a positive regulator of transcriptional 

elongation184; the Facilitates chromatin transcription (FACT) complex, which is a 

chromatin remodeling complex185,186; and others. While the order in which these various 

transcriptional components are recruited to sites of transcription is not well understood, 

it is clear through these interactions that the PAF1c is a central component of the 

transcriptional machinery.  

While the subunits of the PAF1c have no known catalytic activity, this complex 

plays a critical role in the deposition of several histone modifications impacting RNAPII-

dependent transcription. The PAF1c acts as a platform to recruit epigenetic modifiers to 

transcription start sites and allowing these enzymes to deposit histone modifications in 

order to affect the histone code and chromatin conformation at the given loci. The 

PAF1c has been shown to be important for the deposition of several histone 
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Figure 1-4: The PAF1c regulates transcription. Left, top) The PAF1c is a six-subunit complex in 
mammals. WDR61 is mammalian specific. RTF1 is a more transient interaction partner with the PAF1c 
in mammals (dotted lines). Left, bottom) The PAF1c can activate transcription by recruiting epigenetic 
modifiers to promoters, where they deposit a modification that leads to RNAPII-dependent 
transcription activation. Middle, top) The PAF1c can stabilize RNAPII pausing by inhibiting an 
interaction between RNAPII and elongation machinery required for elongation. Middle, bottom) The 
PAF1c can release RNAPII pausing by recruiting proteins that phosphorylate the C-terminal tail of 
RNAPII (black curved line), which is required for transcriptional elongation. Right) The PAF1c plays a 
role in mediating 3’ end processing of pre-mRNA (red curved line) by recruiting proteins required for 
cleavage and polyadenylation.  
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modifications associated with transcriptional activation. For example, the PAF1c 

interacts with the H3K4 methyltransferases Set1 (yeast) or MLL1 (mammals) and the 

associated COMPASS complexes to recruit promoter H3K4me2/3, which is a 

modification correlated to active transcription12,13,187. Both yeast and mammalian PAF1c 

have also been shown to be required for Dot1/ DOT1L mediated H3K79me2, which 

marks the gene bodies of actively transcribed genes188. Additionally, the Rtf1/ RTF1 

subunit makes direct contact with the E2/E3 ubiquitin ligases Rad6 and Bre1 or their 

human homologs RNF20/40 to direct H2B K123 (or K120 in mammals) ubiquitination 

(H2Bub) of target gene loci94,95,187,189–192. This H2Bub modification is broadly required 

for active transcription. There has also been evidence linking the PAF1c to Mof-

mediated H4K16ac and Set2-mediated H3K36me in yeast, both of which are also 

associated with an active transcription state16 (Figure 1-4). 

Recently, the PAF1c has also been linked to promoter proximal RNAPII 

pausing170–172. In mammals, pausing is a process in which RNAPII transcription is 

activated, but the polymerase and machinery only process between 20-60 nucleotides 

downstream of the transcription start site before pausing170. While the importance and 

function of pausing still needs further study, there are several pieces of evidence that 

point to this as an additional mechanism of regulation. Pausing has been suggested to 

play a role in synchronizing expression of genes, keeping the chromatin around 

transcription start sites accessible to transcriptional machinery. This serves as a 

checkpoint separate from transcriptional activation and elongation during which the 

transcriptional output of the gene can be modulated based on cues from the cell193. The 

PAF1c has been proposed to play a role in both releasing RNAPII pausing170 and 

stabilizing RNAPII pausing171,172. This is interesting because it suggests that the PAF1c 

is involved in both promoting and repressing transcription, which suggests a dynamic 

regulation of PAF1c regulated genes (Figure 1-4). 

The PAF1c also plays a role in 3’ end processing, which includes a series of key 

posttranscriptional processes that are crucial for proper regulation of mRNA products. 

The PAF1c was identified in yeast as being critical to the 3’ end processing of mRNA 

products (Figure 1-4). Deletion of the PAF1 subunit in yeast revealed a dysregulation in 

polyadenylation (polyA) site usage or a shortening of polyA tails, which leads to 
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unstable transcripts that were prone to nonsense mediated decay194,195. polyA tails are 

deregulated upon loss of Paf1 in part due to a loss of recruitment of the cleavage factor 

and polyadenylation factor Pcf11195. Furthermore, the CDC73 subunit of the PAF1c was 

found to be a part of the posttranscriptional machinery complex in human cells196. 

CDC73 was additionally shown to directly interact with CSTF and CPSF, which are two 

complexes associated with cleavage and polyadenylation of mRNA transcripts197. 

Depletion of CDC73 leads to decreased mRNA product through decreased association 

of these posttranscriptional processing proteins with mRNA197. Importantly, the PAF1c 

is not a general transcription factor, as only a subset of genes have perturbed 

expression after depletion of the PAF1c99,170,198. In summary, the PAF1c plays many 

roles in regulating transcriptional processes.  

 

The PAF1c in malignancy  
The subunits of the PAF1c and the complex itself have been demonstrated to 

play critical roles in a variety of cancers. Interestingly, the role of the complex in disease 

states appears to be context dependent, functioning as both a tumor suppressor or an 

oncogene depending on the tissue. 

 

Solid tissue malignancies 
Perhaps the most well studies subunit of the PAF1c in the context of disease is 

the CDC73 gene, which encodes Parafibromin. Over 70% of patients with 

hyperparathyroidism jaw tumor (HPT-JT) exhibit mutations in the subunit CDC73 which 

are usually a loss of heterozygosity mutation199. CDC73 is also exhibits loss of function 

mutations in other endocrine cancers as well, including familial isolated 

hyperparathyroidism200. Mechanistically, CDC73 acts as a tumor suppressor by 

mediating the repression of Cyclin D1 (CCND1) and MYC through recruitment of the 

H3K9 methyltransferase SUV39H1201–203. Loss of CDC73 allows for aberrant 

upregulation of CCND1 and MYC, which are critical oncogenes in many subtypes of 

cancer, including HPT-JT201–203. Further, CDC73 is a tumor suppressor in Wilms Tumor, 

a kidney cancer that is highly linked to HPT-JT. In these tumors, CDC73 also exhibits 

loss of heterozygosity mutations, one of which was functionally shown to cause a loss of 
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CDC73 mediated CCND1 repression204. CDC73 has also been shown to act as a tumor 

suppressor in oral squamous cell carcinoma, where it is repressed by miRNA-155 and 

its overexpression leads to reduced cell growth205. It acts as a tumor suppressor  in 

ovarian cancer, where overexpression of CDC73 leads to reduced cancer cell growth 

and reduced metastasis associated phenotypes206. CDC73 protein levels have also 

been shown to inversely correlate with tumor size in breast cancer207. These data 

suggest a role for CDC73 as a tumor suppressor in a wide variety of cancers.   

Recently, however, CDC73 has been shown to act as an oncogene in gastric 

adenocarcinoma cells208,209. When dephosphorylated by SHP2 phosphatase, CDC73 

displays enhanced binding to b-catenin210, Notch Intracellular Containing Domain 

(NICD) and GLI1. This drives increased Wnt, Notch, or Hedgehog signaling, 

respectively208,209. Aberrant Wnt, Notch, and Hedgehog signaling are strongly 

associated with oncogenesis in several different types of cancer. The implication of 

these studies is that CDC73, and the PAF1c, are dynamically regulated. 

The PAF1 subunit also plays a critical role in malignancy and has been most 

well-studied in the context of pancreatic cancer. PAF1 is depleted in early neoplastic 

HPT-JT
Ovarian
Oral

GastricPancreatic

Kidney
Breast

Breast

AML
Colorectal
Bone

CTR9

PAF1

RTF1

CDC73

LEO1

WDR61

Figure 1-5: The PAF1c in malignancy. Here is shown a summary of the known roles or implications 
of the subunits of the PAF1c in different types of cancers. An arrow pointed to a subtype indicates that 
the subunit exhibits oncogenic functions in that cancer. An inhibitory pointer indicates that there are 
potential tumor suppressor functions for that subunit in that disease subtype. A small arrow pointing up 
or down indicates that the subunit is amplified/upregulated or deleted/downregulated recurrently in that 
malignancy subtype. 
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cells during the initiation of pancreatic malignancy211. However, PAF1 was initially 

connected to pancreatic malignancy because it is located on chromosome 19q13, which 

is a region that is recurrently amplified in pancreatic adenocarcinoma212. Functionally, 

the overexpression of PAF1 in NIH3T3 fibroblast cells enhances cellular proliferation ex 

vivo and tumor growth in vivo, demonstrating that PAF1 can drive malignant 

transformation of cells212. This initial reduction in expression followed by amplification of 

expression during the progression of pancreatic malignancy suggests that PAF1 may 

regulate gene programs that initiate tumorigenesis and genes that can further drive 

malignant progression211. Further, there is high expression of PAF1 in pancreatic ductal 

adenocarcinoma (PDAC), which drives tumor growth and metastasis by upregulating 

oncogenes like CCND1 and MYC213. Similarly, PAF1 drives MYC expression in non-

small cell lung cancer, where high expression of PAF1 correlates with poor prognosis in 

patients214. Interestingly, MYC and CCND1 are repressed by CDC73, suggesting that 

there may be a more dynamic PAF1c-centric regulation of these genes that can be 

dysregulated in different ways depending on the cellular context. PAF1 is also highly 

expressed in pancreatic and ovarian cancer stem cells (CSCs), where it drives self-

renewal by interacting with POU Class 5 Homeobox 1 (POU5F1), a transcription factor 

that is responsible for the expression of gene programs associated with self-

renewal215,216. In summary, the PAF1 subunit appears to primarily play a role as an 

oncogene in solid tissue cancers. However, the dynamic interplay between the 

oncogenic functions of PAF1 and the tumor suppressor roles of other PAF1c subunits 

has not been well studied. 

While CDC73 and PAF1 are the two most well-studied subunits of the PAF1c, 

there have also been links between malignancy and the other subunits of the PAF1c. 

CTR9 is an important regulator of ER positive breast cancer by recruiting ERa and 

RNAPII to target genes in response to estrogen217,218. In contrast, a recent patient 

screen identified loss function mutations in CTR9 in Wilms Tumor, suggesting 

inactivating mutations in CTR9 predispose patients to developing Wilms Tumor219. In 

colorectal cancers, the chromosomal location for LEO1 is frequently lost while in 

malignant bone histiocytoma this chromosomal region is frequently amplified220,221. A 

small patient sample study identified increased WDR61 protein in breast cancer 
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compared to its normal tissue counterpart222. RTF1 regulates the Notch signaling 

pathway, which is deregulated in cancer223. Taken together, these studies show that the 

PAF1c is an important regulatory complex in a variety of solid tissue cancers and can 

be deregulated in different ways depending on cellular context. 

 

Hematopoietic malignancies 
There have been several studies that establish a critical role for the PAF1c in 

hematopoietic cancers. In the context of MLL-fusion protein driven AML, there is a 

direct physical interaction between the PAF1c and MLL1 protein, which regulates 

the AML associated HOXA cluster of genes in hematopoiesis12,13. Not only does the 

PAF1c interact with wildtype MLL1, but it also binds to MLL-fusion proteins12,13. 
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Figure 1-6: The PAF1c interacts with MLL-fusion partners and is critical for MLL-fusion driven 
leukemia. A) Here is shown a schematic of wildype MLL and MLL-fusion proteins. MLL has a 
breakpoint cluster region that can undergo double strand DNA breaks and fuse to another 
chromosome, forming an MLL-fusion gene that translates to an MLL-fusion protein. These proteins 
drive aggressive leukemias. A recent proteomics study by our lab found that the PAF1c binds to MLL 
and MLL-fusion proteins. B) Introduction of an MLL-AF9 transcript that lacks the PAF1c interaction 
domain delays AML disease latency in a mouse model of AML compared to full length MLL-AF9. 
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Specifically, the PAF1c is required for the deposition of H3K4me2/3, H3K79me2, 

and H2Bub at the Hoxa9 or Meis1 loci in MLL-AF9 driven leukemia. Interestingly, 

Milne and colleagues also demonstrated that recruitment of wildtype MLL1 protein 

by the PAF1c was required for the displacement of the H3K9 methyltransferase 

SETDB1 from the Hoxa9 promoter, allowing for the recruitment of MLL-fusion 

proteins to the Hoxa9 promoter by the PAF1c12. Furthermore, the PAF1c was 

shown to be required for AML, as deletion of the Cdc73 subunit led to a dramatic 

loss of murine AML cell growth14,224. Additionally, disruption of the PAF1c-MLL 

interaction leads to reduced Hox gene activation and inhibition of MLL-AF9 driven 

AML growth14. This data shows that the PAF1c plays a critical role in MLL-fusion-

mediated regulation of Hox genes in AML. 

In a separate model of MLL-fusion driven AML, Hetzner, et al. identified an 

interaction between PAF1 and ENL, which is a YEATS domain containing protein 

that is also a common fusion partner in MLL-translocations225. This study showed 

that PAF1 makes physical contacts with both MLL and ENL in the context of an 

MLL-ENL fusion protein, leading to hyperactivation of target genes, such as Hoxa9 

and Meis1. This provides a novel mechanism in which the PAF1c is important for 

AML growth by regulation of the SEC in the context of MLL-ENL driven leukemia225.  

The PAF1c plays an important role in a different subtype of AML where 

overexpression of Phosphatase of regenerating liver-3 (PRL-3) drives oncogenesis. 

A series of studies show that LEO1 is a critical downstream target of PRL-3, an 

oncogene that is overexpressed in more than 50% of AML226. PRL-3 mediates the 

de-repression of Leo1 in murine AML cells by stabilizing JMJD2C, an H3K9 

demethylase, at the promoter region of Leo1. Loss of Leo1 destabilizes the PAF1c 

and leads to reduced AML growth. Additionally, PRL-3 dephosphorylates LEO1, 

which promotes its interaction with b-catenin and helps drive aberrant Wnt signaling 

in AML cells227. This is especially interesting given interaction between 

dephosphorylated CDC73 and b-catenin in other cellular contexts208,209. In 

summary, the PAF1c is critical to a variety of AML subtypes and regulates many 

different oncogenic gene programs. 
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The PAF1c as a potential therapeutic target 
Because of the roles described above, the PAF1c is an important target for the 

possible therapeutic development. There are several different ways in which the PAF1c 

may be targeted, many of which require further elucidation of the structure-function 

relationship of the subunits and the complex as a whole. One manner in which the 

complex may be targeted is by interrupting the recruitment to DNA. CDC73 has a Ras-

like domain that is important for the association of the PAF1c with chromatin180, and 

PAF1 as well as CDC73 are critical for the PAF1c interaction with the C-terminal tail of 

RNAPII180,181,228. Either of these interaction domains may be a potential therapeutic 

target. Another possible target lies in the interactions of the complex itself. 

Destabilization of the PAF1c complex inhibits malignant cell growth. This particular 

strategy must be pursued with caution, as the PAF1c is important for normal 

development in yeast and mammals16, so a specific therapeutic window would have to 

be elucidated. Another manner in which to approach targeting the PAF1c is to disrupt 

the protein-protein interactions with the PAF1c instead of the complex itself. One 

example of this has already been discussed, as targeted disruption of the PAF1c-MLL 

interaction is effective in inhibiting AML cell growth. Importantly, disruption of this 

interaction did not have an effect on normal hematopoietic reconstitution, 

suggesting that there may be less of a requirement for the PAF1c-MLL interaction in 

normal HSPCs relative to AML cells. This provides a potential therapeutic window 

allowing for intervention that has a stronger effect on suppressing cancer cell 

growth as opposed to normal cell development. Given the many other protein-

protein interactions that have been discovered with the PAF1c, this may provide the 

groundwork for different ways to target the regulatory functions of the PAF1c that 

are specifically deregulated in malignancy. 

In summary, the PAF1c is an important regulatory complex in the context of both 

normal transcription and in cancer. Aberrant expression of the PAF1c is correlated with 

various types of cancer, making it an interesting complex to study in the context of 

disease. However, there are still aspects of its regulation in various disease states, 

including AML, that are not fully understood. Specifically, though the PAF1c is known to 

act as a platform by recruiting other proteins to promoters, its full protein-protein 
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interactome in the context of disease remains relatively understudied. Protein-protein 

interactions that are either disrupted or stabilized could have a dramatic effect on 

PAF1c transcriptional targets and may lead to malignancy.  

One particular aspect of the PAF1c that will be interesting to explore is its 

interactions with proteins associated with transcriptional repression. In this study, we will 

provide new evidence that the PAF1c interacts with several different H3K9 

methyltransferases, providing strong support linking the PAF1c to H3K9 methylation. 

While CDC73 has been shown to interact with the H3K9 methyltransferase 

SUV39H1201, the role this interaction plays in the many malignancies that have implied 

roles for the PAF1c are not fully understood and should be further elucidated. Further, it 

is interesting to consider potential interactions with the PAF1c and epigenetic repressor 

proteins, as the epigenetic modifiers that interact with the PAF1c are largely thought to 

be epigenetic activators. Additionally, H3K9 methylation is a modification found at 

promoters of genes associated with development229, as is the PAF1c. Further 

investigation into H3K9 methylation in the context of the PAF1c could provide important 

insight into how the PAF1c regulates its target genes in normal development, including 

those that are associated with self-renewal and must be downregulated during 

hematopoietic differentiation, such as Hoxa9 and Meis1. Furthermore, this could provide 

further insight into the mechanism of deregulation of these PAF1c target genes in the 

context of disease. 

 

1.3 H3K9 methylation in normal and malignant hematopoiesis 

H3K9 methylation is an epigenetic modification that is generally associated with 

gene repression and chromatin condensation76,230. H3K9 methylation also plays a role 

in the regulation of various cellular processes. A primary cellular process affected by 

H3K9 methylation is the formation of heterochromatin. H3K9 methylation and the 

proteins associated with depositing H3K9 methylation are known to accumulate on 

heterochromatic regions of the genome231,232. H3K9 methylation is a unique histone 

modification because it marks large regions of the genome, such as pericentric 

heterochromatin, but it also has been shown to play a functional role in the dynamic 

repression of genes in euchromatic regions of the genome as well75,102,230,233–236. 
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Proteins associated with deposition of H3K9 methylation come from two different 

families of proteins: the SUV39 family and the PRDM family. The SUV39 family of H3K9 

methyltransferases consists of SUV39H1/2237–239, G9a/GLP (EHMT1/2)240–243, and 

SETDB1/2244,245. The H3K9 methyltransferases in the PRDM family are PRDM2246, 

PRDM3247, PRDM8248, and PRDM16247. Proteins associated with removing the H3K9 

methylation modification include the JMJD1/2 families of proteins, as well as PHF2/8 

proteins. H3K9 methylation is critical for genome stability, chromatin conformation, and 

regulation of gene expression. Therefore, it is a critical mode of regulation in both 

normal and malignant development. The most well-known enzymes associated with 

H3K9 methylation are reviewed here, with a particular focus on H3K9 

methyltransferases, due to the potential importance of their interactions with the PAF1c 

in malignancy. 

 

H3K9 methylation in solid tissue malignancies 
Many of the proteins associated with modulating H3K9 methylation have been 

shown to be aberrantly regulated in solid tissue malignancies. For example, SETDB1 

has been implicated as an oncogene in a variety of malignancies, including melanoma, 

breast cancer, liver cancer, and lung cancer249–253. G9a/GLP(EHMT2/1) have also been 

proposed to promote oncogenesis in ovarian, breast, and lung cancers77,254–256. 

However, G9a has also been proposed to activate TP53 tumor suppressor protein in 

lung cancer, indicative that its function may be highly dependent on cellular context257. 

Similarly, SUV39H1 has been shown to help drive melanoma progression258. 

Interestingly, SUV39H1 has also been proposed to be a tumor suppressor through its 

interaction with the PAF1c201,203. The H3K9 lysine demethylases also have implications 

in solid tumor malignancies, though the roles are more ambiguous. For instance, PHF8 

has been implicated as an oncogene in breast cancer259, while PHF2 has been shown 

to be a inhibit breast cancer cell proliferation260. The JMJD2 family of proteins has been 

associated with oncogenic functions in breast cancer and lung cancer261,262, whereas 

the JMJD1 family has tumor suppressor functions in germ cell tumors263. In summary, 

there is no clearly defined role for H3K9 methylation in solid tissue malignancy, and 

therefore each individual disease state must be looked at separately to begin to 
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elucidate the overall importance of H3K9 methylation in the initiation and progression of 

disease. This is also the case in hematological malignancies. To begin to gain a better 

picture of the different roles of H3K9 methylation in normal and malignant 

hematopoiesis, the known functions of the different H3K9 methylation associated 

enzymes are reviewed here. 

 

H3K9me2/3 in normal HSPC self-renewal 
Regulation of H3K9me2/3 plays a critical role in the maintenance of normal 

HSPC growth. For instance, mouse hematopoietic cells redistribute H3K9me3 during 

differentiation. While the overall amount of H3K9me3 does not change, the modification 

shifts to a radial nuclear distribution in more mature blood cells. In mice, normal HSPCs 

defined by Lin-, Kit+, and Ska1+ (LSK) that are treated with a G9a inhibitor (UNC0638) 

maintain a higher number of LSKs in culture compared to vehicle treated cells. Similarly, 

primitive CD34+ human hematopoietic cells that are treated with UNC0638 maintain a 

higher percentage of CD34+ cells and have a higher engraftment capacity in NOD-SCID 

mice. Taken together, these data suggest a role for G9a-dependent H3K9 methylation 

in repressing genes associated with self-renewal in normal HSPCs. 

 

H3K9 methyltransferases in normal and malignant hematopoiesis  
 

SETDB1/2 
Recently, SETDB1 has been linked to critical functions in normal and malignant 

hematopoiesis. First, Koide and colleagues demonstrated that Setdb1 is required for 

both hematopoietic cell growth as well as MLL-AF9 driven AML in murine cells264. Cells 

with genetically deleted Setdb1 are incapable of reconstituting the bone marrow of 

lethally irradiated mice. Additionally, deletion of Setdb1 leads to extended disease 

latency in an AML mouse model. Interestingly, this study found that Setdb1 depletion 

induced apoptosis in hematopoietic cells by dysregulation of non-hematopoietic specific 

genes, such as metabolism-associated genes like Fbp1/2264. SETDB1 also directly 

interacts with PML265. PML is a protein that is associated with tumor suppressor 

functions in promyelocytic leukemia (PML). PML localizes to PML-nuclear bodies (PML-
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NBs) where SETDB1 is required for their stability  and function, including repression of 

PML target genes265. Furthermore, Pasquarella et al. has shown that SETDB1 is 

essential for the silencing of retroviruses in pro-B cells and loss of Setdb1 in the B-cell 

lineage leads to apoptosis of pro-B cells266. Finally, Cuellar et al. found SETDB1 

silences retroviral elements in human AML cell lines 267. Loss of SETDB1 led to a loss 

of silencing of retroviral elements, which induced a cytotoxic interferon response in AML 

cells267. The paralog of SETDB1, SETDB2, has less clearly defined roles in malignancy. 

However, it was initially characterized in human cells as a gene that is frequently 

deleted in B-cell CLL268, suggesting it may have tumor suppressor functions. In 

summary, SETDB1 displays both oncogenic and tumor suppressor functions in heme 

malignancies, which stands in contrast its oncogenic role in most solid tissue tumors 

that it has been studied in. Further, the mechanistic reasons behind these different 

functions are not clearly understood. Therefore, the function of SETDB1 and its 

regulation in hematopoietic cancers should be further elucidated. 

 

G9a and GLP  
G9a (encoded by the gene EHMT2) and GLP (encoded by EHMT1) play critical 

roles in hematopoiesis and leukemia. As mentioned above, G9a/GLP play an important 

role in differentiation associated changes in H3K9 methylation patterning. Interestingly, 

however, G9a is not required for normal HSC reconstitution of lethally irradiated 

mice269.Functionally, G9a is critical for AML progression and initiation. A recent study 

demonstrated that G9a is required for AML growth in in vivo mouse models where loss 

of G9a extends disease latency. Further, G9a binds Hoxa9 and is necessary for Hoxa9 

transcription factor function in murine AML cells269. These authors proposed that this 

presents a valuable therapeutic window in blood cells where G9a/GLP may be targeted 

selectively in AML cells without affecting normal HSC function269. In keeping with the 

theme of therapeutic targeting, in cellular studies performed by Loh et al. and 

Savickiene et al., the authors observe that inhibition of G9a/GLP sensitizes CML cells to 

interferon treatment and PML cells to retinoic acid (ATRA)270,271. Furthermore, in vivo 

xenograft studies have revealed that inhibition of G9a/GLP leads to reduced leukemia 

growth in vivo272. ChIP-sequencing of K562 AML cells has also revealed that there is an 



 34 

accumulation of H3K9me2 across large genomic regions of the genome in AML cells273. 

These regions are larger than 100Kb in size and are enriched for regions of the genome 

that are commonly deregulated in AML, either by mutation, chromosomal 

rearrangement, or downregulation. The accumulation in these regions seem to be 

dependent on G9a and its binding partner GLP because inhibition of G9a/GLP’s 

methyltransferase activity leads to a reduction in H3K9me2 accumulation273. Finally, 

GLP itself has recently been demonstrated to be a prognostic marker in CLL. Alves-

Silva et al. showed that high expression of GLP is associated with a poor prognosis in 

CLL and that inhibition of GLP/G9a induces cell death in a CLL cell line274. These 

studies all point to an oncogenic function of G9a/GLP. In contrast, Son and colleagues 

have recently demonstrated that ATRA-induced differentiation of PML cell lines requires 

G9a275. In this study, the authors observe that G9a represses JAK2 expression via 

promoter H3K9me2 after cells are treated with ATRA. Consistent with this, the authors 

see a stabilization of G9a protein after treatment with ATRA275. Taken together, these 

data suggest that G9a and GLP are important factors in blood malignancies and that 

their role is highly context dependent. 

 

SUV39H1/H2  
SUV39H1/H2 also have important functions in normal HSPCs and malignant 

blood cancers. A study of germline deletion of Suv39h1/h2 in mice revealed that while 

double null mice are largely non-viable, loss of either Suv39h1 or Suv39h2 resulted in 

viable, though developmentally impaired mice232. Interestingly, heterozygous or 

homozygous null Suv39h1 mice develop B-cell lymphomas at a rate of about 28%, 

which would be indicative of some tumor suppressive functions for SUV39H1232. 

Suv39h2 heterozygous or homozygous null mice develop B-cell lymphomas at a much 

lower rate (<5%)232. Further, Djeghloul and colleagues have also demonstrated that 

age-related loss of SUV39H1 leads to impaired B-cell development and that 

overexpression of SUV39H1 leads to a stronger production of B-cells in old HSCs276.  

In malignant hematopoiesis, it has been observed that low levels of SUV39H1 

and high levels of SUV39H2 are associated with increased acquisitions of karyotypic 

abnormalities in CLL277. In contrast, depletion of SUV39H1 in AML cells leads to a lower 
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rate of chromosomal abnormalities in Myc-driven malignancy278. Taken together, these 

data imply that deregulation of H3K9 methylation-mediated chromatin conformation 

could contribute to a higher mutational burden and onset of heme malignancies. 

Further, SUV39H1 has been described as an oncogene in acute promyelocytic 

leukemia (APL), where it functions by physically binding with the PML-RAR fusion 

oncoprotein and silencing its target genes, driving malignancy279. It is noteworthy that a  

small molecule inhibitor of SUV39H1 (chaetocin), delays cell growth and induces 

differentiation of AML cells, both alone and in combination with other 

chemotherapeutics280–282. Mechanistically, treating AML cells with this chemical leads to 

re-expression of tumor suppressor genes that are repressed by SUV39H1 in AML 

Table 1-1: A summary of H3K9 methyltransferases known associations with hematopoietic 
malignancies 

 H3K9 
modification 

Hematologic Disease Association 

GLP (EHMT1) me1/me2 High expression in CLL is a poor prognostic marker 
 

G9a (EHMT2) me1/me2 Required for AML by mediating Hoxa9 driven transcription; 
Chemical inhibition sensitizes AML, CML, PML cells to 
differentiation and death; mediates accumulations of 
H3K9me2 across large genomic regions in AML; Necessary 
for ATRA-induced differentiation of PML cells 
 

SETDB1 me1/me2/me3 Required for MLL-AF9 driven AML; Represses oncogenic 
self-renewal genes in AML; Represses retroviral elements in 
AML; Interacts with PML tumor suppressor 
 

SETDB2 me3 Recurrently deleted in CLL 
 

SUV39H1 me2/me3 Germline deletion leads to B-cell lymphomas (high 
penetrance); Low expression associated with karyotypic 
abnormalities in CLL; Depletion leads to lower rate of 
chromosome abnormalities in AML; oncogene in APL by 
silencing PML-RAR 
 

SUV39H2 me2/me3 Germline deletion leads to B-cell lymphomas (low 
penetrance); Upregulated in ALL; 
 

PRDM2 (RIZ1) me1/me2/me3 Downregulated in CML and ALL; further downregulated 
during CML progression; Stabilized expression leads to MM 
cell death 
 

PRDM8 me2 Downregulated in E2A-PBX1 driven ALL 
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cells283. However, recent studies have suggested that chaetocin is a non-selective 

inhibitor of many different lysine methyltransferases, and that its mechanism of action 

may vary drastically from its reported targeting of SUV39H1284–286. This data urges 

caution when using chaetocin as a proposed inhibitor to SUV39H1.  

The SUV39H1 paralog, SUV39H2, is aberrantly upregulated in ALL, which is 

surprising given that it is thought to be a testes specific gene238,277,287. Muntonga et al. 

have shown that genetic knockdown of SUV39H2 in both B-cell ALL and T-cell ALL 

leads to reduced leukemic cell viability287. Furthermore, high expression of SUV39H2 is 

shown to make ALL cells more resistant to cytarabine277. Mechanistically, SUV39H2 

methylates LSD1, a known oncogene in ALL, which protects LSD1 from ubiqutination 

and subsequent degradation288. In summary, SUV39H1 and SUV39H2 can play a 

variety of context dependent roles in hematological malignancies. 

 

The PRDM family of H3K9 methyltransferases 
The role of the PRDM family of H3K9 methyltransferases hematologic 

malignancies is less clearly understood. However, there are several studies 

demonstrating PRDM2 (RIZ1) as a tumor suppressor gene in leukemia and MDS. First, 

PRDM2 exhibits reduced expression in CML cell lines and patient samples, and its 

expression is further reduced during CML disease progression289,290. Furthermore, 

overexpression of PRDM2 in CML cells leads to differentiation and reduced cell 

growth289,290. Additionally, the PRDM2 promoter is methylated in T-cell and B-cell ALL, 

AML and MDS resulting is decreased PRDM2 expression. In MDS low PRDM2 

expression correlates with higher risk291–293. Mechanistically, PRDM2 represses IGF-1 

via deposition of promoter H3K9 methylation290. Finally, PRDM2 has been shown to be 

a potential therapeutic target in multiple myeloma (MM). Treatment of MM cells with 

triptolide leads to increased PRDM2 expression and apoptosis294 suggesting tumor 

suppressor function for PRDM2 in blood malignancies. 

The roles of the other members of the PRDM family of H3K9 methyltransferases 

in blood malignancies are not well understood. PRDM8 is a bona-fide H3K9 

methyltransferase that is downregulated in ALL cell lines driven by E2A-PBX1 fusion 

oncoproteins, though no functional studies have demonstrated a mechanism for or 
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effect of this downregulation295. PRDM3 (MDS1-EVI1), which is encoded by MECOM, 

has only recently been described to have H3K9 methyltransferase activity247. PRDM3 

has been reported to have oncogenic functions in AML but it is not clear whether this is 

a result of its H3K9 methyltransferase functions or its protein-protein interaction 

network296–299. Additionally, other studies have suggested that PRDM3 has no H3K9 

methyltransferase activity300. Similarly, PRDM16 has only recently been reported as an 

H3 lysine methyltransferase, and there have been discrepancies over whether it shows 

substrate specificity for H3K4 or H3K9247,301. PRDM16 is required for hematopoiesis by 

maintaining the self-renewal capacity of LT-HSCs. It has also been implicated as both a 

tumor suppressor gene and an oncogene in AML, though in neither case was the H3K9 

methyltransferase function explored as the mechanism of action301,302. Whether PRDM3 

and PRDM16 are bona-fide H3K9 methyltransferases and what the role of this 

methyltransferase activity is in disease still needs to be elucidated.  

 

An H3K9 methyltransferase complex 
H3K9 methyltransferases may not always function as independent units. 

Members of the SUV39 family of H3K9 methyltransferases form a heterotetrameric 

complex that functions to repress euchromatic gene expression. SETDB1, SUV39H1, 

G9a and GLP physically associate and localize to known gene targets of G9a234. 

Furthermore, several of these complex members have been proposed to have similar 

roles in various malignancies, suggesting the whole complex may be dysregulated and 

not just one individual H3K9 methyltransferase. For instance, G9a SUV39H1 interact 

with both EVI-1 and the longer MDS1-EVI-1 isoform (PRDM3) proteins299,300,303. EVI-1 

functions as an oncoprotein and high expression of EVI-1 is associated with a poor 

prognosis in AML patient samples. One mechanism of action by which EVI-1 drives 

malignancy is by repressing TGF-b signaling. Goyama and colleagues propose that 

G9a and SUV39H1 are required for this repression by deposition of H3K9me2/3300. 

Importantly, these authors also demonstrate a lack of H3K9 methyltransferase activity 

for PRDM3, but the recruitment of SUV39H1 and G9a may account for the correlation 

between PRDM3 and H3K9 methylation that has been previously reported247. Another 

study also proposed a shared oncogenic function of G9a and SUV39H1, wherein both 
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of these proteins are recruited to epigenetically repress the tumor suppressor gene 

SOCS1 in AML304. In summary, H3K9 methyltransferases may be important to 

development and disease as single units or may act in concert as a complex. If the 

complex is playing a major role in disease, the biochemical regulation of the complex 

would need to be elucidated to fully understand how it functions. 

 

H3K9 demethylases in normal and malignant hematopoiesis 
 

JMJD1A/B/C (JHDM2A/B/C;KDM3A/B/C) 
The Jumanji domain containing protein 1 (JMJD1) family plays important roles in 

blood cell development and are required for AML cell growth. Li and colleagues 

demonstrated that JMJD1B demethylates H3K9me2 (as well as H4R3me2) at promoter 

regions of genes that are critical for hematopoietic development, including GATA3, 

STAT3, NOTCH1, and SOX2/4305. As a consequence of this regulation, deletion of 

JMJD1B leads to anemia, high white blood cell count, and a bias towards neutrophil 

differentiation305. Furthermore, JMJD1B is downregulated as cells differentiate, 

suggesting a role in regulating primitive hematopoietic cells. In the context of 

malignancy, JMJD1A/B/C have oncogenic properties in different subtypes of 

hematopoietic diseases. For instance, JMJD1A is a critical regulator of oncogene 

expression in multiple myeloma (MM) 306, including hypoxia-induced genes that are 

required for the survival of a subset of MMs307. Further, JMJD1B is upregulated in ALL 

patient samples and drives expression of the ALL oncogene Lmo2308. Conversely, 

JMJD1B is downregulated in AML patient cells and its overexpression induces AML cell 

differentiation309. Finally, JMJD1C is required for the growth of MLL-AF9 cells, and its 

depletion leads to AML cell differentiation and apoptosis in MLL-AF9 and AML-ETO9a 

translocation driven cell leukemias310,311,312. These data suggest an importance for the 

JMJD1 family of proteins in both normal and malignant hematopoiesis. 

 

JMJD2A/B/C (JHDM3A/B/C;KDM4A/B/C/D) 
The JMJD2 family have essential roles in malignant cell growth but appear to be 

more dispensable for normal hematopoietic development. Though the precise role of 
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the JMJD2 family in normal blood cell development is unclear, concurrent depletion of 

Jmjd2a/b/c does not affect the ability of cells to reconstitute the bone marrow a lethally 

irradiated mice, suggesting these proteins are not required for HSPC growth313. In 

contrast, loss of Jmjd2a/b/c in MLL-AF9 driven AML cells induces cell differentiation and 

apoptosis due to a downregulation of Interleukin 3 receptor a (Il3ra), which is important 

for survival of AML cells313. Interestingly, a separate study demonstrated that depletion 

of Jmjd2c itself is in fact enough to induce differentiation and apoptosis of AML cells, in 

this case through downregulation of Hoxa9314. Further, targeted inhibition of JMJD2C in 

MLL-fusion or MOZ-TIF2 fusion driven AML leads to decreased cell growth and induced 

differentiation and apoptosis314. Similarly, in lymphomas JMDJ2C acts synergistically 

with JAK2 to mediate the JAK/STAT signaling pathway and drive cell growth, 

specifically by upregulating MYC and IL-4315,316. These data show that the JMJD2 family 

of K9 demethylases plays an important role in the maintenance of AML, as well as other 

blood malignancies. 

 

Potential of therapeutically targeting H3K9 methyltransferases/ demethylases 
 H3K9 methyltransferases and demethylases play an important role in blood cell 

development and can have either suppressive or oncogenic functions in different 

cellular contexts. Therefore, there is a strong interest in the development of molecules 

that can inhibit their function in order to gain a deeper understanding of their possible 

utility as therapeutic targets. There have been several studies that have shown the 

promise of targeting proteins that modify H3K9 methyltransferases and demethylases in 

hematopoietic malignancies. In fact, several small molecule inhibitors exist which can 

be used to selectively target these classes of proteins. One example of this is a series 

of small molecule inhibitors that can target G9a/GLP, including BIX01294317, 

UNC0638318, and A-366272. Small molecules also target the JMJD1 family including 

QC6352319. All of these molecules have been used to successfully delay the growth or 

induce differentiation of malignant cells. However, as has been previously discussed in 

this section, the proteins that modulate H3K9 methylation do not always function in the 

same manner regardless of cellular context. In some cases, they are required for cell 

growth, while in other cases they suppress cell growth. Furthermore, given the many 
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different biochemical roles of H3K9 methylation in regulating cellular processes, it is 

unlikely that inhibition of these proteins will simply disrupt one specific pathway. 

Inhibition of these proteins may disrupt one pathway in a manner that induces cell 

death, while simultaneously disrupting another axis of regulation that leads to an 

increase in genes associated with aggressive malignancy. In fact, a group recently 

demonstrated that while inhibition of G9a using small molecules can delay tumor growth 

in skin cancer, the tumors that did develop were significantly more aggressive, 

suggesting that off-target effects can induce a larger pool of cancer progenitor cells320. 

Therefore, the functions and regulation of these proteins and the effects of inhibiting 

them should be fully elucidated in a disease specific context. 

 

1.4 Summary and Goals  

Here we have reviewed a large body of evidence that emphasize a few important 

points. First, transcriptional regulation, including epigenetic regulation, are key 

processes in blood cell development. Deregulation of these processes is associated 

with inappropriate expression of genes associated with self renewal and a block in the 

expression of differentiation specific genes, and this can result malignant cell growth. 

Next, the PAF1c is an epigenetic co-modifying complex that is a key regulator of gene 

expression in normal development and in malignancy. It has either tumor suppressor or 

oncogenic functions in different solid tissue tumors. Further, the PAF1c is required for 

AML cell growth, at least partially through its interaction with MLL-fusion proteins and its 

regulation of Hox gene programs. An interesting but underexplored function of the 

PAF1c involves its role in epigenetically repressing genes, potentially through 

interactions with H3K9 methyltransferases. H3K9 methylation is a critical histone 

modification that plays a central role in normal cell functions and in cancer cell growth. 

H3K9 methyltransferases are largely seen as oncogenic proteins in solid tissue tumors, 

with some evidence indicating a more cell context dependent role. Similarly, changes in 

H3K9 methylation can function by both suppressing cell growth or promoting cell growth 

in hematopoietic cancers. Further study of the proteins involved in modulating this mark 

may help to elucidate novel modalities of regulation and uncover new ways to precisely 

target malignant cells in the treatment of cancer. 
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To that end, there are several outstanding questions related to the PAF1c and 

H3K9 methyltransferases and their role in hematopoietic malignancies like AML. First, 

while we know that the PAF1c is important in AML, a thorough study of its targets in 

AML and normal hematopoietic cells has not yet been performed. Further, given its role 

in transcriptional regulation as a platform complex that recruits other proteins, the 

PAF1c interactome should also be studied in the context of AML. Here we will show that 

the PAF1c interacts with H3K9 methyltransferases, which leads to new questions. First, 

it is important to understand the roles of H3K9 methyltransferases and the PAF1c-

H3K9methyltransferase interaction in regulating transcription in AML. Next, the role of 

many H3K9 methyltransferases have only been studied in the context of AML using 

genetic deletion systems. However, it is important to understand the consequences of 

increased expression in AML as well, given the ambiguous roles of H3K9 methylation 

as tumor suppressive or oncogenic. Finally, because the inhibition of H3K9 

methyltransferases has been proposed as a promising therapeutic target, it is critical to 

fully elucidate the effects this inhibition might have both on AML cells as well as on 

normal HSPCs. Our studies seek to answer these questions so that new insight will be 

provided into the role of epigenetic and transcriptional regulation in AML. 
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Chapter 2 The PAF1c-dependent transcriptome in AML and HSPCs 

2.1 Introduction 

Epigenetic modifiers are mutated in greater than 70% of AMLs and are frequently 

dysregulated in many other cancers, and therefore are promising potential therapeutic 

targets. The Polymerase Associated Factor complex (PAF1c) is an example of an 

epigenetic modifying complex that is implicated in endocrine, gastric, breast, pancreatic, 

and bone cancers. Our lab and others have recently demonstrated the PAF1c 

importance in leukemia. The PAF1c is a protein complex composed of six subunits: 

CDC73, PAF1, CTR9, LEO1, WDR61, and RTF1. The PAF1c interacts with RNA 

Polymerase II and recruits epigenetic modifiers to target genes. The PAF1c has been 

shown to play a critical role in the chemical modification of histones such as H3K4 

methylation, H3K79 methylation, H3K36 methylation and H2b ubiquitination, all of which 

are epigenetic modifications associated with active transcription. Recent work by our lab 

and others has shown that the PAF1c binds and recruits MLL fusion proteins to target 

oncogenes and that this interaction is required for leukemic maintenance but is less 

critical for normal hematopoiesis. Thus, the PAF1c may be a promising therapeutic 

target. However, little is known about PAF1c mediated transcription in leukemia. 

Despite the differences in PAF1c function in AML relative to normal 

hematopoietic cells, a full transcriptome analysis of the targets of the PAF1c in MLL-

AF9 driven leukemia compared to the PAF1c regulated transcriptome in normal HSPCs 

has not been reported. Here we describe a series of transcriptomic studies in HSPCs 

and AML cells that demonstrate a role for the PAF1c in the regulation of several 

different gene programs in AML by exploring perturbations to the transcriptome in MLL-

AF9 driven AML cells after genetic depletion of the PAF1c subunit CDC73. Additionally, 

these studies demonstrate that the PAF1c is responsible for the regulation of unique 

and overlapping gene programs in AML compared to normal HSPCs. 
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2.2 Methods 

Cell proliferation assays 
Cell lines were generated as previously described from lineage negative (lin-) 

mouse bone marrow: either wild type C57Bl/6 (Taconic Farms), Cdc73fl/fl-CreERT2 

(Cdc73fl/fl-CreER) 321, or CreER T2 (CreER)14. Briefly, Platinum-E (Plat-E) viral 

packaging cells were transfected with retroviral vectors MSCVneo-MLL-AF9 (MA9), 

MSCVpuro-CreER (CreER), or MSCVpuro (EV). Viral supernatants were collected and 

bone marrow or AML cells were spun with the virus and 5ug/mL polybrene (Millipore).  

For AML studies, Cdc73fl/fl-CreER or CreER cells were spinfected with MA9. For HSPC 

studies, Cdc73fl/fl cells were spinfected with CreER or EV. All bone marrow-derived 

MLL-AF9 cells were cultured in IMDM supplemented with 15% Stem Cell FBS 

(Millipore), 1%pen/strep, and 10ng/mL IL-3 (R&D). Normal HSPCs were also 

supplemented with 100ng/mL SCF (R&D). Cells transduced with MA9 were selected 

with 1mg/mL neomycin. Cells transduced with CreER or EV were selected with 1ug/mL 

puromycin. 

For all proliferation assays, 5x104 cells were seeded in 2mL of normal growth 

media containing either 2.5nM 4-hydroxytamoxifen (4-OHT) for AML studies, 7.5nM for 

HSPC studies, or an equivalent percentage ethanol vehicle control (vehicle). Viable cell 

number was counted each day for 3 days (AML) or 11 days using Trypan Blue 

(Invitrogen). Every 2 days, the cells were supplemented with fresh media, IL-3 (+SCF 

for HSPCs), and 4-OHT or vehicle. Statistics were done by pairing treated samples with 

the control samples from the same biological replicate and comparing all biological 

replicates using generalize linear modeling followed by ANOVA (n=2-5). 

 

In vivo mouse modeling 
 For secondary AML transplantation studies, primary AMLs were generated by 

tail vein injecting lethally irradiated mice (950 rads) with freshly spinfected MLL-AF9 

cells on a Cdc73fl/fl-MxCre background. Mice were monitored, and moribund mice were 

euthanized and their bone marrow harvested. Bone marrow from leukemic mice were 

then tail vein injected into n=10 sublethally irradiated mice (650 rads), engraftment was 

allowed to proceed for 5 days, and mice were treated with 50ug Polyinosinic-
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polycytidylic acid (poly(I:C)) (GE lifesciences) by intraperitoneal (IP) injection. Mice were 

monitored, euthanized when moribund, and leukemia was confirmed by splenomegaly 

and histology (data not shown). For normal adult hematopoiesis excision of Cdc73 

studies, Mx1Cre+/0 (MxCre), Cdc73fl/+-MxCre, or Cdc73fl/fl-MxCre mice (n=11,11,13 

respectively) at 8 to12 weeks old were treated with 5 doses of 50ug/dose poly(I:C) 

every other day intraperitonially. Mice were monitored and euthanized when moribund. 

Genetic excision of Cdc73 was confirmed (data not shown). Survival statistics were 

performed using Log-Rank tests. 

 

RNAseq analysis 
For AML studies, RNA was harvested from MA9Cdc73fl/fl-CreER or MA9-CreER 

cells 48 hours after treatment with 7.5nM 4-OHT to induce genetic excision of Cdc73. 

For Ckit+ HSPC studies, RNA was harvested from Ckit+ bone marrow. Ckit+ cells were 

isolated from Cdc73fl/fl-MxCre or MxCre mice 48 hours after 50ug IP injection of 

poly(I:C) by staining with anti-Ckit-APC antibody (BioLegend) followed by flow 

cytometry/ sorting for APC+ cells at the University of Michigan Flow Cytometry Core. 

Library preparation and single-end 50bp sequencing on a HiSeq4000 (Illumina) were 

performed by the University of Michigan Sequencing Core. Sequencing reads were 

obtained from the University of Michigan Sequencing Core. Separately RNA-seq reads 

from THP-1 cells with and without siRNA mediated PAF1 KD were obtained from the 

GEO database (GSE62171170,322) as fastq files. Following is a brief description of the 

optimized RNA-sequencing analysis pipeline. Tool version, authors, and any 

parameters used that are not defaults of the software/ tools used are listed in Table 2. 

Quality of sequencing data was analyzed using FastQC. For Ckit+ HSPC studies, 

due to high sequence duplication levels, reads were analyzed for rRNA content using 

Bowtie2 alignment to the rRNA “chromosome” (GRCm38). 20-30% of each sequencing 

run was made up of rRNA reads, but analysis of raw counts with and without rRNA 

reads revealed that gene counts were not significantly affected by the presence of rRNA 

reads, so rRNA reads were kept for accurate library size determination. Reads were 

trimmed for quality using Cutadapt. Indices for alignment were generated using the 

GENCODE M20 release of the GRCm38 mouse genome assembly or the version 29 
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release of GRCh38 with STAR. Reads were aligned to the genome using STAR. 

Aligned reads were counted by gene using HTSeq, which only keeps uniquely aligned 

reads by default. These counts were analyzed for differential gene expression using two 

separate programs implemented in R: DESeq2 and the edgeR-voom-eBayes pipeline 

(edgeR). DESeq2 and edgeR both perform computational normalizations based on 

effective library size, with the base assumption that most genes are not differentially 

expressed. Both analyses yielded similar results with DESeq2 yielding a more stringent 

same to same comparison for genes in treated versus control samples, so the 

significance of differential expression of individual genes was based on DESeq2 

analysis. edgeR is more suited to piping into gene set analysis (GSA) using CAMERA, 

so it was used for downstream GSA and generation of barcode plots. The following 

analyses were all implemented in R using the listed packages: The MA plot was 

generated using ggplot2. MA plot is a visualization application to represent differential 

expression of genes in RNAseq data computed based on log-intensity ratios of treated 

relative to control (M) versus log-intensity averages (A) of all samples in the 

comparison. Gene ontology analysis was performed using GOseq or GAGE. Venn 

diagrams were produced using VennDiagram. CAMERA and ROAST were used for 

gene set analyses using curated MSigDB323 groups of gene sets or individual gene sets, 

respectively. Barcode plots were produced by modifying code from the function 

barcodeplot (limma). All analyses were performed in R version 3.5.1.  

 
Chromatin Immunoprecipitation sequencing (ChIP-seq) analysis 

ChIP-seq data for ChIP performed in THP-1 cells using antibodies against PAF1, 

LEO1, CDC73, RNAPII, H3K4me3, and H3K79me2 were obtained from the GEO 

database (GSE62171170,322) as fastq files. Following is a brief description of the 

optimized ChIP-seq analysis pipeline. Tool version, authors, and any parameters used 

that are not defaults of the software/ tools used are listed in Table 2. 

Quality control was performed using FastQC. Adapters were trimmed and reads 

were trimmed for quality using Cutadapt. Reads were aligned to the GRCh38 genome 

assembly using Bowtie2. SAMtools was used to sort the aligned reads, filter out 

mitochondrial reads, and keep only reads that were confidently uniquely mapping (0.995 
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probability of mapping uniquely). DeepTools was used to generate sequencing tracks 

normalized by total library size. Integrated Genome Browser (IGB) was used to visualize 

sequencing tracks. 
Table 2-1: List of software and tools for analysis of Next Generation Sequencing 
Software/Tool Version Citation Use Parameters 
SRAtoolkit 2.9.4  Download sequencing 

data from GEO 
 

FastQC 0.11.7 Babraham 
Bioinformatics324 

Quality statistics  

Cutadapt 1.18 Martin, 2011325 Quality filtering of fastq 
files for RNA-seq/ ATAC-
seq; adapter trimming 

-q 20,20 
--minimum-length 30 

AfterQC 0.9.6 Chen, et al. 
2017326 

Quality filtering of fastq 
files for ChIP-seq; adapter 
trimming 

-q 20 -u 19 -p 19 -s 25 

STAR 2.6.0c Dobin, et al. 
2013327 

Alignment of RNA-seq 
data 

genomeGenerate: --
sjdbOverhang 49  
Alignment: --
outSAMtype BAM 
SortedByCoordinate 

Bowtie2 2.3.4.3  Langmead & 
Salzberg 
2012328 

Alignment of ChIP-seq 
data 

--very-sensitive -X 
2000 

SAMtools 1.9 Li, et al 2009329 Sorting, indexing, quality 
filtering of aligned BAM 
files 

view -b -q 25 -f 0x2 

Picard 2.18.19 Broad 
Institute330 

Removing PCR duplicates 
from ATAC-seq/ChIP-seq 

 

MACS2 2.1.2 Zhang, et al. 
2008331 

Calling peaks for ATAC-
seq/ ChIP-seq 

Narrow ChIP-seq 
peaks (H3K9ac): -t 
<input> -f BAMPE  -g 
mm --keep-dup all 
Broad ChIP-seq peaks 
(H3H9me3, 
H3K79me2): -t <input> 
-f BAMPE -g mm --
scale-to-large --broad -
-keep-dup all 
ATAC-seq peaks: -f 
BAM -g mm --nomodel 
--shift -100 --extsize 
200 --keep-dup all 

deepTools 
(bamCoverage) 

3.1.3 Ramirez, et al. 
2014332 

Generation of normalized 
bigwig files for sequencing 
tracks 

RNA-seq: --binSize 10 
--scaleFactor 
<sizeFactor from 
DESeq2> --
normalizeUsing None  
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ChIP-seq/ATAC-seq: --
binSize 10 --
normalizeUsing RPGC 
--effectiveGenomeSize 
2150570000 --
extendReads 

HTSeq 0.11.0 Anders, et al. 
2014333 

Counting reads assigned 
to features (exons) for 
RNA-seq 

-s reverse -r pos 

Integrated 
Genome 
Browser 

9.0.2 Nicol, et al 
2009334 

Visualization of 
sequencing tracks 

 

DESeq2 3.8 Love, et al. 
2014335 

Differential gene 
expression analysis 

alpha = 0.05; 
lfcThreshold = 
log2(1.5) 

edgeR 3.8 Robinson, et al. 
2010336 
McCarthy, et al. 
2012337 

Differential gene 
expression analysis 

 

limma 3.8 Ritchie, et al 
2015338 

Barcode plots; library 
normalization quality 
control 

 

ChIPpeakAnno 3.8 Zhu, et al. 
2010339,340 

Establishing consensus 
peak sets and gained/lost 
peaks in ChIP-seq/ ATAC-
seq analyses 

Peaks were annotated 
to promoters (-5000, 
+2000 from TSS) for 
ATAC and H3K9ac; 
Peaks were annotated 
to any overlapping 
gene feature for 
H3K79me2 and 
H3K9me3 

DiffBind 3.8 Stark, et al 
2011341,342 

Analyzing differential peak 
signals for ChIP-
seq/ATAC-seq 

method = 
DBA_DESEQ2; 
bFullLibrarySize=TRUE 

CAMERA  Wu and Smyth 
2012343 

Differential gene 
expression analysis to 
generate statistics for 
barcode plots 

inter.gene.cor=0.01 

ROAST  Wu, et al. 
2010344 

(see CAMERA, for stand 
alone gene sets) 

 

ggplot2 3.1.0 Wickham, et al Generation of graphs  
VennDiagram 1.6.2 Boutros, Paul Generation of venn 

diagrams 
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2.3 Results 

These data were generated as part of a completed study and an ongoing study in 

our lab. The project exploring the role of the PAF1c in AML was done in collaboration 

with Justin Serio224; the bioinformatic analyses for this study were performed by Jingya 

Wang and myself. The project exploring the role of the PAF1c in normal HSPCs was 

done in collaboration with Nirmalya Saha (Saha, et al. In revision); I was responsible for 

all bioinformatic analyses in this study. Here the implications of the transcriptome 

studies are the primary focus. 

 

Genetic excision of Cdc73 suppresses growth of AML cells and normal HSPCs 
It has recently been demonstrated that the PAF1c is required for the cellular 

proliferation of MLL-AF9 and E2A-HLF driven AML cell lines using a Cre-lox system. 

This system allows us to induce genetic excision of the PAF1c subunit Cdc73 in AML 

cells by treatment with 4-hydroxytamoxifen (4-OHT). We first sought to extend the 

analysis of the requirement for Cdc73 in different AML subtypes. Cell lines were 

generated on the homozygous Cdc73floxed and hemizygous CreERT2 background 

(Cdc73fl/fl-CreER) or on a Cdc73 wildtype and hemizygous CreERT2 background 

(CreER) by retrovirally transducing different oncogenes into lineage negative (lin-) 

mouse bone marrow cells. Excision of Cdc73 was confirmed and proliferation assays 

reveal that loss of Cdc73 leads to a dramatic loss of AML cell growth in MLL-AF9 (MA9) 

and E2A-HLF (EHF) AML cells (Figure 2-1A, top 2 panels). We next explored whether 

Cdc73 was required for AML cells driven by overexpression of Hoxa9 and Meis1 (H/M), 

which are oncogenes that are downstream of the MLL-AF9 oncogene, and AML-ETO9a 

(AE9), which drives a separate oncogenic program from MLL-AF9 or E2A-HLF. 

Treatment of H/MCdc73fl/fl-CreER and AE9Cdc73fl/fl-CreER cells with 4-OHT revealed 

a strong proliferative defect in cells after induced excision of Cdc73 (Figure 2-1A, 

bottom 2 panels). The next important questions was whether Cdc73 was required for 

normal hematopoietic cell growth. Lin- bone marrow was isolated from Cdc73fl/fl cells, 

retrovirally infected with CreERT1, and the cells were selected for three days. The cells 

were then treated with 4-OHT and monitored proliferation. In cells that were transduced 

with a control empty vector and treated with 4-OHT, a proliferative burst that plateaued 
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after 8 days was observed. In cells expressing CreER, treatment with 4-OHT resulted in 

a loss of the proliferative burst (Figure 2-1B). Next, we sought to ask whether there is a 

requirement for Cdc73 in AML and HSPC cell growth in vivo. To this end, we performed 

secondary AML transplants tail-vein injecting sublethally irradiated mice with primary 

MLL-AF9 cells that are on a Cdc73fl/fl or wildtype background that are also hemizygous 

for the hematopoietic specific inducible Mx1-Cre (MxCre). These MA9Cdc73fl/fl-MxCre 

cells can be induced to excise Cdc73 in vivo by injecting the mice with Polyinosinic-

polycytidylic acid (poly(I:C)). After injection with poly(I:C), we observed a significant 

increase in AML disease latency in mice that were injected with MA9 Cdc73fl/fl-MxCre 

Figure 2-1: PAF1c subunit Cdc73 is required for AML cell and HSPC growth. A) Cell lines 
transformed with the indicated oncogenes (MA9=MLL-AF9; EHF=E2A-HLF; H/M=Hoxa9/Meis1; 
AE9=AML-ETO9a) on a CDC73fl/fl-CreERT2 or CreER T2 background were treated with 2.5nM 4-OHT 
or EtOH vehicle control and proliferation was monitored. Shown are representative experiments of 
n=2-5. B) Lin- bone marrow from a Cdc73fl/fl mouse was isolated and transduced with CreERT1 or 
empty vector control. Cells were selected for 3 days then treated with 7.5nM 4-OHT or EtOH vehicle 
and proliferation was monitored. C) Primary MA9Cdc73fl/fl-MxCre cells were injected into sublethally 
irradiated mice. After 5 days of engraftment, mice were treated with poly(I:C) or PBS control to induce 
excision of Cdc73. Kaplan-Meier curve of survival. D) Mice of the indicated background were treated 
with poly(I:C) to induce hematopoietic specific excision of Cdc73 and survival was monitored. * p < 
0.05; EV= Empty Vector 
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Figure 2. Cdc73 is essential for adult hematopoiesis and MLL-AF9 mediated 
leukemogenesis. (A) Experimental protocol for poly(I:C) administration and Mx1Cre 
activation. 5 doses of 50 ug poly(I:C) each were injected into mice intraperitoneally every other 
day. Complete blood count  (CBC) was recorded at least 5 days before the first poly(I:C) 
injection and at the end of the surveillance time. (B) Kaplan-Meier analysis of Mx1Cre+ (blue, 
n=11), Mx1Cre+,Cdc73fl/wt (green, n=11) and Mx1Cre+,Cdc73fl/fl (red, n=13) mice following 
poly(I:C) treatment. Censored points indicate mice were sacrificed for experimental purpose. 
(C) Genotyping from bone marrow cells demonstrating excision of Cdc73. BM; bone marrow. 
(D) Representative image of HE stained cross-section of a tibia (100X magnification, scale bars 
= 20 mM). Genotype is indicated at the top. (E) Total number of bone marrow cells isolated from 
mice of indicated genotype following poly(I:C) treatment. (F) Total number of red blood cells 
(RBC), lymphocyte, and white blood cells (WBC) from poly(I:C) treated mice determined by 
CBC at moribund stage. (G) Kaplan-Meier analysis of secondary MLL-AF9 leukemogenesis 
assay of mice transplanted with MA9-Mx1Cre+,Cdc73fl/fl cells. Mice were treated with poly(I:C) 
to excise Cdc73 (n=10) or DPBS as control (n=10). Censored points indicate death not related 
to leukemia. *** p-value < 0.001, **** p-value < 0.0001 (Mantel-Cox test). Results of dot plots 
are represented as mean with standard deviation (Unpaired t-test).
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cells relative to those injected with MA9-MxCre cells (Figure 2-1C). Importantly, the 

mice that did eventually get leukemia in the poly(I:C) treated group were genotyped and 

we determined that the leukemias arose from clones that had escaped excision of 

Cdc73, indicating a strong selective pressure to maintain PAF1c expression in AML. We 

next asked whether Cdc73 depletion affects hematopoietic reconstitution in vivo. 

Cdc73fl/+-MxCre, Cdc73fl/fl-MxCre, or MxCre mice were treated with poly(I:C) to induce 

excision of Cdc73 specifically in the bone marrow. Strikingly, all mice from the 

Cdc73fl/fl-MxCre group died within 20 days of the poly(I:C) injections from bone marrow 

failure, while no mice succumbed to hematopoietic failure in either the control or 

heterozygous excision group (Figure 2-1D). Together, these data demonstrate an 

essential role for Cdc73 in AML and normal HSPC cell growth. 

 
Depletion of Cdc73 in AML leads to downregulation of oncogenic gene programs 
 We next sought to characterize the PAF1c regulated transcriptome in AML cells. 

To this end we performed RNA-sequencing (RNA-seq) experiments. RNA was 

harvested from MA9Cdc73fl/fl-CreER or MA9-CreER cells after 48 hours of treatment 

with 4-OHT, at which time point Cdc73 protein levels are ablated14,224. After sequencing, 

differential gene expression analysis using DESeq2 reveals that 1896 genes are 

upregulated and 1329 genes are downregulated after excision of Cdc73 with an alpha = 

0.05 and a fold-change threshold of > 1.5 (Figure 2-2A). Gene ontology studies were 

performed for both upregulated and downregulated gene set/ pathway analysis using 

generally applicable gene set enrichment for pathway analysis (GAGE). These analyses 

revealed that genes associated with apoptosis and differentiation are upregulated upon 

loss of Cdc73 and that gene programs associated with methyltransferase activity are 

downregulated (Figure 2-2B). Next gene set analysis using correlation adjusted mean 

rank gene set test (CAMERA) was performed on the MsigDB curated gene sets list. 

Gene programs associated with differentiation are highly upregulated upon loss of 

Cdc73 (Figure 2-2C). Further, oncogenic gene programs like the genes that are 

upregulated by Hoxa9/Meis1 are significantly downregulated upon loss of Cdc73 

(Figure 2-2D). Finally, gene programs associated with histone methyltransferase activity 

were also downregulated upon loss of Cdc73 (Figure 2-2E). This methyltransferase 
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program became the focus of a now published study demonstrating that Protein 

arginine methyltransferase 5 (PRMT5) is a critical downstream target of the PAF1c and 

that PRMT5 itself is critical to supporting AML cell growth224. Finally, overlap analysis 

between genes that are significantly changed in after excision of Cdc73 in MLL-AF9 

cells and genes that are direct binding targets of either MLL-AF9 or MLL-ENL show a 

significant overlap. 35 genes were found in this overlap, including targets critical for 

AML cell growth such as Myc, Eya1, and Cdkn1b. Taken together, these data show that 

the PAF1c regulates gene programs that are essential for blocking differentiation and 

promoting self-renewal in AML cells. 
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Figure 2-2: Deletion of Cdc73 in MLL-AF9 cells leads to downregulation of oncogenic gene 
programs. A-E) MA9CDC73fl/fl-CreER or MA9-CreER cells were treated with 4-OHT for 48 hours. 
RNA was harvested and sequenced. A) MA plot showing fold change of gene expression in 
MA9Cdc74fl/fl-CreER cells compared to MA9-CreER cells after 4-OHT treatment versus average 
expression for all samples. Red highlighted genes are significantly upregulated and blue highlighted 
genes are significantly downregulated (alpha = 0.05, fold change > 1.5). B) GAGE analysis showing 
gene ontology enrichments for up and downregulated genes after deletion of Cdc73. C-E) Gene set 
analysis performed with CAMERA for the indicated gene sets. F) Overlap analysis performed between 
all genes that are significantly changed upon loss of Cdc73 in AML cells compared to known direct 
binding targets of MLL-fusion proteins (MLL-AF9: Bernt, et al. 2011; MLL-ENL: Garcia-Cuellar, et al. 
2016. 
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The PAF1c has conserved targets in mouse AML and human AML 
 I next sought to validate these results in the context of human AML. Yu and 

colleagues have recently performed RNA-seq experiments on human THP-1 AML cells 

with and without siRNA-mediated knockdown (KD) of PAF1170. These data were used to 

demonstrate that the PAF1c plays a critical role in RNAPII pause release but have not 

been fully analyzed and published in the context of evaluating the PAF1c transcriptome 

Figure 2-3: KD of PAF1 in THP-1 cells leads to downregulation of oncogenic gene programs. A-
E) RNA-seq data for siRNA mediated PAF1 knockdown (KD) was downloaded from GEO 
(SRP048744) A) MA plot showing fold change of gene expression in PAF1 KD THP-1 cells compared 
to THP-1 control cells. Red highlighted genes are significantly upregulated and blue highlighted genes 
are significantly downregulated (alpha = 0.05, fold change > 1.5). B-C) Overlap analysis between 
genes that are significantly upregulated (B)/ downregulated (C) in  MA9CDC73fl/fl-CreER and PAF1 
KD THP-1 cells. Significance was relaxed to alpha = 0.05. D-E) Gene set analysis performed with 
CAMERA for the indicated gene sets. F) ChIP-seq tracks for pulldown using antibodies against PAF1c 
components (LEO1, CDC73, PAF1), RNAPII, and H3K4me3/H3K79me2 showing the HOXA locus in 
THP-1 cells. Raw data was downloaded from GEO (SRP048744) and re-analyzed. 
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in AML. This is also a good dataset for comparison to our studies because this cell line 

harbors an MLL-AF9 fusion. Differential gene expression analysis using DESeq2 

reveals that genes are upregulated, and genes are downregulated after knockdown of 

PAF1 with an alpha = 0.05 and a fold-change threshold of > 1.5 (Figure 2-3A). Next, an 

overlap analysis of gene expression changes in THP-1 cells after PAF1 KD and 

expression changes in MLL-AF9 cells after excision of Cdc73 was performed. Because 

of the difficulty of overlapping human and mouse gene set analyses and due to the low 

number of significantly changed genes with stringent thresholds (fold-change > 1.5) in 

the PAF1 KD THP-1 cell experiment, the parameters were relaxed so that all genes with 

padj < 0.05 were considered significant in both gene sets, using a total gene universe of 

all genes that were expressed in either cell type that had an orthologue in the compared 

cell type. This analysis revealed that a significant amount of the genes regulated by the 

PAF1c is conserved between the mouse MLL-AF9 cells and the human THP-1 cells 

(Figure 2-3B). Further, this group of overlapping genes included common gene 

programs, such as an upregulation of genes associated with myeloid differentiation 

(Figure 2-3C) and a downregulation of genes regulated by Hoxa9/Meis1 (Figure 2-3D). 

Finally ChIP-seq data from the same study by Yu et al. reveals that several components 

of the PAF1c bind to the Hoxa cluster of genes in THP-1 cells, suggesting the PAF1c 

regulation of this gene cluster is a direct regulation (Figure 2-3E). 

 
Depletion of Cdc73 in HSPCs results in cell cycle defects 
 We next asked what effects the PAF1c has on the transcriptome in normal 

HSPCs following depletion of Cdc73. RNA was harvested from Ckit+ bone marrow from 

mice that were on a Cdc73fl/fl-MxCre background or MxCre control mice. The Ckit+ cell 

population is made up of primitive hematopoietic stem and progenitor cells. Bone 

marrow from these mice were harvested 48 hours after 1 injection of poly(I:C) to induce 

hematopoietic specific excision of Cdc73. After sequencing, differential gene expression 

analysis using DESeq2 reveals that 399 genes are upregulated, and 433 genes are 

downregulated after knockdown of PAF1 with an alpha = 0.05 and a fold-change 

threshold of > 1.5 (Figure 2-4A). GOseq analysis to determine biological processes or 

molecular functions gene sets that are significantly changed upon depletion of Cdc73 
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were performed. These analyses reveal that immune response gene programs are 

downregulated while gene programs associated with regulating cell proliferation are 

upregulated after loss of Cdc73 (Figure 2-4B). Next, gene set analysis using CAMERA 

revealed that gene sets associated with cell cycle regulation are significantly 

upregulated following perturbation of the PAF1c in HSPCs (Figure 2-4C). Further, a 

gene set specifically associated with quiescence was upregulated upon loss of Cdc73 

(Figure 2-4D). These data suggest that the PAF1c is a critical regulator of cell cycle in 

normal HSPCs. 

 

Figure 2-4: Deletion of Cdc73 in hematopoeitic cells leads to deregulation of cell cycle gene 
programs. A-E) CDC73fl/fl-MxCre or MxCre cells were harvested from mice 48 hours after treatment 
with poly(I:C) and Ckit+ cells were isolated. RNA was harvested and submitted to sequencing. A) MA 
plot showing fold change of gene expression in CDC73fl/fl-MxCre cells compared to MxCre cells after 
poly(I:C) treatment versus average expression for all samples. Red highlighted genes are significantly 
upregulated and blue highlighted genes are significantly downregulated (alpha = 0.05, fold change > 
1.5). B) GOseq analysis showing gene ontology enrichments for up and downregulated genes after 
deletion of Cdc73. C-D) Gene set analysis performed with CAMERA for the indicated gene sets. 
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The PAF1c regulates unique and overlapping gene programs in AML and HSPCs 
 Finally, we explored whether the PAF1c dependent transcriptome is unique or 

distinct between AML cells and normal HSPCs. To do this, we first performed an 

overlap analysis looking at genes that are significantly changed in AML cells or HSPCs 

after loss of Cdc73. This analysis revealed both overlapping and unique genes that are 

regulated by the PAF1c in these cell types (Figure 2-5A), with an enrichment in gene 

programs that are differentially regulated in AML and HSPCs. To determine whether the 

PAF1c is regulating the same gene programs in AML and HSPCs, gene set analysis 

was performed using CAMERA on both RNA-seq experiments. Interestingly, there were 

37 gene sets that were enriched in both RNA-seq experiments out of 238 significant 

gene sets in the AML study and 112 significant gene sets in the HSPC study (data not 

shown). More importantly, we explored whether gene sets that could account for the 

Figure 2-5: Deletion of Cdc73 leads to changes in different gene programs in AML and normal 
HSPCs. A) Overlap analysis of genes that are up/downregulated in CDC73fl/fl-MxCre (Ckit+) or 
MA9CDC73fl/fl-CreER (AML) relative to their respective controls after induced excision of Cdc73. B-E) 
Comparative analysis of the indicated gene sets that are regulated by the PAF1c in AML cells. The top 
left panel shows the CAMERA gene set analysis for MA9CDC73fl/fl-CreER cells; the bottom panel 
shows the analysis for CDC73fl/fl-MxCre; the right panel is a heatmap showing fold-changes of all 
genes included in the gene set used for the gene set analysis in both cell types after deletion of 
Cdc73. 
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strong phenotypic changes observed in AML cells upon loss of Cdc73 were regulated 

by the PAF1c in normal HSPCs as well. Strikingly, HSPCs did not exhibit changes in 

gene sets associated with myeloid differentiation upon loss of Cdc73, while they 

constitute the top gene set changes in AML cells after loss of Cdc73 (Figure 2-5B,C). 

Further, gene programs regulated by Hoxa9 and Meis1, while changing significantly in 

AML cells upon loss of Cdc73, do not exhibit a unidirectional change in HSPCs upon 

loss of Cdc73 (Figure 2-5D,E). These data show that the PAF1c regulates common and 

unique genes in AML cells and HSPCs. These data also point to the PAF1c regulating 

gene clusters uniquely between AML cell and HSPCs and strongly suggests the PAF1c 

has overlapping and unique functions associated with self-renewal and differentiation. 

 

2.4 Discussion 

 Here we described a series of transcriptomic studies to determine the PAF1c 

transcriptional targets in AML cells and HSPCs. We first showed that the PAF1c subunit 

Cdc73 is required for both AML cell and HSPC growth (Figure 2-1). Previously, it has 

been shown by our lab and others that the PAF1c has a direct physical interaction with 

both wildtype MLL1 and MLL-fusion protein12,13. Interestingly, the interaction with MLL is 

required for AML cell growth, but disruption of the interaction does not significantly 

affect the ability of HSPCs to populate the bone marrow14. In AML, the PAF1c functions 

at least in part by regulating oncogenic gene programs including direct targets of MLL-

fusion proteins. This includes critical downstream targets of MLL-AF9 such as Eya1 and 

the Hoxa9/Meis1 gene program. However, the interaction with wildype MLL does not 

play a critical role in normal hematopoietic growth. Despite this lack of requirement for 

the regulation of MLL targets, the PAF1c subunit Cdc73 is still required for HSPC 

growth. This suggests that the PAF1c may regulate different targets in HSPCs. To test 

this, we performed RNA-seq experiments in several different cell systems to determine 

the AML specific and HSPC specific PAF1c-dependent transcriptome. 

 I demonstrated that the PAF1c regulates critical oncogenic programs in both 

mouse and human AML (Figure 2-2,2-3). These oncogenic programs include genes 

regulated by Hoxa9 and Meis1. Hoxa9 and Meis1 are critical oncogenes in MLL-fusion 

driven leukemia4,7,11,124,162. Further, they are upregulated in over 50% of AML2,37. This 



 57 

validates the PAF1c as a critical upstream regulator of oncogenic programs that are 

necessary for the initiation, progression, and maintenance of a high percentage of AML. 

Additionally, this study revealed a novel target of the PAF1c, the PRMT family of 

methyltransferases. More specifically, PRMT5 was found to be significantly 

downregulated by loss of Cdc73. A deep exploration of this axis of regulation revealed 

that PRMT5 is a critical downstream regulator of PAF1c-dependent transcription and 

that loss of either leads to AML differentiation and growth arrest224. Further, depletion of 

Cdc73 resulted in an upregulation of gene programs associated with differentiation. This 

is suggestive that loss of the PAF1c leads to a relief of the AML differentiation block by 

a loss of activation of genes associated with self-renewal. This provides evidence that 

the PAF1c may be a valuable therapeutic target in the treatment of AML, but we first 

need to elucidate its function in HSPCs. 

 To that end, we performed RNA-seq on Ckit+ HSPCs after inducing loss of 

Cdc73 (Figure 2-4). We revealed novel regulatory roles for the PAF1c in cell cycle 

processes. Of particular interest was the enrichment of a gene program after loss of 

Cdc73 indicating that genes associated with quiescence are upregulated when the 

PAF1c is depleted. A more thorough analysis of the role of the PAF1c in normal 

hematopoietic cells reveals that depletion of the PAF1c in the hematopoietic system 

leads to the depletion of HSPCs, and this phenotype is attributable to loss of cell cycle 

regulation, an increase in apoptosis, and an arrest of cell growth (Saha, et al. In 

revision). Importantly, we sought to determine whether there are differences in the 

PAF1c regulated transcriptome in AML or HSPCs (Figure 2-5). Strikingly, we see that 

the gene programs that are most changed and are most attributable to the phenotype in 

AML cells after loss of Cdc73 are not significantly changed after loss of Cdc73 in 

HSPCs. This suggests that the PAF1c regulates these self-renewal pathways 

specifically in AML and may account for the difference in requirement of the PAF1c-MLL 

interaction in hematopoietic cells compared to AML. While the PAF1c is clearly required 

for the growth of hematopoietic cells, the different requirements for protein-protein 

interactions and the difference in gene programs that are regulated by the PAF1c in 

these different cellular contexts suggest that there may be a therapeutic window in 

which the PAF1c can be targeted without severely disrupting normal hematopoietic 
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growth. However, to fully explore this possibility, a thorough study of the AML specific 

regulation of the PAF1c is necessary. 
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Chapter 3 A novel SETDB1-PAF1c interaction regulates Hoxa9 and Meis1 in AML 

3.1 Introduction 

The PAF1c is a highly conserved complex that was first identified in yeast as a 

transcriptional regulating complex that co-purified with RNA polymerase II 

(RNAPII)173,176. The PAF1c is composed of several subunits: PAF1, CDC73, CTR9, 

LEO1, RTF1, and the mammalian specific subunit WDR61174,175,177. While lacking any 

known catalytic activity itself, the PAF1c plays a critical role in the dynamic regulation of 

epigenetic landscapes at gene loci. The complex modulates epigenetic landscapes via 

protein-protein interactions with epigenetic modifying proteins16,99. For example, the 

PAF1c has been shown to be important for histone H3 lysine 4 trimethylation 

(H3K4me3) and histone H3 lysine 79 dimethylation (H3K79me2) modifications through 

its interaction with Mixed Lineage Leukemia (MLL) histone methyltransferase and the 

Super Elongation Complex (SEC)12,13,184. Additionally, the PAF1c is necessary for H2B 

monubiquitination (H2Bub) through its recruitment of ringer finger proteins RNF20/40 

and the ubiquitin ligase RAD694,95,185,187–192,345.  The PAF1c and these epigenetic 

modifications that it modulates are critical for transcriptional elongation at a subset of 

genes in yeast and mammals170,181,183,184,188,224,345,346.  

Importantly, there is a requisite role for the PAF1c complex in leukemias 

harboring a MLL (KMT2a) translocation12–14. MLL is a histone methyltransferase that 

deposits the H3K4me3 modification associated with promoter regions of actively 

transcribed genes. MLL is involved in chromosomal translocations with a variety of gene 

fusion partners that result in oncogenic MLL fusion proteins that drive transcription of 

genes critical for leukemogenesis, such as MEIS1 and HOXA911,111,162. In a series of 

studies to understand the regulation of these leukemogenic target genes, it was 

revealed that there is a direct physical interaction between the PAF1c and MLL or MLL-

fusion proteins12,13. Importantly, disruption of the PAF1c-MLL interaction selectively 

inhibits the growth of MLL leukemias but is tolerated by normal hematopoietic cells 
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pointing to cancer specific functions for the PAF1c14. Despite these differences, the 

biochemical regulation of the PAF1c that allows for the dynamic regulation of target 

genes, such as Hoxa9 and Meis1, remains poorly understood. 
While much of the work on the PAF1c has demonstrated a role in active 

transcription elongation, there is also evidence that subunits of the PAF1c are involved 

in transcriptional repression. For instance, the PAF1 subunit is necessary for proper 

promoter-proximal pausing of RNAPII172. Further, the hyperactivation of a subset of 

transcriptional enhancers is restrained by PAF1 illustrating a role in transcriptional 

repression via enhancer regulation171. Furthermore, the PAF1c subunit CDC73 can 

transcriptionally repress oncogenic targets, such as MYC and CCND1203,347. 

Additionally, CDC73 has been shown to promote CCND1 promoter H3K9me3 by 

recruitment of the H3K9 methyltransferases SUV39H1 or G9a201. This may contribute to 

tumor suppressor activity attributed to CDC73, which is mutated in hyperparathyroidism-

jaw tumor syndrome (HPT-JT), exhibiting a loss of function mutation in more than 80% 

of these malignancies348,349. These studies suggest that the complex may be 

dynamically regulated to function as a transcriptional co-activator or co-repressor in 

different cellular contexts. 

Here, we explore the biochemical regulation of the PAF1c in AML through an 

Affinity Purification-Mass Spectrometry (AP-MS) approach using CDC73 as bait. We 

identified both known and novel protein-protein interactions with the PAF1c. These 

interacting partners included a group of H3K9 methyltransferases, including a novel 

interacting partner SETDB1. H3K9 methyltransferases are epigenetic modifying proteins 

associated with transcriptional repression and heterochromatin formation77. There is 

also emerging evidence that SETDB1 plays a role in mediating H3K9me3 at 

dynamically regulated gene loci, such as the ID2 promoter234,251,264,265,350,351. The 

developmental HoxA gene cluster is also regulated by H3K9me3 in embryonic stem 

cells and melanoma cells229,251. Despite the importance of the HoxA gene cluster and 

co-factor Meis1 in AML, we do not understand the role of H3K9me3 in regulating these 

genes in leukemic cells. In this study, we identified SETDB1 as a novel PAF1c 

interacting protein and explored the role of this interaction in modulating transcription of 

the known PAF1c pro-leukemic target genes Hoxa9 and Meis1. 
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3.2 Methods 

Plasmid cloning and mutagenesis 
The human SETDB1 isoform 1 expression construct was a gift from Dr. Jianyong 

Shou and pcDNA3.1-HA-SETDB1 isoform 3 was a gift from Dr. Jean-Francois Rual. 

HA-SETDB1 isoform 1 was cloned into MSCVpuro retroviral vector and confirmed by 

sequencing. Human FLAG-CDC73 and HA-CDC73 were cloned into MigR1 retroviral 

vector and confirmed by sequencing. MigR1-HA-CDC73_3YF, MigR1-FLAG-

CDC73_3YF, and MSCVpuro-HA-SETDB1_C1226A were generated using site-directed 

mutagenesis using the QuikChangeXL kit according to the manufacturer’s protocol 

(Agilent). CMV-MYC-FLAG-PAF1, CMV-MYC-FLAG-CTR9, and CMV-MYC-FLAG-

LEO1 were purchases from Origene.  

 
Cell Line Generation and Cell Culture Conditions 

Cell lines were generated as described in Chapter 2. After establishment of MLL-

AF9 cell lines on a Cdc73fl/flCreER or a wildtype background, AML cells were 

spinfected with MigR1(EV), MigR1-CDC73, or MigR1-CDC73_3YF; or MSCVpuro-HA-

SETDB1, MSCVpuro-HA-SETDB1_CD, or MSCVpuro(EV), respectively. Separately, 

M1 murine leukemia cells were spinfected with MigR1(EV), MigR1-CDC73, or MigR1-

CDC73_3YF. Cells transduced with MLL-AF9 were selected with 1mg/mL neomycin. 

Cells transduced with MigR1, CDC73, or CDC73_3YF were sorted for GFP positivity. 

Cells transduced with MSCVpuro, SETDB1, or SETDB1_CD were selected with 1ug/mL 

puromycin. All bone marrow-derived MLL-AF9 cells were cultured in IMDM 

supplemented with 15% Stem Cell FBS (Millipore), 1%pen/strep, and 10ng/mL IL-3 

(R&D). M1 murine AML cells were cultured in RPMI supplemented with 10% FBS and 

1% pen/strep. HEK293T cells are grown in DMEM supplemented with 10% FBS. 

 
Proliferation Assays and Luciferase Assays 

MLL-AF9-Cdc73fl/fl-CreERT2 cells expressing MigR1, MigR1-HA-CDC73, or 

MigR1-HA-CDC73_3YF were seeded at 5x104 cells in 2mL of normal growth media 

containing either 2.5nM 4-OHT or vehicle. Viable cell number was counted each day for 

4 days using Trypan Blue. On day 2, the cells were supplemented with fresh media, IL-
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3, and tamoxifen or vehicle. Luciferase assays were performed using the Dual 

Luciferase assay kit and a GloMax 20/20 Luminometer (Promega) as previously 

described 13. 

 

Colony Formation Assays 
MLL-AF9-Cdc73fl/fl-CreERT2 cells expressing MigR1, MigR1-HA-CDC73, or 

MigR1-HA-CDC73_3YF grown in normal growth media were pretreated with 2.5nM 4-

OHT or vehicle for 24 hours. They were then seeded at a density of 1x103 cells in 2mL 

semi-solid methylcellulose medium for mouse cells (STEMCELL M3234) containing 

10ng/mL IL-3. Colonies were counted and 2x images of the 5-phenyl tetrazolium 

chloride (INT) stained dishes were taken after 7 days of growth. 
 

Immunoprecipitations (IP) and antibodies 
For HEK293T transient transfection experiments, cells are transfected following 

the Fugene®6 (Promega). Cells were collected, lysed and IP’d with anti-HA high affinity 

beads (Roche) or M2 anti-FLAG magnetic beads (Sigma). Antibodies used for western 

blotting were anti-HA (Abcam9110), anti-FLAG (Sigma F7425), anti-SETDB1 

(Abcam107225, Bethyl A300-121), from Bethyl: anti-EHMT2 (A301-642), anti-PAF1 

(A300-172), anti-CTR9 (A301-395), anti-LEO1 (A300-174), or anti-WDR61 (A305-191). 

Antibodies used for western blotting and ChIP were anti-H3 (Abcam1791, western blot 

1:4000), anti-H3K9Me3(Abcam 8898), anti-rabbitIgG (Millipore 12-370). All antibodies 

were generated in rabbit and were used at a dilution of 1:1000 for western blot and 

4ug/reaction for ChIP unless otherwise noted. 

 

Affinity Purification-Mass Spectrometry 
1x109 cells M1 murine AML cells that stably express FLAG-CDC73 (n=2) or 

FLAG-CDC73_3YF (n=3) were harvested and lysed in 300mM KCl lysis buffer 

containing protease inhibitors and IGEPAL CA-630. Lysates were incubated with M2 

FLAG magnetic beads (Sigma). Beads were washed 6 times with 0.3M-1M KCl and 

eluted with 15ug 3X FLAG peptide. Proteins were denatured in 8M urea. Cysteines 

were reduced with 10 mM DTT and alkylated using 50 mM chloroacetamide.  Proteins 
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were digested with 500 ng of sequencing grade, modified trypsin (Promega). Reaction 

was terminated by acidification with trifluoroacetic acid (0.1% v/v) and peptides were 

purified using SepPak C18 cartridge following manufacturer’s protocol (Waters Corp) 

and dried.  Peptides were reconstituted in HPLC loading buffer and resolved on a nano-

capillary reverse phase column (Acclaim PepMap C18, 2 micron, 50 cm, 

ThermoScientific) using 0.1% formic acid/acetonitrile gradient at 300 nl/min (2-25% 

acetonitrile in 105 min; 25-40% acetonitrile in 20 min followed by a 90% acetonitrile 

wash for 10 min and a further 30 min re-equilibration with 2% acetonitrile) and directly 

introduced in to Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific, San Jose 

CA).  MS1 scans were acquired at 120K resolution (AGC target=2e5, max IT=50ms).  

Data-dependent high-energy C-trap dissociation MS/MS spectra were acquired for the 

most abundant ions for 3 seconds following each MS1 scan (15K resolution; AGC 

target=5e4; relative CE ~32%).  Proteins were identified by searching the data against 

Mus musculus (Swissprot, v2016-04-13) using SEQUEST-HT (Proteome Discoverer 

v2.1, Thermo Scientific).  Search parameters included MS1 mass tolerance of 10 ppm 

and fragment tolerance of 0.05 Da; two missed cleavages were allowed; 

carbamidimethylation of cysteine was considered fixed modification and oxidation of 

methionine, deamidation of asparagine and glutamine, phosphorylation of serine, 

threonine and tyrosine were considered as potential modifications.  False discovery rate 

(FDR) was determined using Percolator and proteins/peptides with an FDR of ≤1% 

were retained for further analysis. Raw data files were uploaded to PRIDE data 

repository. 

 

Scoring of protein-protein interactions 
Interactions with CDC73 and CDC73_3YF were scored using MS2 spectral 

counting (PSM counts). Using PSM counts as measures of protein abundance in each 

sample, SAINT probabilities for each interaction were calculated using the CRAPome 

online resource 352–354. Three FLAG-IP replicates of cells expressing only the empty 

vector MigR1 were used as controls. SAINT calculates the probability that an interaction 

is a true positive using a model where true-positive and false-positive interactions for 

each bait have distinct Poisson distributions. A value of 1 indicates a high probability of 
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a bona-fide interaction 352. SAINT parameters used were: average=best 2 replicates; 

virtual controls=10; iter(2000,4000); normalization=1. SAINT probabilities for all 

identified proteins are found in Supplemental Table 1. Proteins with a SAINT probability 

of >=0.7 for either or both bait proteins were kept as potential interacting proteins. We 

began our filtering with this relatively low threshold due to the low IP efficiency of 

CDC73_3YF relative to CDC73 and the possibility that our phenotypic effects were due 

to a more transient interaction. For the discovery of protein interactions involved in 

transcriptional repression that were potentially bound specifically to CDC73_3YF, all 

prey proteins with a SAINT probability >=0.7 were analyzed using GeneMANIA 355. The 

network of interactions derived using GeneMANIA was filtered to include only those 

proteins with a published physical protein-protein interaction, including those contained 

in the BioGRID interaction database 356. This protein-protein interaction network was 

then investigated to observe biologically interesting interaction subnetworks. When an 

interesting sub-network contained at least three proteins with SAINT probability > 0.7, 

that sub-network was used as a new search node for GeneMANIA. Protein-protein 

interaction networks shown in Fig. S2 were generated with GeneMANIA. Networks 

shown in Fig. 1 were adapted from GeneMANIA using Microsoft PowerPoint 2011.  

 

Quantitative PCR (qPCR) for gene expression 
RNA was harvested from MLL-AF9 + MSCVpuro control cells, MLL-AF9 + 

SETDB1, or MLL-AF9 + SETDB1_CD overexpression cells; or from MLL-AF9-

Cdc73fl/fl-CreERT2 MigR1, CDC73, or CDC73_3YF cells treated with 2.5-5nM tamoxifen 

or vehicle control. 1-5x106 cells were harvested and RNA was extracted using the 

Qiagen RNeasy mini plus kit. cDNA synthesis was performed using oligo-dT priming 

and the SuperScript III kit (Invitrogen). qPCR was performed using the fast SYBR-green 

mastermix protocol (Thermo Fisher). Primer sets used were: Meis1_F-

5’ATCAGAGCGCCAGGACCTAT3’; Meis1_R- 5’CTTCCCCCTGGCTTTCGATT3’; 

Hoxa9_F- 5’GAATGAGAGCGGCGGAGAC3’; Hoxa9_R- 

5’GAGCGAGCATGTAGCCAGTTG3’; β-Actin_F- 5’GCCCTGAGGCTCTTTTCCAG3’; β-

Actin_R- 5’TGCCACAGGATTCCATACCC3’. Statistical analysis was performed using 

two sample t-tests. 
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Chromatin immunoprecipitation-qPCR (ChIP-qPCR) 
ChIP experiments were performed as previously described in MLL-AF9 + 

MSCVpuro control cells, MLL-AF9 + SETDB1, or MLL-AF9 + SETDB1_CD cells; or in 

MLL-AF9-Cdc73fl/fl-CreERT2 MigR1, CDC73, or CDC73_3YF cells treated with 2.5-5nM 

tamoxifen or vehicle control357. Briefly, 3x107 AML cells were crosslinked with 1% 

formaldehyde, lysed with 1% SDS and sonicated on a Bioruptor Pico sonication device 

(Diagenode). Cleared lysates were immunoprecipitated with anti-Histone H3 or anti-

Histone H3 (trimethylated K9) using Protein G dynabeads. The IPs were washed with a 

low salt buffer, a high salt buffer, and a stringent lithium chloride wash buffer. Protein-

DNA complexes were eluted in 1% SDS, were decrosslinked in high salt and treated 

with RNaseA and ProteinaseK. DNA was purified with a Qiagen PCR purification kit. 

qPCR was performed using the fast SYBR-green mastermix protocol. Primer sets used 

were: Meis1_promoter_F-5’TCAAAGTGACAAAATGCAAGCA3’; Meis1_promoter_R- 

5’CCCCCCGCTGTCAGAAG3’; Hoxa9_promoter_F-5’TGACCCCTCAGCAAGACAAAC 

3’; Hoxa9_promoter_R- 5’TCCCGCTCCCCAGACTG 3’. ChIP-qPCR data were 

analyzed for statistical significance using ANOVA on fitted linear models. ANOVA 

models in SAS (PROC GLM) or R (lm) were used to compare treated and control 

groups. The model includes group (treated/control), cell lines and the interaction 

between group and cell lines. If the interaction is not significant, we report the p-value 

for the main effect of group. Significance is determined if p<0.05. All analyses were 

conducted using SAS (version 9.4, SAS Institute, Cary, NC) or R. All graphs were 

generated in R or Prism (version 7.0c). All technical replicate (3 per biological replicate) 

values were included for statistical analyses. 

 

3.3 Results 

Point mutations in CDC73 disrupt AML cell growth without affecting PAF1c 
complex integrity 

Recent studies have linked the PAF1c subunit Cdc73 with the WNT, Hedgehog 

and Notch signaling pathways through protein interactions with β-catenin, Gli1 and 

Notch intracellular domain 209,210. A tyrosine mutational analysis has identified a trio of 
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tyrosine residues on CDC73 that regulate its interaction with β-catenin. Mutation of 

these residues to phenylalanine stabilizes the CDC73 interaction with β-catenin and 

enhances WNT signaling in gastric carcinoma cells 208,209. A critical role for β-catenin in 

MLL rearranged leukemias prompted us to investigate this triple tyrosine to 

phenylalanine mutant, CDC73-Y290/293/315F (CDC73_3YF) (Fig. 3-1A) AML cells 358–

Figure 3-1: CDC73_3YF is a CDC73 mutant that has an enhanced interaction with β-catenin. A) 
Schematic of HA-CDC73 showing known domains of CDC73 and the location of the three tyrosine 
mutations introduced to make CDC73_3YF. B) HEK293T cells were transiently co-transfected with 
either HA-CDC73 or HA-CDC73_3YF and FLAG- β-catenin. FLAG-IPs were performed and 
immunoblotted with the indicated antibodies. C) Diagram representing the workflow for the generation 
of MLL-AF9 transformed CDC73fl/fl-CreERT2(MA9-Cdc73fl-CreERT2) CDC73 or CDC73_3YF re-
expression cells, as well as MigR1 control cells (EV Control). Mouse image from Taconic Biosciences, 
Inc.392 D) Genotyping of MLL-AF9-Cdc73fl/fl-CreERT2 cells treated with 4-OHT or vehicle control to 
confirm genetic excision of the Cdc73 allele. E) Western blot of whole cell lysates  from MLL-AF9 
transformed CDC73fl/fl-CreERT2 CDC73 or CDC73_3YF re-expression cells and immunoblotted with 
the indicated antibodies demonstrating expression of HA-CDC73 and HA-CDC73_3YF. F) Whole cell 
lysates from MLL-AF9-Cdc73fl/fl-CreERT2 cells treated with 4-OHT or vehicle control immunoblotted 
with anti-CDC73 antibody (left). Densitometry was performed on CDC73 protein bands and values 
were plotted relative to β-actin protein band signal (right). 
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360. As reported, CDC73_3YF displayed enhanced interaction with β-catenin compared 

to wild type CDC73 following transient transfection of HEK293T cells (Fig. 3-1B). To 

explore the biological impact of CDC73_3YF in AML cells, we transduced Cdc73fl/fl-

CreERT2 mouse bone marrow with MLL-AF9 (MA9) packaged retrovirus to generate 

stable AML cell lines that can be induced to genetically excise Cdc73 by treatment with 

4-hydroxytamoxifen (tamoxifen) (Fig. 3-1C, 3-1D) 321. Tamoxifen treatment results in 

almost complete loss of the CDC73 protein by 48 hours (Fig. 3-1E)14,224. We used 
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retroviral transduction to stably express CDC73 or CDC73_3YF in Cdc73fl/fl-CreERT2 

AML cells to test the rescue capacity of CDC73_3YF upon loss of Cdc73 (Fig. 3-1C). 

We confirmed expression of the tagged CDC73 and CDC73_3YF (Fig. 3-1E). Upon 

deletion of Cdc73, we confirmed that CDC73 protein was reduced to <5% of vehicle 

treated cells (Fig. 3-1F). Expression of wild type CDC73 or CDC73_3YF following 

tamoxifen treatment resulted in protein levels at about 50% that of endogenous Cdc73 

observed in vehicle treated cells expressing an empty vector control (MigR1) (3-1F). 

Proliferation assays demonstrate that, following excision of Cdc73, MLL-AF9 cells 

expressing an empty vector (MigR1) exhibit a significant reduction in cell proliferation, 

whereas re-expression of CDC73 fully rescued proliferation similar to that of cells 

treated with vehicle control (Fig. 3-2A). Surprisingly, despite stabilized interaction with β-

catenin, CDC73_3YF failed to rescue cellular proliferation similar to MigR1 control cells 

(Fig. 3-2A). We further explored the effects of re-expression of CDC73_3YF on the 

colony forming unit ability of AML cells. Following excision of Cdc73, MLL-AF9 cells 

expressing an empty vector showed a significant reduction in colony forming unit 

capacity. This phenotype was rescued by re-expression of CDC73 but not CDC73_3YF 

suggesting this mutant does not support leukemic colony forming unit potential (Fig. 3-

2B, C). To confirm that CDC73_3YF is capable of binding to the other components of 

the PAF1c, we transiently transfected HEK293T cells with HA-CDC73 or HA-

CDC73_3YF and performed immunoprecipiation (IP)-western blots. We observed co-

precipitation of CTR9, LEO1, PAF1, and WDR61 with both CDC73 and CDC73_3YF 

(Fig. 3-2D). We also confirmed PAF1c co-purification with CDC73_3YF in M1 mouse 

AML cells that stably express retroviral FLAG-CDC73_3YF (Fig. 3-2E). We further 

observed that HA-CDC73 and HA-CDC73_3YF are present in the chromatin fraction of 

transiently transfected HEK293T cells (Fig. 3-2F). These data indicate that the 

CDC73_3YF mutant assembles into the PAF1c and stabilizes interaction with β-catenin, 

but does not support proliferation and colony formation capacity of AML cells. 

 

CDC73_3YF stabilizes interaction with H3K9 methyltransferases SETDB1 and G9 
To determine whether the proliferation deficient phenotype associated with 

CDC73_3YF was due to differences in protein-protein interactions, we performed 
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Affinity Purification-Mass Spectrometry (AP-MS) to find the interactome of CDC73 and 
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Figure 3-3: CDC73 and CDC73_3YF have overlapping and distinct interactomes. A) Schematic 
demonstrating the approach for the AP-MS experiment to determine interaction partners of CDC73 
and CDC73_3YF in M1 mouse leukemia cells. B) FLAG-IPs of HEK293T cells transiently transfected 
with CDC73 or CDC73_3YF were eluted and run on a gel that was stained with Coomassie Blue. 
Arrows indicate the appropriate size for protein bands for the given PAF1c components. C) Interaction 
network output by GeneMANIA for proteins that co-purified with CDC73_3YF in the AP- MS 
experiment. The interactions were filtered to include only those described as physical interactions. 
Circles containing diagonal lines indicate proteins included in the search node. The blue rectangle 
indicates the sub-network of proteins that was found to be associated with transcriptional repression. 
The proteins contained in this rectangle were used in the subsequent targeted GeneMANIA search. 
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CDC73_3YF (Fig. 3-3A). First, HEK293T cells were transiently transfected with FLAG 

tagged CDC73_3YF or wildtype CDC73 and subjected to FLAG IP. Bait and co-

purifying proteins were observed by Coomassie Blue staining, and differential banding 

patterns suggested different interactomes for CDC73 and CDC73_3YF (Fig. 3-3B). To 

identify CDC73 interactions that are specifically relevant to AML, M1 murine AML cells 

were stably transduced with FLAG-CDC73 or FLAG-CDC73_3YF. Co-IPs from M1 cells 

were analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS). 

Using the Contaminant Repository for Affinity Purification online resource (CRAPome), 

protein-protein interactions were scored using Significance Analysis of Interactome 

(SAINT) probabilistic scoring (Fig. 3-3A). Interestingly, there was a distinct subset of 87 

potential CDC73_3YF interacting proteins that were not found in the interactome of 

CDC73. Analysis of this interactome using the GeneMANIA database to search for 

previously reported protein-protein interactions uncovered a group of interacting 

proteins in this group associated with transcriptional repression (Fig. 3-3C). We studied 

this group of proteins as a new search node in GeneMANIA and cross-referenced this 

Known CDC73 interactors (PAF1c components)

H3K9Methyltransferases and interactors

Protein CDC73 PSMs CDC73_3YF PSMs Control PSMs 
PAF1 438 477 23 
LEO1 205 253 6 
CTR9 1580 1053 30 
CDC73 2029 870 28 
WDR61 246 176 3 
RTF1 0 0 0 
WIZ 0 12 0 
PML 0 13 1 
ATF7IP 0 12 4 
EHMT1 0 9 0 
G9a 0 3 0 
SETDB1 0 2 0 

EHMT1
(GLP)

EHMT2
(G9a)

WIZ

PML

SETDB1

ATF7IP

DNMT1

SMEK

ZC3H4
MAD2L2

DAXX
TP53

SUV39H1

ZFYVE9

SP100

PRAM1MTOR
NCOA2

CDC73_3YF possible Interaction, Score < 0.7

No detectable interaction

Transcriptional repression node used for this search

CDC73_3YF Interaction, Score > 0.7; included in original search results

A B

Figure 3-4: CDC73_3YF binds to a network of proteins associated with transcriptional 
repression. A) Interaction network for proteins that co-purified with CDC73_3YF adapted from an 
output from GeneMANIA using the proteins marked by solid borders as a search node. Solid lines 
connecting proteins indicate a reported physical interaction between two proteins. Circle sizes are 
proportional to the degree of connectivity to the proteins in the search node. B) Total peptide spectrum 
matches (PSMs) for the PAF1c or proteins associated with H3K9 methyltransferase components 
generated from the AP-MS experiment for either CDC73 (sum of 2 replicates), CDC73_3YF (sum of 3 
replicates), or MigR1 control (sum of 3 replicates). 
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protein interaction network with our AP-MS data. This identified a group of epigenetic 

modifying proteins that catalyze histone H3 lysine 9 methylation (H3K9me) that 

preferentially associated with CDC73_3YF (Fig. 3-4A, B). These include: EHMT1 (GLP), 

EHMT2 (G9a) and SETDB1. In addition, several proteins associated with these H3K9 

methyltransferases co-purified with CDC73_3YF, including WIZ, which associates with 

GLP and G9a; PML, which associates with GLP and SETDB1; and ATF7IP which 

associates with SETDB1 236,265,361. (Fig. 3-4A, B) 

CDC73 has previously been reported to interact with H3K9 methyltransferases 

G9a and SUV39H1. Yang et al. demonstrated that CDC73 recruits these 

methyltransferases to the CCND1 promoter in HeLa cells and promotes H3K9 di- and 

tri- methylation (H3K9me2/3) 201. For this study, we focused on H3K9 

methyltransferases that were found specifically in our AP-MS data. Despite having the 

highest SAINT probability score, we were unable to validate an interaction between 

CDC73 and GLP, possibly related to antibody efficiency (data not shown). However, IP-

western blots demonstrated that HA-CDC73 and HA-CDC73_3YF both pulled down 

endogenous SETDB1 and G9a in transiently transfected HEK293T cells. Consistent 

with the AP-MS data, there was a stabilized interaction between CDC73_3YF and 

SETDB1 or G9a compared to the interactions with CDC73 (Fig. 3-5A, B). We confirmed 

this interaction between endogenous proteins in human AML THP-1 cells by subjecting 

cells to a CDC73-IP. Immunoblotting revealed an interaction between endogenous 

CDC73 and endogenous SETDB1 and G9a (Fig. 3-5C, D). We were also interested in 

whether this interaction was a PAF1c dependent interaction or an independent function 

of CDC73. We therefore performed IPs on FLAG-tagged PAF1c components CTR9 and 

LEO1 in transiently transfected HEK293T cells. We found that CDC73, CTR9, and to a 

lesser degree LEO1 co-immunoprecipitate endogenous SETDB1 and G9a suggesting 

the interactions occur with the PAF1c (Fig. 3-5E, F). Due to the novelty of the SETDB1 

interaction, we focused our studies on SETDB1. To further confirm the stabilized 

interaction with CDC73_3YF and to determine the SETDB1 domains that are involved in 

the CDC73 interaction, we utilized a natural isoform of SETDB1 (isoform 3; NCBI 

reference sequence NP_001157114.1) that lacks the methyl binding domain (MBD) and 
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the catalytic bifurcated SET domain (Fig. 3-5G) 362,363. HEK293T cells were transiently 

transfected with HA-hSETDB1_isoform 3 and FLAG-CDC73 or FLAG-CDC73_3YF. The 

cells were then subjected to HA-IPs and western blots. We observed that CDC73 

copurified with the shorter isoform of SETDB1, and CDC73_3YF demonstrated a 

stronger co-purification (Fig. 3-5H). Together, these data show that CDC73 interacts 

with at least SETDB1 and G9a and that CDC73_3YF stabilizes interaction with these 

H3K9 methyltransferases. 

Figure 3-5: The PAF1c interacts with H3K9methyltransferases SETDB1 and G9a. A-B) HEK293T 
cells were transiently transfected with HA tagged CDC73 or CDC73_3YF. HA- IPs were performed 
and co-purifying H3K9 methyltransferase proteins were detected by western blotting with indicated 
antibodies. Densitometry was performed on H3K9methyltransferase bands normalized to the HA-IP 
bait bands. Shown is the average of n=3 quantifications. C-D) CDC73-IPs were performed in THP-1 
human AML cells and co-purifying H3K9 methyltransferase proteins were detected by western blotting 
with indicated antibodies. Two biological replicates are shown. E-F) Flag tagged PAF1c components 
were transiently expressed in HEK293T cells. FLAG-IPs were performed and co-purifying proteins 
were detected with the indicated antibodies for H3K9 methyltransferases. Shown are representative 
blots of n=2-3 biological replicates. G) Schematic showing the domains that are conserved between 
SETDB1 isoform 1 (top) and SETDB1 isoform 3 (bottom) as reported by Jurkowska, et al. and 
annotated in UniProt Q15047. MBD = methyl CpG binding domain. H) HA-tagged isoform 3 of 
SETDB1 and FLAG-CDC73 or FLAG-CDC73_3YF were transiently transfected in HEK293T cells. HA-
IPs were performed and the CDC73 constructs were detected with a FLAG immunoblot. Shown is a 
representative blot of n=4 biological replicates. EV=Empty Vector control (MigR1). 
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SETDB1 modulates expression of PAF1c oncogenic target genes 
We hypothesized that the function of the PAF1c may be regulated, in part, via its 

interactions with SETDB1. To test this, we investigated transcription of PAF1c targets in 

AML cells expressing CDC73_3YF. We collected RNA from MLL-AF9-Cdc73fl/fl-

CreERT2 cells expressing either CDC73 or CDC73_3YF treated with tamoxifen or 

vehicle. Interestingly, while CDC73 completely rescued expression of known PAF1c 

targets Meis1 and Hoxa9 upon tamoxifen induced deletion of Cdc73, CDC73_3YF was 

incapable of rescuing expression (Fig. 3-6A, 4B). To more directly assess the effects of 

CDC73_3YF on transcription, we utilized a luciferase reporter construct. We used a 

Hoxa9 luciferase reporter, which is a known MLL-AF9 target gene that is dependent on 

the PAF1c for full expression 13. As expected, overexpressing CDC73 significantly 

augmented MLL-AF9 mediated transactivation of the Hoxa9 promoter in a dose 

dependent manner (Fig. 3-6C). Interestingly, overexpression of CDC73_3YF displayed 

no transcriptional synergy with MLL-AF9 in activating the Hoxa9-luciferase reporter (Fig. 

3-6C), consistent with Hoxa9 transcript levels observed in CDC73_3YF expressing 

MLL-AF9 cells (Fig. 3-6B). Due to the role of H3K9 methyltransferases in repressing 

gene transcription, we hypothesized that the transcriptional phenotype associated with 

Cdc73-/- cells re-expressing CDC73_3YF was due, in part, to H3K9 methyltransferase 

mediated transcriptional repression of known PAF1c target genes. Thus, we generated 

MLL-AF9 AML cell lines that overexpress human MSCV-HA-SETDB1 (referred to 

hereafter as SETDB1) and MLL-AF9-MSCV control cell lines by retroviral transduction 

and collected RNA for gene expression analysis. qPCR experiments demonstrate 

reduced expression of Meis1 and Hoxa9 in MLL-AF9 cells overexpressing SETDB1 

compared to control MLL-AF9 cells (Fig. 3-6D). To determine whether the 

methyltransferase activity of SETDB1 is necessary for the reduction of Meis1 and 

Hoxa9 expression, we generated MLL-AF9 AML cell lines expressing the catalytic dead 

SETDB1_C1226A (SETDB1_CD) (Fig. 3-5G) 364. qPCR demonstrates that 

overexpression of this mutant did not lead to a significant change in Meis1 or Hoxa9 

expression relative to MLL-AF9 control cells, suggesting an important role for the 

methyltransferase activity of SETDB1 in regulating the transcription of these genes (Fig. 
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3-6E). To determine if increased expression of SETDB1 correlates with the reduced 

expression of MEIS1 and HOXA9 in human AML samples, we mined RNA-seq data 

from 173 AML patients deposited in The Cancer Genome Atlas (TCGA) 1.  Consistent 
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Figure 3-6: SETDB1 and CDC73_3YF mediated repression of Hoxa9 and Meis1 transcription. A-
B) MLL-AF9 transformed CDC73fl/fl-CreERT2 CDC73 re-expression cells were plated in the presence 
or absence of 4-OHT and RNA was collected after 48 hours. qPCR was performed to detect 
expression of Meis1 or Hoxa9. 4-OHT treated group was normalized to vehicle treated group for each 
cell type. (biological replicates n=5, n=3, respectively).  C) HEK293T cells were transiently transfected 
with the indicated plasmids, Hoxa9 luciferase, and Firefly-Renilla. Luminescence readings were taken 
at 48 hours and plotted relative to empty vector control transfections. Statistics were calculated using 
2-way ANOVA with post-hoc Dunnett’s testing (biological replicates n=5). D-E) qPCR detection 
of Meis1 and Hoxa9 expression in MLL-AF9 control cells or MLL-AF9 co-transduced with (D) SETDB1 
or (E) SETDB1_CD overexpression vector. (biological replicates n=2-3). F) RNA-seq data, 
downloaded through the cBioPortal analytical tool, was deposited to the TCGA by Ley et al. Data was 
mined for expression correlation between SETDB1 and MEIS1 or HOXA9. Patient samples were 
divided into SETDB1 expression higher than the median and those that were lower, and the gene of 
interest expression was plotted on the y-axis. G) RNA-seq data, downloaded through the Gene 
Expression Omnibus (GEO), was deposited by Cuellar et al. Data was mined for HOXA9 expression in 
human THP1 cells expressing Cas9 and one of two small guide RNAs (sgRNA_SETDB1_6 and 
sgRNA_SETDB1_9) designed to interfere with SETDB1 expression. Control cells expressed Cas9 and 
a non-targeting sgRNA (sgRNA_NT). RNA was collected and sequenced at two different time points- 4 
days after introduction of the sgRNA and 7 days after introduction of the sgRNA (n=3). *p<0.05; EV = 
Empty Vector control (MigR1); OE = Overexpression. 
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with our data, patient samples with SETDB1 expression that was greater than the 

median expression of all samples in the set (n=86) had a significantly lower expression 

of MEIS1 (Fig. 3-6F). This trend held true for HOXA9 expression, though the difference 

was not significant (Fig. 3-6F). To explore the effect of SETDB1 loss of function on AML 

cells, we mined data from a recent study that utilized CRISPR-Cas9 targeting of 

SETDB1 in the human MLL-AF9 driven AML cell line, THP-1 267. Loss of SETDB1 

protein in THP-1 cells leads to increased HOXA9 expression at both four days and 

seven days after introduction of small guide RNAs (sgRNAs) targeting Cas9 to 

SETDB1, consistent with a repressive role for SETDB1 at the HOXA9 locus (Fig. 3-6G). 

These data suggest that SETDB1 overexpression leads to the reduced transcription of 

at least a subgroup of PAF1c target genes. 

 

Stabilization of the SETDB1-PAF1c interaction increases promoter H3K9me3 
We next asked how the SETDB1-PAF1c interaction alters the epigenetic 

regulation of PAF1c target genes. We asked whether CDC73_3YF or overexpression of 

SETDB1 affected H3K9 methylation at the Meis1 and Hoxa9 gene promoters. To 

explore this we employed Chromatin Immunoprecipitation (ChIP) assays followed by 

qPCR on MLL-AF9 Cdc73-/- cells re-expressing CDC73 or CDC73_3YF. Cells 

expressing a control empty vector or re-expressing CDC73 did not display a difference 

in H3K9me3 at the Meis1 promoter. However, cells re-expressing CDC73_3YF 

exhibited a significant increase in H3K9me3 at this locus (Fig. 3-7A). Similarly, MLL-AF9 

cells overexpressing SETDB1 showed an increase in H3K9me3 at the Meis1 promoter 

compared to MLL-AF9 control cells (Fig. 3-7C). We also performed ChIP-qPCR at the 

Hoxa9 promoter. Here, loss of Cdc73 in cells expressing the control vector exhibited 

little change in H3K9me3, whereas expression of CDC73_3YF again resulted in 

increased H3K9me3 (Fig. 3-7B). We also observed that AML cells overexpressing 

SETDB1 had increased H3K9me3 at the Hoxa9 promoter (Fig. 3-7C). To determine 

whether the increase in H3K9me3 requires SETDB1 catalytic activity, we performed 
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CHIP-qPCR in cells overexpressing SETDB1_CD. Surprisingly, these cells exhibited a 

significant loss of H3K9me3 at the Meis1 and Hoxa9 promoter regions (Fig. 3-7D). This 

suggests that SETDB1 is responsible for the increase in H3K9me3 at these promoters 

in cells overexpressing SETDB1 and that SETDB1 may be responsible for depositing a 

basal level of H3K9me3 at the Meis1 and Hoxa9 promoter genes in resting state MLL-

AF9 AML cells. We also tested for global changes in H3K9me3 using acid extracted 

histones. Western blots demonstrate that AML cells overexpressing SETDB1 have a 

marked increase in global H3K9me3 (Fig. 3-7E), however, neither loss of Cdc73 nor re-

expression of CDC73_3YF affected the global levels of H3K9me3 (Fig. 3-7F). These 

data may point to a more locus specific phenotype in CDC73_3YF cells compared to 

SETDB1 overexpressing AML cells. Together, this suggests the PAF1c may be 

Figure 3-7: SETDB1 or CDC73_3YF contribute to epigenetic remodeling at 
the Meis1 and Hoxa9 promoter. A-B) ChIP-qPCR experiments for H3K9me3 at the (A) Meis1 and 
(B) Hoxa9 promoter were performed in MLL-AF9 transformed CDC73fl/fl-CreERT2 CDC73 re-
expression cells treated with 4-OHT or vehicle control (biological replicates n=3). C-D) ChIP-qPCR 
experiments for H3K9me3 at the Meis1 and Hoxa9 promoters were performed in MLL-AF9 control 
cells with and without transduced overexpressed (C) SETDB1 or (D) SETDB1_CD (biological 
replicates n=2-3). E) Western blot of acid extracted histones from MLL-AF9 control cells or MLL-AF9 
cells co-transduced with SETDB1 overexpression vector. Western blots were blotted with the indicated 
antibody. The top panel is a whole cell lysate demonstrating overexpression of SETDB1. F) Western 
blots of acid extracted histones from MLL-AF9 transformed CDC73fl/fl-CreERT2 CDC73 re-expression 
cells. Western blots were blotted with the indicated antibody. *p<0.05; EV = Empty Vector control 
(MigR1); OE = Overexpression. 
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regulated by interactions with SETDB1 that modulate H3K9me3 at target genes critical 

for leukemogenesis (Fig. 3-8). 

 

3.4 Discussion/Conclusions 

Here we describe a proteomics approach to identify interactions with the PAF1c 

subunit CDC73 that may play a critical role in the regulation of PAF1c functions. We 

found that a CDC73_3YF mutant, which displays enhanced interaction with β-catenin, 

surprisingly does not support AML cell growth or colony formation capacity, in contrast 

to its function in gastric carcinoma 208. Using proteomic and bioinformatics analyses, we 

found that CDC73 interacts with G9a and SETDB1; an interaction that is stabilized by 

the CDC73_3YF mutant. These interactions with H3K9 methyltransferases elucidate a 

mechanism of PAF1c functional regulation that may explain recent reports of 

transcriptional repression associated with subunits of the PAF1c 171,172. Indeed, we 

demonstrate that interaction with SETDB1 modifies PAF1c mediated epigenetic and 

transcriptional regulation of leukemic target genes Hoxa9 and Meis1 in a manner 

dependent on SETDB1 catalytic activity (3-8).  

To determine the role of SETDB1 and the effects of enhancing the interaction 

between CDC73 and SETDB1 on modulating transcription of PAF1c target genes, we 

utilized two systems. First, we genetically deleted Cdc73 and re-expressed wild type 

CDC73 or CDC73_3YF in MLL-AF9 AML cells. In the second, we stably overexpressed 

Hoxa9/ Meis1 Hoxa9/ Meis1

?

Higher H3K9MT expression

Changing PTMs on PAF1c
RNAPII

PAF1c

RNAPII

PAF1c

SETDB1

H3K9me3H3K9 methyltransferasePAF1 complexRNA Polymerase II

Figure 3-8: Working model for the role of the PAF1c-SETDB1 interaction in transcriptional 
regulation of Hoxa9/Meis1. Increased expression of H3K9 methyltransferases, such as SETDB1, or 
stabilized interaction between H3K9 methyltransferases and the PAF1c, possibly mediated by post-
translational modifications (PTMs), leads to promoter H3K9 methylation and reduced expression 
of Hox genes.  
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SETDB1 in mouse MLL-AF9 AML cells. We note that both CDC73_3YF re-expression 

and overexpression of SETDB1 leads to the reduced transcription of Hoxa9 and Meis1, 

while the catalytically inactive SETDB1_CD does not affect transcription. This data is 

remarkably consistent with RNA-seq data mined from the TCGA, which shows that 

higher expression of SETDB1 correlates to significantly lower expression of MEIS1 and 

a trend downward in the expression of HOXA9 1. Importantly, we also observe that 

promoter H3K9me3 is increased at the Meis1 and Hoxa9 loci in cells re-expressing 

CDC73_3YF or overexpressing SETDB1, while the SETDB1_CD overexpression leads 

to a reduction in H3K9me3 (Fig. 3-7D). These data illustrate a novel interaction with 

SETDB1 that functionally modulates PAF1c activity through the SETDB1-mediated 

deposition of H3K9me3 and transcriptional repression.  

Previous reports have demonstrated that phosphorylation of CDC73 at key 

tyrosine residues can act as a molecular switch to regulate interactions with β-catenin. 

In solid tissue tumors de-phosphorylation (mimicked using CDC73_3YF) enhanced the 

oncogenic activation of WNT targets by CDC73 208,209. This prompted us to explore 

phosphorylation of CDC73 in AML cells. Interestingly, we were unable to observe 

phosphorylation on CDC73 in AML cells by IP western blots or mass spectrometry 

searches including phosphorylated peptides (data not shown). Therefore, it appears that 

phosphorylation of CDC73 may be dependent on cellular context. This raises interesting 

questions regarding the stabilization of the SETDB1 and G9a interaction with 

CDC73_3YF. Further studies will be necessary to determine what, if any, post-

translational modifications are affected by mutating these three tyrosine residues in 

AML cells and, mechanistically, how this affects interactions with G9a and SETDB1 

(Fig. 3-8). 

CDC73 has previously been reported to interact with SUV39H1 and G9a 

proteins, though the authors were unable to validate the interaction between 

endogenous G9a and CDC73 201. Here we confirmed the interaction with G9a and 

uncovered a novel interaction with SETDB1 while also confirming a transcriptional 

consequence of these interactions at leukemogenic target loci. Additionally, we found 

that the interactions with SETDB1 and G9a occur in the context of the PAF1c and are 

not specific to the CDC73 subunit. Our AP-MS data also provides evidence that CDC73 
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may interact with GLP, though further studies are needed to validate this interaction. 

Taken together, these data provide varying degrees of evidence that the PAF1c binds to 

four different H3K9 methyltransferases. Thus, it is possible that the PAF1c binds to a 

previously reported multimeric H3K9 methyltransferase complex consisting of G9a, 

GLP, Suv39H1 and SETDB1 234. Further investigation is necessary to determine 

whether the PAF1c interacts with this H3K9 methyltransferase complex or individual 

H3K9 methyltransferases at specific loci. Given that CDC73 differs in its post 

translational modifications in a cell context manner, it will also be necessary to evaluate 

the nature of the PAF1c interaction with H3K9 methyltransferases in different cell types 

(Fig. 3-8). We must further investigate how this interaction affects different cellular 

phenotypes such as cell cycle and differentiation. Indeed, global increases in 

heterochromatin formation and H3K9 methylation are observed following differentiation 

of both embryonic stem cells and hematopoietic stem and progenitor cells 276,365–367. 

The current study examined the role of SETBD1 in modulating the transcription of 

PAF1c target genes Hoxa9 and Meis1. Due to the important role of Hoxa9 and Meis1 in 

development, normal hematopoiesis, and hematologic malignancies like AML, the 

interaction between SETDB1 and the PAF1c has major implications on our 

understanding of the regulation of these genes and the potential to therapeutically target 

these epigenetically regulated pathways. 
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Chapter 4 SETDB1 mediated H3K9 methylation suppresses MLL-fusion target 
expression and leukemic transformation  

4.1 Introduction 

Epigenetic deregulation has emerged as an important contributor to oncogenesis 

and disease progression in a variety of malignancies, including leukemia69,133–135. Deep 

sequencing has revealed that genes encoding epigenetic modifying proteins are 

mutated in over 70% of AML patients1. H3K9me1/2/3 marks large regions of condensed 

transcriptionally inactive chromatin, such as pericentric heterochromatin. H3K9me2/3 

also plays a functional role in the dynamic repression of genes in euchromatic regions 

of the genome75,102,230,233–236. Two families of proteins are associated with deposition of 

H3K9 methylation: the SUV39 family and the PRDM family. The SUV39 family of H3K9 

methyltransferases consists of SUV39H1/2237–239, EHMT1/2240–243, and SETDB1/2244,245. 

Our lab and others have previously demonstrated that members of the SUV39 family of 

H3K9 methyltransferases bind to the Polymerase Associated Factor complex 

(PAF1c)201,368. SETDB1, G9a (EHMT2), and GLP (EHMT1), were identified in a 

proteomics study exploring the interactome of the PAF1c in AML368,201,368. The PAF1c is 

an epigenetic regulator complex that physically associates with RNA polymerase II 

(RNAPII) and both positively and negatively regulates gene transcription15,16,99,170–

173,177,185,188,189,191. In AML, the PAF1c is critical for the regulation of a pro-leukemic 

HOXA gene program in AML cells through the recruitment of MLL and MLL-fusion 

proteins to the Hoxa locus via direct physical interactions 12–14,224. HoxA9 and its co-

factor Meis1 are upregulated in about 50% of AML and are associated with a poor 

patient prognosis2. Given our recent data linking H3K9 methyltransferases with Hoxa9 

and Meis1 repression along with altered H3K9me3 in AML patients compared to CD34+ 

cells369, it is important to understand the epigenetic and biological impact of H3K9 

methyltransferases on AML.   
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SETDB1 is a H3K9 mono/di/tri-methyltransferase involved in heterochromatin 

regulation236 and euchromatic gene silencing364. SETDB1 has been shown to bind to 

gene loci associated with development in mouse embryonic stem (ES) cells, such as 

the Hoxd cluster of genes229. SETDB1 has been implicated as an oncogene in 

melanoma, breast cancer, liver cancer, and lung cancer249–253. Importantly, Ceol, et al. 

reported amplification of SETDB1 in melanoma results in aberrant binding and 

regulation of the HOXA locus251. In contrast to the oncogenic roles for SETDB1 

described above, Avgustinova and colleagues report that depletion of the H3K9 

methyltransferase G9a in squamous tumors leads to a delayed, but more aggressive 

phenotype due to expanded cancer progenitor pools with increased genomic 

instability320. In the hematopoietic system, the methyltransferase activity of G9a is 

required for leukemogenesis due to a physical interaction with Hoxa9. Importantly, loss 

of G9a has no effect on hematopoietic stem cells264,269. Setdb1, on the other hand, is 

required for both HSPC maintenance and leukemic stem cells264. Further, Cuellar and 

colleagues show that SETDB1 mediated silencing of endogenous retroviral elements is 

required for the growth of AML cell lines267. Together, these studies suggest that 

therapeutic targeting of SETDB1 may benefit AML patients. However, we recently 

demonstrated that SETDB1 negatively regulates the expression of the pro-leukemic 

HoxA9 and Meis1 genes in MLL-AF9 transformed AML cells through association with 

the PAF1c, which localizes to HoxA and Meis1 loci. The PAF1c-SETDB1 interaction 

mediates promoter H3K9me3 and repression of HoxA9 and Meis1 expression368. 

Further, SETDB1 expression is inversely correlated with HOXA9 and MEIS1 expression 

in AML patient samples368. These data imply a more complex role for H3K9 methylation 

in AML similar to skin tumors whereby H3K9 methyltransferases display both oncogenic 

and suppressive roles251,320. Thus, further investigation into the role of H3K9 

methyltransferases in AML is required. 

Here we show that AML patients with higher expression of SETDB1 display a 

better prognosis, consistent with repression of HOXA9 and MEIS1 expression. SETDB1 

overexpression induces cellular differentiation and delays disease onset in a mouse 

model of AML, recapitulating AML patient survival. We also investigated the effect of 

inhibiting H3K9 methyltransferases in AML cells and HSPCs, demonstrating that 
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inhibition of H3K9 methylation in HSPCs leads to retention of self-renewal capacity in 

HSPCs and more efficient transformation by the MLL-AF9 fusion protein. Finally, we 

show that SETDB1 regulates gene expression by inducing changes in the epigenetic 

landscape and chromatin accessibility at gene targets critical to leukemogenesis. 

 

4.2 Methods 

Patient sample data 
Data for gene expression in patient samples relative to normal hematopoietic 

cells were mined from the the BloodPool group of datasets on BloodSpot database370, 

where AML patient samples’ transcriptomic profiles are assigned to a closest normal 

hematopoietic counterpart and are then compared to obtain a fold-change relative to 

normal hematopoietic cells371. AML patient gene expression and survival data were 

mined from The Cancer Genome Atlas (TCGA)1 using cBioPortal372,373. Survival data 

was analyzed using survival and survminer packages in R 3.5.1. 

 

Cell line generation and proliferation assays 
Cell lines were generated from wild type C57Bl/6 (Taconic Farms) mouse bone 

marrow or from SETDB1fl/fl374 mouse bone marrow as described in Chapter 2. Cells 

were spinfected with the indicated combination of MSCVneo-FLAG-MLL-AF9 (MA9), 

MSCVneo-FLAG-E2A-HLF, MSCVhygro-FLAG-EHMT2 (Kai Ge lab; Addgene plasmid 

#41721)375, MSCVpuro-HA-SETDB1 or empty vector (EV) controls. Cells were selected 

with 1mg/mL G418 (Invitrogen) and 1ug/mL puromycin (Invitrogen) or 200ug/mL 

hygromycin (Invitrogen). All cells were cultured in IMDM supplemented with 15% Stem 

Cell FBS (Millipore), 1%pen/strep (Invitrogen), 10ng/mL IL-3 and 100ng/mL SCF (R&D). 

Statistical analysis was generalized linear modeling followed by ANOVA. 

  

Leukemia colony formation assay  
Cells were retrovirally transduced as described above. They were then seeded at 

a density of 1x103 cells in 2mL semi-solid methylcellulose medium for mouse cells 

(STEMCELL M3234) containing selection antibiotics (1mg/mL G418 and 1ug/mL 

puromycin or 100ug/mL hygromycin), 10 ng/mL IL-3, GM-CSF, and IL-6 and 100ng/uL 
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SCF (R&D). Colonies were counted, pooled, and replated in the same way for two 

additional rounds of colony formation and counting. 1x images of the 5-phenyl 

tetrazolium chloride (INT) stained dishes were taken after round 2. Statistical analysis 

was generalized linear modeling followed by ANOVA. 

 

HSPC colony formation 
Mouse bone marrow was harvested and lineage depletion was performed using 

the Hematopoeitic Progenitor Isolation Kit (STEMCELL) or CD34+ cells were isolate 

from mobilized blood. One group of mouse cells were transduced with shRNA against 

SETDB1 as previously described. These cells were pretreated for 4 days with 

puromycin before being plated in colony formation assays. The other group of mouse 

cells and the human cells were treated with the indicated dose of UNC0638 or DMSO 

vehicle control in liquid culture containing cytokines: 100ng/mL SCF and 10ng/mL IL-3. 

Cells were incubated for two days, retreated and given fresh media and cytokines, and 

incubated for another two days. For normal HSPC colony formation assays, 10,000 

cells were plated in semi-solid methylcellulose in the presence of cytokines: 100ng/mL 

SCF and 10ng/mL IL-3, IL-6, and GM-CSF. Colonies were allowed to form for 10 days 

(mouse) or 14 days (human) and were then counted. Cells were pooled from colonies 

and 20,000 cells were replated in methylcellulose. Colonies were counted again after 10 

days (mouse) or 14 days (human). Each mouse harvest was considered a biological 

replicate: n=3 for shRNA, n=4 for UNC0638. Each patient sample was considered a 

biological replicate for CD34+ cell assays: n=2. Statistical analysis was generalized 

linear modeling followed by ANOVA. 

 

In vivo mouse modelling 
Primary MLL-AF9 mouse leukemia cells were retrovirally transduced with 

MSCVpuro-HA-SETDB1 or EV. Cells were selected in 2ug/mL puromycin for 4 days 

and 100,000 cells were injected via tail vein into sublethally irradiated (650 rads) 

C57Bl/6 mice. Mice were monitored for survival and moribund mice were euthanized 

and bone marrow, spleen, and liver were harvested. AML was confirmed by 

splenomegaly and histology. 
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Quantitative PCR (qPCR) for gene expression 
RNA was harvested from the indicated cells using the Qiagen RNeasy mini plus 

kit. cDNA synthesis was performed using random hexamer priming and the SuperScript 

III kit (Invitrogen). qPCR was performed using the fast SYBR-green mastermix protocol 

(Thermo Fisher). Statistical analysis was two sample t-tests. 

 

RNA-seq 
RNA was harvested from MLL-AF9+EV control cells or MLL-AF9+SETDB1 cells 

(n=3 each) using the Qiagen RNeasy mini plus kit. Quality control, library preparation 

using TruSeq stranded mRNA library prep kit (Illumina), and single-end 50bp 

sequencing on the HiSeq4000 (Illumina) were performed by the University of Michigan 

sequencing core. Separately, raw count files for THP-1 cells subjected to Crispr-Cas9 

KD of SETDB1 were downloaded from GEO (GSE103409)267,322. RNA-seq analysis was 

performed as described in Chapter 2 and Table 2, using GRCm38 genome assembly 

for mouse samples and GRCh38 for human samples. 

 

ChIP-seq 
ChIP experiments were performed as previously described357 with slight 

modifications. Briefly, 3x107 MA9 + EV control cells or MA9 + SETDB1 overexpression 

cells (n=2 each) were crosslinked with 1% formaldehyde, quenched with 125mM 

Glycine, lysed with 1% SDS and sonicated on a Bioruptor Pico sonicator (Diagenode). 

Cleared lysates were immunoprecipitated with 4ug antibodies using Protein G 

dynabeads (Invitrogen). All antibodies were validated for specificity using Histone 

peptide arrays from EpiCypher (Antibodies used: anti-H3K9me3: Active Motif; anti-

H3K9ac: EpiCypher; anti-H3K79me2: Abcam). The IPs were washed with a low salt 

buffer, a high salt buffer, and a lithium chloride wash buffer. Protein-DNA complexes 

were eluted in 1% SDS, were decrosslinked in high salt and treated with RNaseA and 

ProteinaseK (Invitrogen). DNA was purified with a Qiagen PCR purification kit. Libraries 

were prepared using the iDeal Library Preparation kit (Diagenode) according 

manufactuerer’s recommendations. Library amplification was optimized by monitoring 



 85 

amplification cycles using SYBR I fluorophore and qPCR. Paired-end 38bp sequencing 

was performed on the NextSeq500 (Illumina) by the University of Michigan Sequencing 

Core. 

ChIP-seq analysis was performed up to alignment as described in Chapter 2 and 

Table 2, using GRCm38 genome. For the following analyses, any parameters used that 

are not defaults are also listed in Table 2. After reads were aligned, peaks were called 

using MACS2. Peak analysis in two separate ways. First, consensus peaks were 

determined for MA9+EV or MA9+SETDB1. Only peaks that were called in both 

replicates for a given sample were kept for this analysis. Next, overlap analysis was 

performed using ChIPpeakAnno to determine peaks that are found in both samples, or 

in only one sample. Finally, these peaks were annotated to promoter regions (-5000bp, 

+2000bp from transcription start site) for H3K9ac ChIP or for any peak overlapping a 

gene locus for H3K9me3 or H3K79me2 ChIP. The second analysis used DiffBind to 

analyze differential signals for the different experiments. DiffBind keeps any peaks that 

are found in at least two samples in the entire experiment as consensus peaks, and 

then re-counts the reads for all samples at those peak regions. After obtaining 

differential binding results, the peaks were annotated as described above. Overlap 

analyses were performed with this differential binding analysis to determine peaks that 

were significantly changed in the different ChIP conditions, as well as RNA-seq and 

ATAC-seq. Signal tracks were generated using DeepTools and normalizing by reads 

per genomic content. 

 

Assay for Transposase-Accessible Chromatin (ATAC-seq) 
ATAC-seq was performed as described in Buenrostro, et al.376 Briefly, MA9+EV 

or MA9+SETDB1 established cell lines (n=2 each) were treated with 200units/mL 

DNAse I. Cells were then slow frozen. Nuclei were isolated, treated with transposase, 

and purified by Active Motif. Active Motif prepared libraries and performed 42bp paired-

end sequencing. Fastq files were obtained from Active Motif. Analysis was performed 

the same as ChIP-seq with two modifications. First, MACS2 parameters were amended 

to center reads on the site of transposition (Table 2). Second, signal tracks were 
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generated from MACS2 (using deepTools to convert pileup files to bigwig) in order to 

preserve this read shifting. 

 
4.3 Results 

SETDB1 expression is correlated with AML patient prognosis 
Given our data linking H3K9 methyltransferases with HOXA9 and MEIS1 

expression, we investigated their expression in AML patient sample data. Microarray 

data demonstrates that SETDB1, SUV39H1, and SUV39H2 exhibit lower expression in 

AML patient samples when compared with normal hematopoietic cells, with median 

Figure 4-1: SETDB1 expression is low in AML and is correlated with AML patient prognosis. A) 
BloodPool data mined from Bloodspot shows AML patient gene expression relative to the nearest 
normal hematopoietic counterpart for the indicated genes encoding H3K9 methyltransferases. B) 
BloodPool data divided by karyotype for SETDB1 in AML samples occurs regardless of genetics 
driving the disease. C) TCGA patient sample data is divided by “high” expression (above median) and 
“low” expression (below median) for the indicated gene encoding an H3K9 methyltransferase. Boxplot 
shows overall survival for each stratified gene. D) Kaplan Meier curve showing overall survival of AML 
patients stratified by SETDB1 expression above (“high”) or below (“low) median. E) Multivariate 
analysis using Cox Hazard Proportion analysis to assess the hazard ratio associated with changing 
levels of SETDB1 expression. SETDB1 expression is expressed in log2(RSEM), so the hazard ratio is 
associated with a 2-fold change in SETDB1 expression. Age did not satisfy the model and was 
stratified by patients < 60 years old and patients > 60 years old. Statistics: * p/padj < 0.05; one-sample  
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expression levels that are 66%, 56%, and 41% relative to their nearest normal 

hematopoietic counterparts, respectively (Figure 4-1A)370,371. The downregulation of 

these genes, specifically SETDB1, in AML samples was consistent regardless of AML 

karyotype (Figure 4-1B)370,371. We next tested whether H3K9 methyltransferase gene 

expression significantly correlated with patient survival. Dividing patient gene 

expression data based on median expression, we found that SETDB1 is the only gene 

whose expression significantly correlated with patient survival (Figure 4-1C). Median 

Figure 4-2: Overexpression of SETDB1 delays AML growth. A) qPCR using primers for mSetdb1 
to determine expression levels in primary MLL-AF9 (n=3) or CALM-AF10 (n=2) AML cells compared to 
lin-Ckit+ mouse bone marrow HSPCs (n=2 pools of 5 mice each). B/E) Mouse lin- bone marrow was 
retrovirally transduced with the indicated plasmid vectors and plated in methylcellulose. Colonies were 
counted after 7 days and re-plated, for a total of three rounds. Shown is one representative 
experiment of n=4 (B) or n=2 (E). C/F) Representative INT staining of colony assay plates for MA9 
cells with or without SETDB1 overexpression. D) qPCR using primers for hMLL to determine 
expression levels of MLL-AF9 in MA9+EV or MA9+SETDB1 cells (n=2). G/H) Lin- bone marrow cells 
retrovirally transduced with MA9 in the presence or absence of SETDB1 overexpression, selected for 
2 weeks, then proliferation was monitored by viable cell count daily. Shown is one representative 
experiment of n=4 (G) or n=2 (H). EV=empty vector control. * p < 0.05. 
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survival for patients with SETDB1 expression above the median was 26.3 months and 

9.5 months in patients with SETDB1 expression below the median (Figure 4-1D)1. 

Univariate and multivariate analyses reveal that higher expression of SETDB1 is 

associated with a higher overall survival rate with a p < 0.003 and a lower expected 

hazard ratio of 0.29 per 2-fold change of SETDB1 expression (Figure 4-1D, 4-1E)1.  

 

SETDB1 or G9A expression reduces AML cell growth and colony forming 
capacity 

We next explored the biological effects of SETDB1 expression on cellular 

transformation and the growth of AML cells. First, we explored whether there is a 

difference in Setdb1 expression in mouse AML relative to normal HSPCs by isolating 

lineage negative (lin-) cKit+ cells from mouse bone marrow. qPCR demonstrates that 

Setdb1 expression is significantly reduced in primary MLL-AF9 and CALM-AF10 AML 

cells compared to normal HSPCs, consistent with the patient sample data (Figure 4-2A). 

We next performed colony replating assays where lin-- mouse bone marrow cells were 

Figure 4-3: Overexpression of SETDB1 induces AML differentiation. A) qPCR using primers for 
HA-SETDB1to determine expression of exogenous SETDB1 in MA9 cells with or without SETDB1 
overexpression 2 and 4 weeks after selection media is withdrawn. B) Proliferation assay of MA9 cells 
4 weeks after selection media is withdrawn. C) Cytospin and Hema3 staining of MA9 cells with or 
without SETDB1 overexpression. D). qPCR to measure gene expression of genes associated with 
differentiation in MA9 cells in the presence or absence of SETDB1 overexpression (n=3). * p < 0.05. 
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retrovirally co-transduced with MLL-AF9 fusion (MA9) oncogene with and without 

SETDB1 and plated in semi-solid methylcellulose. Overexpression of SETDB1 

significantly reduced MLL-AF9 mediated colony formation (Figure 4-2B, C). 

Overexpression of SETDB1 did not change expression of the MLL-AF9 retrovirus as 

determined by qPCR (Figure 4-2D)267. Colony formation driven by a separate leukemic 

fusion protein, E2A-HLF (EHF), was also reduced in the presence of SETDB1, 

suggesting a general effect on AML transformation (Figure 4-2E, F). Ex vivo 

proliferation assays demonstrate that overexpression of SETDB1 in either MLL-AF9 or 

E2A-HLF transformed AML cells leads to a significant reduction in cellular proliferation 

(Figure 4-2G,H). Interestingly, we observe a strong selective pressure to reduce 

exogenous SETDB1 expression in cultured MLL-AF9+SETDB1 cells (Figure 4-3A). This 

results in a rescue of MLL-AF9 cellular proliferation, consistent with a selective pressure 

against high SETDB1 expression (Figure 4-3B). Cytospins revealed that MLL-AF9 cells 

that overexpress SETDB1 undergo morphological changes consistent with 

differentiation (Figure 4-3C). Genes associated with hematopoietic differentiation, 
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Figure 4-4: Overexpression of G9a delays AML growth. A) Mouse lin- bone marrow was retrovirally 
transduced with the indicated plasmid vectors and plated in methylcellulose. Colonies were counted 
after 7 days and re-plated, for a total of three rounds. Shown is one representative experiment of n=3. 
B) Representative INT staining of colony assays from A. C) Proliferation assay of MA9 cells with or 
without G9a overexpression. D) Cytospin and Hema3 staining of MA9 cells with or without G9a 
overexpression. 
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including Id2, Cd80, Nab2, and Itgam, have increased expression upon overexpression 

of SETDB1 (Figure 4-3D). We tested another H3K9 methyltransferase and found that 

G9a (EHMT2) overexpression also reduces colony formation and cellular proliferation of 

MLL-AF9 cells (Figure 4-4A-C) and induces morphological changes consistent with 

differentiation (Figure 4-4D). These data demonstrate that expression of H3K9 

methyltransferases reduces AML cell proliferation and colony forming potential and 

induces hematopoietic differentiation. 

 

SETDB1 expression delays MLL-AF9 mediated AML 
To examine the effects of SETDB1 in vivo, we transplanted primary mouse MLL-

AF9 AML cells retrovirally transduced with or without SETDB1 into sublethally irradiated 

syngeneic recipient mice and monitored survival. Consistent with AML patient data, 

overexpression of SETDB1 significantly delays MLL-AF9 mediated leukemogenesis in 

Figure 4-5: SETDB1 overexpression delays AML cell growth in vivo. A) Kaplan Meier survival 
curve of mice that were transplanted with primary MLL-AF9 cells that were transduced to overexpress 
SETDB1 or empty vector (EV) control. B) Spleen weights of moribund or censored mice. C) 
Expression of exogenous SETDB1 in moribund mouse bone marrow was determined using qPCR and 
primers specific for the HA-SETDB1 construct. D) MLL-AF9 expression was confirmed using primers 
for human MLL 
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vivo (Figure 4-5A). All moribund mice from both the control MLL-AF9 group and MLL-

AF9+SETDB1 group exhibited splenomegaly (Figure 4-5B). We confirmed similar MLL-

AF9 expression levels in MLL-AF9 and MLL-AF9+SETDB1 leukemic cells (Figure 4-

5D). We measured expression of exogenous SETDB1 in MLL-AF9 leukemic cells 

before injection and after bone marrow harvest from moribund mice and observed a 

decrease in exogenous SETDB1 expression in 7/9 mice (Figure 4-5C). These data 

demonstrate that SETDB1 expression suppresses MLL-AF9 mediated leukemic 

progression in vivo. 

 

H3K9 methylation impairs HSPC colony formation 
We next examined how inhibition of SETDB1 affects AML transformation and 

progression. In contrast with our observation that increased expression of SETDB1 

impairs AML, Koide et al. reported that Setdb1 is required for hematopoietic stem cells 

and MLL-AF9 driven leukemogenesis264. Using inducible CreER-mediated knock out of 

Setdb1, we confirmed that Setdb1 is required for MLL-AF9 cell growth and 

demonstrated that Setdb1 is also required for the growth of E2A-HLF transformed 

leukemic cells (Figure 4-6A, B). Taken together, these observations suggest that there 

may be a window of SETDB1 expression that allows for AML initiation or progression. 

Previous studies that have shown that Setdb1 is required for AML growth have 

proposed chemical inhibition of H3K9 methyltransferases for the treatment of AML. 

However, our data suggests that inhibition might have the unintended effects of de-

repressing genes associated with driving self-renewal and AML initiation and 

progression, such as HOXA9. To test this hypothesis, we sought to treat both AML cells 

and normal HSPCs with a small molecule inhibitor targeting H3K9 methyltransferases. 

Without a selective SETDB1 small molecule inhibitor, we explored the utility of inhibiting 

H3K9 methylation in AML using UNC0638, a selective inhibitor for G9a. Treatment of 

AML cells with UNC0638 leads to a reduction in both H3K9me2 and H3K9me3 (Figure 

4-6C, D)365,377. Consistent with previous studies, treatment with UNC0638 results in 
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reduced cellular proliferation of MLL-AF9 cells (Figure 4-6E)269. Given our data 

demonstrating self-renewal genes like Hoxa9 and Meis1 are repressed by H3K9 

methylation368, we tested the effect of UNC0638 on normal HSPCs self-renewal 

capacity. Previous reports have demonstrated that mouse Lin-Ska1+Ckit+ cells (LSKs) 

are preserved in culture following treatment with UNC0638365. To explore this further, 

Lin- cells were treated twice in liquid culture with increasing doses of UNC0638 for five 

days prior to plating in semi-solid methylcellulose in the presence of SCF and IL3. 

Interestingly, treatment with UNC0638 significantly increased colony formation capacity 

of lin- cells in a dose-dependent manner (Figure 4-7A, B). Further, human CD34+ cells 

isolated from mobilized peripheral blood and treated with increasing doses of UNC0638 

demonstrate increased colony formation re-plating capacity (Figure 4-7C). This is 

consistent with reports that CD34+ cells that are treated with UNC0638 retain a higher 

percentage of CD34+ cells366. To address the possibility of off target effects, we 

performed shRNA mediated knock down experiments targeting Setdb1. Our data 

demonstrate a trend in higher capacity for colony formation following knock down of 

Setdb1 relative to non-silencing controls (Figure 4-7D). Thus, chemical or genetic 
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Proliferation assays of MA9 or EHF cells following treatment with 5nM 4-OHT to induce genetic 
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inhibition of H3K9 methyltransferases preserves self-renewal capacity of bone marrow 

cells. Further, the level of H3K9 methyltransferase activity appears to be essential to its 

biological function in AML and normal HSPCs. Complete deletion of Setdb1/Ehmt2 

leads to AML cell death, whereas partial inhibition of H3K9 methyltransferases can 

activate self-renewal genes. Additionally, overexpression of H3K9 methyltransferases 

leads to impaired AML cell growth by inducing differentiation.  

 

H3K9 methylation suppresses leukemic transformation of bone marrow cells 
Because inhibition of H3K9 methyltransferases leads to an increased self-

renewal capacity of HSPCs, we next asked whether UNC0638 alters MLL-AF9 

mediated bone marrow transformation. First, we found that UNC0638 treatment of lin- 
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capacity. A) Lin- mouse bone marrow was isolated and treated in culture for 4 days with the indicated 
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B) INT stained representative colonies from A. C) Isolated human CD34+ cells were treated for 4 days 
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days, n=2. D) Lin- mouse bone marrow was isolated and spinfected with shRNA targeting Setdb1. 
Cells were pre-selected with puromycin for 7 days, then plated in methylcellulose. Colonies were 
counted after 7 days. A/C/D: Colony numbers are shown relative to the vehicle/ non-silencing control 
for each replicate. 
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bone marrow cells preserves more primitive Ckit+ and Cd11b- populations (Figure 4-8A-

D). Lin- cells also display increased Hoxa9 expression in response to UNC0638 
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Figure 4-8: H3K9 methyltransferase inhibitor UNC0638 preserves pool of cells amenable to 
MLL-AF9 transformation. A-G) Lin- mouse bone marrow was treated with the indicated doses of 
UNC0638 for 4 days. A-D)Cells were stained with anti-Ckit conjugated to APC fluorophore (A/B) or 
anti-Cd11b conjugated to PE fluorophore (C/D). Flow cytometry was performed to analyze Ckit+ or 
Cd11b- populations. A/C are representative flow plots for 0.75µM UNC0638 treatments. B/D show the 
biological replicates for Ckit+ populations (B) or Cd11b- populations (D) of treated cells relative to 
vehicle (n=3). E) RNA was harvested after 4 days of treatment with UNC0638 and qPCR was used to 
determine changes in Hoxa9 expression. F) After treatment with UNC0638, cells were spinfected with 
MigR1-MLL-AF9, which also expresses a GFP reporter. Cells were monitored for GFP expression by 
flow cytometry until 100% GFP was achieved. G) Representative flow plots from different time points 
during the GFP monitoring experiment. For F/G: shown is 1 representative experiment of n=4. 
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treatment (Figure 4-8E). Lin-kit+ and related primitive hematopoietic cell populations are 

more amenable to transformation than other more differentiated hematopoietic cellular 

subtypes378,379. We therefore hypothesized that UNC0638 treatment of bone marrow 

may result in greater transformation efficiency by the MLL-AF9 fusion protein. To 

explore this, we pretreated lin- bone marrow cells with UNC0638 for four days followed 

by retroviral transduction with MigR1-MLL-AF9 containing a GFP reporter, which we 

monitored by flow cytometry. We observed a more rapid expansion of GFP+ MLL-AF9 

cells following treatment with UNC0638 compared to vehicle (Figure 4-8F). The 

percentage of GFP cells increased 1.4-fold to 1.7-fold for UNC0638 treated cells 

compared to vehicle before the population achieved 100% GFP+ MLL-AF9 cells (Figure 

4-8F, G). One of four replicates demonstrated a more rapid expansion of vehicle treated 

cells, however, GFP+ cells were increased 2-fold in vehicle treated cells at day 1 

suggesting this is attributable to differences in transduction rates. Our combined data 

suggests that several H3K9 methyltransferases can suppress leukemic transformation. 

Taken together with data from Koide, et al.264 and Lehnertz, et al.269 that shows that 

these H3K9 methyltransferase genes are required for AML inititaiton and progression, 

this points to a narrow window of H3K9 methylation that is optimal for leukemic 

transformation and aggressive cell growth. 

 

SETDB1 regulates oncogenic gene programs in AML 
To explore the gene programs regulated by SETDB1 in AML, we performed 

RNA-sequencing experiments on MLL-AF9 cells overexpressing SETDB1. These 

studies revealed changes in a subset of the transcriptome, with 2285 genes being 

upregulated and 1771 genes being downregulated by SETDB1 overexpression with a 

fold-change of 1.5 or more and an FDR of < 0.05 (Figure 4-9A). Notably, many genes 

found in the HoxA cluster were significantly downregulated, including Hoxa3, Hoxa5, 

Hoxa6, Hoxa9, and the Hoxa9 cofactor Meis1; while only one of the Hoxa cluster of 

genes was upregulated, the long non-coding RNA Hoxa11os (Figure 4-9A, highlighted 

genes). In fact, gene programs that are upregulated by forced expression of Hoxa9 and 

Meis1 in mouse cells are shown to be significantly downregulated by SETDB1 

overexpression using gene set analysis323,380,381 (Figure 4-9B). We also saw a 
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significant upregulation of genes that exhibit increased expression in mature blood cells 

compared to HSCs and primitive progenitor cells, consistent with the cellular 

differentiation phenotypes observed upon SETDB1 overexpression26,64,323,381,382 (Figure 

4-9C, D). Because SETDB1 binds the PAF1c, which is required for localization of MLL 

fusion proteins368, we asked how SETDB1 expression affects direct targets of MLL-AF9. 

Interestingly, we observed that genes directly bound by MLL-AF9 were significantly 

downregulated upon SETDB1 overexpression8, suggesting H3K9me3 regulation of an 

MLL-AF9 gene program in leukemic cells (Figure 4-9E). 207 genes downregulated by 
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Figure 4-9: SETDB1 overexpression downregulates oncogenic gene programs and upregulates 
differentiation gene programs in AML. A) MA plot shows fold changes of genes in MA9+SETDB1/ 
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cells are upregulated by SETDB1. D) DESeq2-normalized RNA-seq counts of genes associated with 
differentiation. E) GSA analysis using ROAST shows that genes that are directly bound by MLL-AF9 
are downregulated by SETDB1. F) Overlap analysis of genes that are downregulated by SETDB1 in 
mouse MA9 cells and genes that have reduced promoter H3K9me3 in AML patient samples compared 
to normal human CD34+ cells. G) Overlap analysis of genes that are downregulated by SETDB1 in 
mouse MA9 cells and genes that are upregulated upon SETDB1 knockdown by Crispr-Cas9 in human 
THP-1 cells. * padj < 0.05 
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SETDB1 overexpression are reported to have reduced promoter H3K9 methylation in 

AML relative to normal CD34+ cells369, suggesting SETDB1 may be responsible for 

regulating a subset of these genes, including Kit, Cbl, Ptpn11, Six1, and other genes 

that are important in AML (Figure 4-9F). There is also a significant overlap between 

data showing genes downregulated by SETDB1 and genes upregulated by Crispr/Cas9 

mediated knockdown of SETDB1 in human THP-1 leukemic cells harboring an MLL-

AF9 fusion protein (Figure 4-9G). This suggests SETDB1 regulates conserved pro-

leukemic gene programs in leukemic cells including direct MLL fusion targets.  

 

SETDB1 regulates the epigenome to affect changes in chromatin availability and 
gene expression 

To understand the epigenomic changes induced by SETDB1 in AML cells, we 

performed ChIP-sequencing studies for H3K9me3 in MLL-AF9 and MLL-AF9+SETDB1 

leukemic cells. We also performed ATAC-seq to assess changes in chromatin 

condensation in response to SETDB1. We first explored differences at the HOXA locus 

due to its importance in a large subset of AML, including MLL leukemias4,368,5. First, we 

see a consistent reduction in ATAC-seq signal across consensus peaks, suggesting a 

general decrease in chromatin availability at observed peaks. We next sought to 

characterize loci that are known to be regulated by SETDB1 and are important for AML 

growth. Overexpression of SETDB1 reduced chromatin accessibility and increased 

H3K9me3 at posterior Hoxa genes, which results in reduced transcription of Hoxa9 

(Figure 4-10A). We sought to define whole genome epigenetic regulation mediated by 

SETDB1 but observed only 552 consensus H3K9me3 peaks (Figure 4-10B), with the 

exception of regions enriched for H3K9me3, such as the zinc finger protein cluster on 

chromosome 7 (Figure 4-10C). It is possible sequencing of H3K9me3 is challenging 

because it is enriched at heterochromatic regions associated with sequence repeats, 

which consume sequencing depth and are difficult to map with stringency. We 

overcame this by performing ChIP-Seq for H3K9ac, which is mutually exclusive and 

acts antagonistically with H3K9me3. We performed H3K9ac ChIP-seq on MLL-AF9 and 

MLL-AF9+SETDB1 cells and saw changes at over 6,000 promoter regions, including 

both increased and decreased H3K9ac signal (Figure 4-10D). Gene ontology analysis 
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reveals that the genes with decreased promoter H3K9ac in MLL-AF9+SETDB1 cells 

were associated with cell cycle and RNA binding, whereas genes with increased 

promoter H3K9ac were associated with signaling pathways and negative regulation of 

apoptosis (Figure 4-11A). Next, we overlapped genes that are downregulated with 

genes that increase chromatin compaction and have reduced promoter H3K9ac upon 

SETDB1 overexpression (Figure 4-11B). Scoring the genes found in this overlap by 

their overall fold changes across all three sequencing experiments results in several 

interesting targets including Nrp2, Six1 and Mefv, which are implicated as biomarkers in 

AML patients383,384 (Figure 4-11C). We also observed significant loss of promoter 

H3K9ac, chromatin compaction and reduced gene expression of Dock1 (Figure 4-11D), 
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Figure 4-10: SETDB1 regulates Hoxa9 H3K9me3, chromatin availability, and expression. A) 
Sequencing tracks showing H3K9me3 ChIP-seq (top), ATAC-seq (middle), and RNA-seq signals for 
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H3K9me3. D) DiffBind analysis showing H3K9ac ChIP-seq peaks that demonstrate differential binding. 
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which is a prognostic marker of AML that displays changes in DNA methylation in AML 

patient samples relative to normal HSPCs212,385,386.  We identified several direct binding 

targets of MLL-AF9 that underwent epigenetic remodeling and expression changes with 

overexpression of SETDB1. Thus, we asked whether SETDB1 impacts H3K79me2, 

which is deposited by DOT1L and associated with MLL-fusion proteins6,8,387. We 

performed H3K79me2 ChIP-seq in MLL-AF9 and MLL-AF9+SETDB1 cells to identify 

genes coregulated by H3K79me and H3K9me. We found a marked decrease of 

H3K9ac and ATAC-seq signal at H3K79me2 peaks in MLL-AF9 cells suggesting a role 

for H3K9 modifications in regulating genes marked with H3K79me2 (Figure 4-12A, B). 

To further explore the role of SETDB1 in regulating MLL-AF9 targets, we performed an 
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overlap analysis for genes that, upon SETDB1 overexpression, are downregulated, lose 

promoter H3K9ac, compact chromatin, lose gene body H3K79me2 signal, and are 

included in the published list of known binding targets of MLL-AF98. This helped us to 

define a narrow target list of genes that may be coregulated by SETDB1 and MLL-AF9. 

Included in this group is Gfi1, which has been shown to affect AML cell growth 388; 

Rap1gds1, a guanine nucleotide exchange factor; Arid1b, a member of the SWI/SNF 

complex; and Six1, which has been shown to promote formation of leukemic stem cells7 
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MA9+SETDB1 (red) cells. Shown here is the Six1 gene locus. 
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(Figure 4-12C). Six1 was of particular interest given its role in promoting 

leukemogenesis and the striking reductions that we observed in H3K9ac, H3K79me2, 

ATAC-seq signal, and gene expression (Figure 4-12D). These data demonstrate 

profound effects of SETDB1 on the epigenome and transcriptome that includes genes 

critical for AML and are consistent with a role for SETDB1 in suppressing leukemic 

transformation.  

 

4.4 Discussion 

Here we demonstrate that gain of SETDB1 and H3K9 methylation suppresses 

AML disease progression in vivo through the repression of pro-leukemic genes 

including direct MLL-fusion protein targets. We found that AML patient samples exhibit 

lower SETDB1 expression compared to normal hematopoietic cells and that higher 

SETDB1 expression correlates strongly with better overall AML patient survival. We 

recapitulated these findings in mice where forced expression of SETDB1 in MLL-AF9 

driven AML induces differentiation of AML cells and increases disease latency. These 

data suggest SETDB1 suppresses AML cell growth and self-renewal by relieving the 

block in differentiation.  

We attribute the phenotypes in AML cells to altered H3K9 methylation. We 

altered H3K9 methylation levels by manipulating the function of G9a both genetically 

and through small molecule inhibition. Similar to our results with SETDB1, manipulation 

of G9a suggests H3K9 methylation can suppress AML progression by promoting 

differentiation. Thus, H3K9 methylation may have a more general effect on AML 

initiation and progression. Interestingly, Lehnertz and colleagues reported a pro-

leukemic function for G9a whereby overexpression accelerated a HoxA9/Meis1 

overexpression leukemia model. Mechanistically, G9a binds to Hoxa9, which is 

necessary for target gene expression269. These phenotypic differences may be 

explained by experimental models. MLL-AF9 directly drives endogenous Hoxa9 and 

Meis1 expression leading to transformation, which is repressed by SETDB1 in our 

model. A Hoxa9/Meis1 overexpression model may overcome this regulation. Further, 

mouse and human G9a possess unique functions in malignant cells including the ability 

to stimulate p53 transcriptional activity257,269. Consistent with a role for H3K9 
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methylation in suppressing hematopoietic transformation, deletion of the H3K9 

methyltransferase, SUV39H1 (and to a lesser degree SUV39H2), leads to the 

development of B-cell lymphomas in mice232. Additionally, SETDB2 resides in a region 

of chromosome 13 that is commonly deleted in chronic lymphocytic leukemia 

(CLL)245,268. Thus, H3K9 methylation is likely exquisitely regulated in hematopoietic cells 

and performs context dependent functions that require further investigation to fully 

understand its role in AML.  

Mechanistically, we found that SETDB1 is linked with altered H3K9 methylation 

and acetylation, decreased chromatin accessibility and transcriptional repression of 

critical AML oncogenes. These genes included several that have been implicated in 

MDS and AML383,384. We show SETDB1 regulates Dock1 expression, which is 

correlated with leukemic stem cell gene signatures and a poor prognosis in AML 

patients385,386. We also observed that SETDB1 represses genes associated with AML, 

such as Hoxa9 and Six1, which are direct targets of MLL-AF92,7,11. These data point to 

SETDB1 negatively regulating a pro-leukemic gene program, many of which are 

potential therapeutic targets. Thus, understanding the mechanisms regulating SETDB1 

at the transcriptional and post-translational level may be a valuable therapeutic 
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Figure 4-13: Working model for the proposed role of SETDB1/H3K9 methylation in AML 
initiation and maintenance. AML is initiated after an attenuation of H3K9 methyltransferase function, 
expression, or H3K9 methylation by other mechanism. Alternatively, AML arises from HSPCs that 
already have low levels of H3K9 methylation/ methyltransferases. After establishment of an AML, 
inhibition of H3K9 methyltransferases leads to loss of retroviral silencing and cell death. Stabilization 
of SETDB1 or G9a leads to repressed Hox gene expression and a relief of the differentiation block. 
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approach for AML. For example, miRNA29 is a critical mediator of SETDB1 expression 
249. Another potential mediator of H3K9 methylation is the PAF1c. We showed SETDB1 

binds to the PAF1c and mediates promoter H3K9me3 of the Hoxa9 and Meis1 loci368. 

Further, we and others have also identified G9a and SUV39H1 as interacting partners 

of the PAF1c201 368. Interestingly, SETDB1, G9a, GLP and SUV39H1 can exist in a 

complex that directs H3K9 methylation to euchromatic gene promoters234. Thus, the 

PAF1c may recruit H3K9 methyltransferases to specific targets to mediate gene 

repression. The PAF1c is a critical regulator of transcription in AML cells through direct 

physical interaction with wild type MLL and MLL-fusion proteins12,13. Target genes 

include Hoxa9, Meis1, Prmt5 and others critical for AML cell growth13,14,224. It will be 

interesting to consider the biochemical interplay between H3K9 methyltransferases and 

MLL-fusion proteins with the PAF1c.  

Previous studies have demonstrated that SETDB1 and G9a are required for AML 

initiation and progression264,267,269. In light of our current data demonstrating that 

SETDB1 suppresses AML growth, AML cells may maintain a narrow SETDB1 

expression level. We show that increased SETDB1 expression induces differentiation of 

AML cells through H3K9me3 and repression of self-renewal genes. Conversely, loss of 

SETDB1 is detrimental to leukemic cells due to derepression of endogenous retroviral 

elements (ERVs) and inhibition of Hoxa9 transcriptional activity267,269 (Figure 4-13). 

Given the requirement for SETDB1 in leukemia, small molecule inhibition of H3K9 

methyltransferases has been proposed as a therapeutic option264,269.  However, a 

recent study shows that depletion of G9a increased a cancer progenitor cell population 

that initiates a delayed but more aggressive disease state320. Our data is consistent with 

a role for H3K9 methyltransferases in suppressing MLL-AF9 leukemia. Thus, it is critical 

to fully understand the effects of chemically inhibiting of H3K9 methylation as a 

treatment for AML. Further investigation into the roles of SETDB1, G9a and more 

generally H3K9 methylation levels will likely shed light on the precise role of these 

methyltransferases in normal and malignant hematopoiesis and determine the value of 

these epigenetic modifiers as therapeutic targets.  
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Chapter 5 Conclusions and future directions 

5.1 Summary and conclusions 

 As the field of precision medicine continues to explore the value of targeting 

proteins that modulate the epigenetic landscape to treat malignancy, it will remain 

important to fully understand the role and regulation of these epigenetic modifiers in 

different disease states. Here, we sought to define novel regulatory functions for a 

specific epigenetic commodifying complex, the PAF1c, in the context of acute myeloid 

leukemia. To that end, we demonstrated that the PAF1c is critical for both AML cell 

growth and normal HSPC cell growth (Chapter 2). Interestingly, the mechanism by 

which the PAF1c supports the growth and self-renewal of these cells is through 

regulation of distinct gene subsets of the transcriptome. In AML, the PAF1c regulates 

oncogenic programs associated with self renewal, such as gene programs regulated by 

Hoxa9/Meis1, direct binding targets of MLL-fusion proteins, and a group of histone 

methyltransferases known as the PRMT family. In HSPCs, the PAF1c is responsible for 

maintaining proper cell cycle regulation, as evidence by the deregulation of cell cycle 

and quiescence gene programs upon depletion of Cdc73. Finally, we show that there 

are overlapping and unique transcriptional targets of the PAF1c in AML cells and 

HSPCs, but that many of the gene programs affected by perturbation of the PAF1c that 

are most likely to account for the phenotypic changes that are seen are distinct from 

each other. This discovery and the knowledge that the PAF1c-MLL interaction seems 

preferentially required in AML relative to normal hematopoietic cells lead us to ask what 

mechanisms of regulation are responsible for the leukemia-specific functions of the 

PAF1c. 

 To explore the biochemical regulation of the PAF1c in AML, we defined the 

PAF1c interactome using the CDC73 subunit in an affinity purification mass 

spectrometry experiment (Chapter 3). This proteomics study revealed both known and 

novel binding partner candidates of the PAF1c. One particularly interesting group of 
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proteins that were candidate interacting partners of the PAF1c were three H3K9 

methyltransferases of the SUV39 family of proteins: SETDB1, G9a, and GLP. The 

interaction between SETDB1 and CDC73 and the interaction between G9a and CDC73 

were validated. Interestingly, a triple point mutant of CDC73, CDC73_3YF, has a 

stabilized interaction with these proteins and does not support AML cell growth. 

Overexpression of SETDB1 in AML cells and utilized the CDC73_3YF mutant to 

examine the effects of the stabilized interaction between the PAF1c and SETDB1. This 

provided two ways to determine the functional role of SETDB1 in PAF1c regulated 

transcription. SETDB1 regulates deposition of promoter H3K9me3 to repress the 

expression of both Hoxa9 and Meis1. Further, expression of the mutant to generate a 

stabilized PAF1c-SETDB1 interaction mimicked these results. Finally, SETDB1 

expression inversely correlates with HOXA9 and MEIS1 in patient samples, suggesting 

the findings of these studies are relevant to human AML. 

 Given the known oncogenic role of HOXA9 and MEIS1 in AML and our newly 

discovered correlation between SETDB1 expression and these oncogenes, we sought 

to determine the biological role of SETDB1 in AML (Chapter 4). We first noted that 

SETDB1 expression correlates with overall survival and that SETDB1 expression is 

lower in AML patient samples than in normal hematopoietic cells. Next self-renewal and 

proliferation assays demonstrated that increased expression of SETDB1 suppresses 

AML cell growth in vivo. Mechanistically, SETDB1 represses the expression of 

oncogenic programs, including genes regulated by Hoxa9/Meis, genes that are directly 

targeted by MLL-fusion proteins, and other known prognostic biomarkers of AML. 

SETDB1 represses these genes by inducing changes in the epigenome, including 

increased gene body/promoter H3K9me3, decreased promoter H3K9ac, decreased 

gene body H3K79me2, and decreased promoter chromatin availability. Finally, we 

examined the effects of inhibiting H3K9 methyltransferases in the context of AML and 

normal hematopoietic cell growth. While inhibition of H3K9 methylation is toxic to 

established AML cells, in HSPCs it relieves suppression of genes associated with 

malignancy, increases the self-renewal capacity of the cells, and creates a pool of cells 

that are more amenable to transformation by an oncogene.  
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These data reveal novel roles for H3K9 methylation, SETDB1/G9a/H3K9 

methyltransferases, and the PAF1c in AML. We propose a role for PAF1c mediated 

H3K9 methylation as a mechanism by which PAF1c target genes, such as Hoxa9 and 

Meis1, are regulated in normal hematopoietic cells. When the H3K9 methylation axis of 

regulation becomes disrupted, it can create cells that are more likely to become 

malignant, depending on the manner in which and degree to which it is disrupted. After 

establishment of AML cells, stabilization of H3K9 methyltransferase expression or 

stabilization of the PAF1c-H3K9 methyltransferase interaction leads to a repression of 

PAF1c target genes and relief of the AML differentiation block. Conversely, loss of 

H3K9 methylation results in loss of normal cellular processes, such as the silencing of 

endogenous retroviral elements, and leads to cell death through apoptosis. This 

suggests that there is a window of expression of H3K9 methyltransferases and a level 

of H3K9 methylation that is allowable for transformation and maintenance of an AML, 

and that changes outside of this window in either direction can be used to delay the 

growth of AML (Figure 5-1).  

 

5.2 Future directions 

The PAF1c/SETDB1 regulation of the transcriptome/ epigenome in AML/ HSPCs 
 In chapters 2 and 4, an important role for the PAF1c and for H3K9 

methyltransferases in the regulation of the transcriptome and epigenome in AML cells 

was shown. However, there are many lingering questions that should be addressed in 

the future. First, it will be important to fully understand the PAF1c-H3K9 

Figure 5-1: Working model and hypotheses for the proposed role of the PAF1c-SETDB1 
interaction in AML initiation and maintenance. The PAF1c binds to epigenetic modifiers associated 
with both activation and repression, including H3K9 methyltransferases (H3K9MT). An attenuation of 
H3K9 methylation through various mechanisms, including downregulation of the H3K9MT or loss of 
the H3K9MT-PAF1c interaction, could lead to a loss of repression for genes associated with self-
renewal. However, stabilization of this interaction or of H3K9MT like SETDB1 leads to repression of 
self-renewal genes and relief of the differentiation block.  
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methyltransferase interaction as it pertains to modulating changes in the epigenome. 

For instance, are all PAF1c targets also targets of SETDB1? Is the opposite case true? 

Or do they coregulate just a subset of genes? Transcription factor ChIP-seq analysis 

will be required to fully explore the overlap of regulation. Furthermore, to this point we 

have only approached this from the perspective that H3K9 methylation plays a role in 

regulating known PAF1c target genes. However, it is possible that the PAF1c is also 

playing an as yet undiscovered role in regulating known targets of H3K9 

methyltransferases. For instance, we might speculate that the PAF1c is also bound to 

and playing an important role in regulating the expression of additional euchromatic 

targets of SETDB1/G9a apart from Hoxa9 and Meis1, which are targets of H3K9 

methylation as revealed in this study. Additionally, it is possible that the PAF1c may 

have a part to play in the regulation of heterochromatin formation that is mediated by 

SETDB1 and other H3K9 methyltransferases. In yeast, it has been shown that the 

PAF1c prevents the spreading of heterochromatin and converts the boundary regions of 

heterochromatin into permissive chromatin states for transcription389,390. However, this 

has not been explored in mammals and there are no studies to our knowledge that 

explore whether the PAF1c regulation of heterochromatin is related to interactions with 

H3K9 methyltransferases or if its regulation of this process may play a role in disease. 

This could provide an interesting new angle to pursue with regards to the PAF1c 

deregulation in disease. 

 

The PAF1c interactome in AML 
 In chapter 3, we demonstrated the utility of using a proteomics-based approach 

to explore novel and known interactors of the PAF1c in leukemia cells. By using an 

affinity purification mass spectrometry (AP-MS) approach and network analyses, we 

were able to identify with confidence an interactome in AML cells for both wildtype 

CDC73 and CDC73_3YF. However, there remains a large amount of information from 

these experiments that has not yet been thoroughly explored or interpreted.  

First, there were additional candidate interactions that were identified as being 

preferentially bound to CDC73_3YF that may also be playing a role in the PAF1c-H3K9 

methylation axis of regulation. A noteworthy example of this is MECOM/EVI-1 (PRDM3), 
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which is interesting both because of its oncogenic roles in AML as well as the H3K9 

methyltransferase activity of the longer protein isoform. Further, several known 

interacting partners of H3K9 methyltransferases that are critical for their functions were 

also identified by AP-MS, including WIZ, which interacts with G9a/GLP; ATF7IP, which 

is critical for the deposition of SETDB1-mediated H3K9me3; and PML, which is a tumor 

suppressor in leukemia and interacts with G9a/GLP/SETDB1/SUV39H1. Validation and 

elucidation of these interaction networks may provide important insight into the PAF1c 

regulation of H3K9me3. 

It will also be important to further explore the interaction network of the PAF1c. 

Thus far, we have only examined interactions that are enhanced by introducing artificial 

mutations to CDC73. While these interactions also occur with wildtype CDC73 and are 

therefore important to study, it will also be interesting to pursue strong interactions that 

occur with the wildtype PAF1c. This may include interactions that are disrupted by the 

CDC73_3YF, which would provide more evidence of the dynamic interplay between the 

protein-protein interactions that drive transcription and those that repress transcription 

mediated by the PAF1c. Finally, a full proteomics study looking at the interactions that 

occur with all of the PAF1c subunits could provide a clearer picture of the protein-

protein interactions that are most important for the functions of the PAF1c in leukemia.  

 
The PAF1c-H3K9 methylation interaction network 
 In chapter 3, we specifically explored the interactions between the PAF1c and 

the H3K9 methyltransferase SETDB1. However an interaction between the PAF1c and 

G9a was also validated. Further, the AP-MS study provided evidence that GLP, the 

heterodimeric binding partner of G9a, may also interact with the PAF1c, though this 

interaction is unvalidated. Finally, previous reports have demonstrated an interaction 

between CDC73 and SUV39H1, though the PAF1c dependency of this interaction has 

not been show. This provides varying degrees of evidence that all four H3K9 

methyltransferases that act together in a euchromatic gene repressing complex bind to 

the PAF1c. This provides us with the interesting question of whether the PAF1c binds to 

these H3K9 methyltransferases individually, to the whole H3K9 methyltransferase 

complex, or to different subcomplexes of these methyltransferases depending on 
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context. Further, different interacting partners of these H3K9 methyltransferases may 

also bind to the PAF1c as revealed by our proteomics data. In light of this, we may also 

ask whether these proteins are also a part of this H3K9 methyltransferase complex and 

whether they too bind to the PAF1c in this context. We might speculate that, much as 

the PAF1c plays an integral role in the function of large complexes of proteins that drive 

transcription, it may also play a role in the function of large complexes of proteins that 

repress transcription. To elucidate these mechanisms, we can perform further 

proteomics analyses that involve using the members of the PAF1c as well as the H3K9 

methyltransferases and associated proteins as bait proteins in AP-MS to add clarity to 

the protein-protein interaction networks involving the PAF1c. We can also biochemically 

isolate the different complexes that the PAF1c is bound in to probe the interaction 

partners of complexes of varying sizes. 

If we were to find that these different complexes are forming, it could have 

important implications into the dynamic regulation of and context-dependent roles of the 

PAF1c. Elucidating the mechanisms that would cause one type of complex to form over 

another could give us insight into how the PAF1c is regulated during development and 

deregulated in malignancy. 

 

The PAF1c-H3K9 methylation regulation axis in development 
 In chapter 4, we showed that SETDB1 and H3K9 methylation repress genes 

associated with self-renewal and oncogenesis, such as Hoxa9. Further, this repression 

of genes and suppression of self-renewal occurs in both AML and normal HSPCs. 

Given this data and a wide range of evidence that Hoxa9 and genes associated with 

self-renewal must be progressively downregulated during hematopoietic differentiation, 

H3K9 methylation and the proteins that modulate this modification may play an 

important role in this downregulation. While it has been shown by many different groups 

that H3K9 methylation itself is dramatically changed during differentiation, the 

mechanisms by which these changes occur are not clear. There could exist a wide 

array of mechanisms by which cells induce the downregulation of genes associated with 

self-renewal through changes in H3K9 methylation. Some of these could include 



 110 

changes in expression, protein levels, or catalytic function of H3K9 methylation 

modulating proteins as cells undergo differentiation.  

Another interesting potential mechanism of regulation could involve changes in 

protein-protein interactions, potentially with the PAF1c. In chapter 4 we showed that 

Hoxa9 and Meis1 repression could be induced not just by overexpression of SETDB1, 

but also by stabilizing the interaction with the PAF1c by expressing CDC73_3YF. This 

mutant may be representative of a change in interaction stability that occurs in nature. 

For instance, we can speculate that the PAF1c-H3K9 methyltransferase interaction may 

be a weak and transient interaction in HSCs and primitive cells, but the interaction is 

enhanced as cells differentiate in order to drive repression of PAF1c target genes as 

opposed to activation. If deregulation of the PAF1c or H3K9 methyltransferase lead to a 

loss of this stabilized interaction, it could lead to aberrant expression of genes 

associated with self-renewal and make cells more amenable to malignant 

transformation.  

The stabilization of this interaction could occur through a number of mechanisms, 

including changes in PTMs on the PAF1c, which could be represented by CDC73_3YF. 

It is noteworthy that CDC73_3YF has been reported to be a phosphodeficient mutant of 

CDC73, though our group has been unable to demonstrate that CDC73 is 

phosphorylated in AML. It is possible that the level of phosphorylation is below the limit 

of detection in AML, that we are disrupting a different PTM, or that something else 

altogether is causing the enhanced interaction with SETDB1. Further work determining 

what, if any, PTMs on CDC73 exist and are changed during hematopoiesis and AML 

initiation would provide insight into a possible mechanism for stabilizing this interaction. 

Also, a thorough study should be performed exploring changes in expression of H3K9 

methyltransferases and the PAF1c, as well as changes in protein-protein interactions in 

primitive hematopoietic cells relative to more mature cells. This could reveal a novel 

PAF1c-centric mechanism by which self renewal genes are regulated during blood cell 

development, again providing insight into how they might become aberrantly expressed 

in disease contexts. 
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The PAF1c-SETDB1-MLL interaction 
 In chapter 4, we demonstrated that the PAF1c and SETDB1 interact in AML 

cells. Furthermore, SETDB1 regulates targets of both the PAF1c and MLL-fusion 

proteins in AML cells. Because we know that the PAF1c also interacts with MLL-fusion 

proteins in AML cells, it would be interesting to determine the dynamics of this 

relationship between these three proteins. Milne and colleagues addressed a separate 

but related question when they demonstrated that SETDB1 and H3K9me3 have a 

higher binding signal at the Hoxa9 locus when MLL1 is deleted, which are reduced 

when MLL1 is re-expressed. However, they did not explore what the cause of this was 

mechanistically and they did not examine whether this chromatin binding exclusivity 

remained true in the context of MLL-fusion proteins. Based on our data showing 

coregulation of a subset of MLL-fusion targets by SETDB1, it is possible that the reason 

for the loss of SETDB1 and H3K9me3 signal that they observe could be due to a 

PAF1c-MLL interaction that excludes SETDB1. If there is a mutually exclusive 

interaction between the PAF1c and SETDB1/MLL-fusions, it would be interesting to 

explore what causes the PAF1c-MLL-fusion interaction to be favored in AML to drive 

Hoxa9 transcription. 

Furthermore, in light of Milne et al.’s data, it would be important to examine 

whether there is a shift in PAF1c binding affinity for MLL1 relative to SETDB1 in 

primitive cells that require high expression of MLL targets such as Hoxa9 compared to 

differentiated cells that exhibit downregulation of these genes. As we previously 

speculated, there might be a change in the binding affinity of the PAF1c for different 

interaction partners as cells differentiate. With that in mind, it is possible that the 

downregulation of Hox genes would occur not just through the transcriptional repression 

mediated by H3K9 methylation, but also by a loss of the H3K4me3 activating 

modification. This could provide another mechanism by which the PAF1c and SETDB1 

function to regulate Hox gene expression during development.  

  

Post translational modifications on the PAF1c in leukemia 
 We have speculated that the PAF1c may be differentially post-translationally 

modified in different hematopoietic or leukemic cell contexts. As mentioned, CDC73 has 
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been shown to be phosphorylated in gastric cells, and when it is dephosphorylated, it 

functions as an oncogenic driver. Further, LEO1 has been shown to drive cellular 

proliferation when dephosphorylated in AML. This shows that the PAF1c function can 

change a result of PTMs. Though our data doesn’t support the phosphorylation of 

CDC73 in the context of AML, preliminary mass spectrometry data identified a novel 

methylation site on CDC73 in AML. An exploration of whether this methylation plays a 

functional role and what proteins regulate the deposition of this PTM could provide a 

novel mechanism by which the PAF1c is regulated in blood cells that may be 

deregulated in AML. For example, it is possible CDC73 must be demethylated in order 

to increase the affinity of the PAF1c for protein interactions that repress genes 

associated with self-renewal. These studies would reveal how that process is regulated. 

Furthermore, it would be interesting to apply a mass spectrometry approach to 

identifying PTMs on the PAF1c. This could be done using recombinant proteins as a 

starting point to identify novel PTM sites. However, the really interesting experiments 

would be to compare the PTMs on the PAF1c in AML cells relative to normal cells, as 

well as in more primitive hematopoietic cells compared to mature cells. These studies 

might show us new ways that the PAF1c is regulated.  

 

Therapeutic targeting of H3K9 methyltransferases in AML 
 Finally, in chapter 5 we demonstrated that H3K9 methylation and H3K9 

methyltransferases play an important role in the repression of self-renewal genes and 

the suppression of leukemic cell growth. This data is a critical piece of information as we 

explore the possibility of therapeutically targeting epigenetic modifiers in AML. 

Frequently, it is tempting to suggest that epigenetic modifiers are attractive therapeutic 

targets simply because they are required for the survival of AML cells. However, in this 

study we show that even though SETDB1/G9a are required for AML cell growth, 

inhibition of these proteins may create a pool of cells that are more amenable to 

leukemic transformation. This suggests that while treatment with H3K9 

methyltransferase inhibitors may be toxic for a large majority of AML cells, it is possible 

that any surviving AML cells will in fact be a more aggressive clone, expressing higher 

levels of genes associated with aggressive disease states, such as HOXA9. Further, it 
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is important to consider off-target effects. Our data suggests that normal hematopoietic 

progenitors that are present when an AML is treated with an H3K9 methyltransferase 

inhibitor will survive, will have a higher self-renewal capacity, and will be more likely to 

be transformed to an AML by an oncogenic event.  

To further understand the utility in targeting H3K9 methyltransferases, a more 

complete study should be performed to elucidate the full effects of treating an AML with 

an H3K9 inhibitor. For instance, we might imagine using a mouse model of AML where 

we transplant primary AML cells that have been treated with an H3K9 inhibitor. The 

likely result (and indeed reported result269) of this initial experiment would be that the 

AML disease progression would be delayed. However, if we then perform tertiary 

transplants, do we see the development of a more aggressive disease state? In a 

separate but related experiment, we could simply treat non-malignant bone marrow with 

the inhibitor, transplant these cells into mice, and determine whether there is a higher 

penetrance of malignant hematopoiesis in the treated mice compared to control. This 

study would mimic the possible off-target effects of treating patients with H3K9 

methyltransferase inhibitors. In summary, these data suggests that caution should be 

used when thinking of H3K9 methyltransferases as therapeutic targets, and a more 

thorough study of the effects of using these H3K9 inhibition in mouse models would 

help to understand the full picture of how HSPCs and AML cells are affected by 

treatment with these chemicals. 

 

5.3 Final thoughts 

Here, we sought to explore the role and regulation of the PAF1c and its 

interaction partners in AML and normal HSPC cell growth. While this study was 

primarily focused on the role of PAF1c-mediated H3K9 methylation, and more 

specifically on the H3K9 methyltransferases SETDB1 and G9a in AML, it is probable 

that these findings have implications with regards to other epigenetic modifying proteins. 

Further, it is likely that these findings have implications in other malignancies. The 

dynamic nature of transcriptional and epigenetic regulation makes it unlikely that any 

one epigenetic modifier or epigenetic modifying complex has one specific role in 

development. It is therefore unlikely that their contribution to disease is as simple as 
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being involved in the deregulation of one specific process. While a genetic knockout of 

these modifiers may be toxic to cancer cells, this could often simply be the result of 

losing an essential regulator of cellular homeostasis. For instance, depletion of SETDB1 

was shown by Cuellar and colleagues to lead to a toxic interferon response due to a 

loss of retroviral element silencing. However, inhibition of these modifiers may prove to 

be more complex. If the inhibitors are not as efficient at attenuating the function of these 

modifiers as depletion is, we might simultaneously be targeting the desired function of 

the modifier as well as an undesired function. In our example, while we may be inducing 

cell death, we are also de-repressing genes associated with self-renewal. It is therefore 

important to consider the full body of effects that are induced by targeting epigenetic 

modifiers, as opposed to simply determining whether they have essential functions in 

cancer cells or not. These more nuanced studies will be critical as the field moves 

forward and continues to explore the exciting possibility of treating malignancy with 

chemicals targeting epigenetic modifiers.  
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Appendix 1 Proteomics analyses reveals phosphorylation dependent interactome 
of EZH2 in metastatic breast cancer 

 This study was a collaboration with Talha Anwar and Celina Kleer. In this study, 

Anwar, et al. demonstrated that EZH2 is phosphorylated during breast cancer 

progression. They demonstrate that this phosphorylation event (which is on residue 

T367 of EZH2) drives EZH2 localization to the cytoplasm, where it is required to be 

Figure A-1: The interactome of pEZH2(T367) reveals new cytoplasmic binding 
proteins. A) Schematic of mass spectrometry experiment to identify binding partners of EZH2 in MDA-
MB-231 cells. Experiment was performed in triplicate. B) Venn diagram displaying interaction partner 
candidates overlap in proteins co-immunoprecipitating with WT- or T367A-EZH2 from the three 
biological replicates analyzed. C) DAVID functional annotation analysis of processes enriched in WT-
EZH2 over T367A-EZH2. D) Top interaction candidates identified from a published actin-binding 
protein set with fold-change (FC) scores and normalized FC scores (relative to total bait protein 
pulldown). Average WT and T367A spectral counts (SC) and SAINT probabilities (SP) are also 
tabulated. (Anwar, et al 2018). 
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partners of EZH2 in MDA-MB-231 cells. Experiment was performed in triplicate. b Venn diagram displaying interactors overlap in proteins co-
immunoprecipitating with WT- or T367A-EZH2 from the three biological replicates analyzed. c DAVID functional annotation analysis of processes
enriched in WT-EZH2 over T367A-EZH2. d List of differential interactors identified from actin-binding set with fold-change (FC) scores and normalized FC
scores based on total EZH2 pulldown. Average WT and T367A spectral counts (SC) and SAINT probabilities (SP) are also tabulated



 116 

localized for its function in driving metastatic breast cancer. They also sought to define 

the phosphorylation dependent interactome of EZH2 in breast cancer cells. To do this, 

they utilized a phosphorylation deficient mutant of EZH2 (T367A-EZH2) to eliminate 

phosphorylation dependent interactions from the interactome. My role in this study was 

to analyze data generated from an affinity-purification mass spectrometry experiment in 

order to provide a list of candidate interacting partners for EZH2 that might contribute to 

its function in driving cancer progression. This analysis revealed that wildtype EZH2 

binds to cytoplasmic and exosomal proteins to a higher degree than T67A-EZH2 and 

revealed vinculin as a candidate protein-protein interaction that is specific for 

phosphorylated EZH2. Anwar, et al. went on to demonstrate that this interaction played 

a role in localizing vinculin to focal adhesions, which is important for cell spreading. 

They propose that this interaction may be a part of the mechanism by which 

phosphorylated EZH2 plays a role in breast cancer progression391. 
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Appendix 2 Transcriptomic effects of treating cancer cell lines with epigenetic 
inhibitors 

 Here I contributed to a series of studies in collaboration with Jolanta Grembecka 

and Tomek Cierpicki. The goal of the first study was to observe changes in the 

transcriptome when treating different leukemia cell lines with a small molecule inhibitor 

that targets ASH1L, which is an H3K36 methyltransferase. Three different human 

leukemia cell lines were treated with the inhibitor for 6-7 days and RNA was harvested 

and submitted for mRNA-sequencing. The second study involved treatment of two 

Figure A-2: Sample plots and tables for the differential gene expression analysis of human 
cancer cell lines treated with epigenetic inhibitors. A) MA plot showing fold-changes of human 
leukemia cells treated with an ASH1L inhibitor relative to control treated cells plotted against average 
expression of the genes across all samples. B) Overlap analysis of transcriptomic effects of two 
separate molecules targeting ASH1L in a human leukemia cell line. Shown are the genes that are 
significantly downregulated upon treatment with either molecule C) List of top ten genes that are 
downregulated upon treatment with either of the two ASH1L inhibitors.  
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510 genes upregulated

704 genes downregulated

Gene_Symbol log2FoldChange_REH+Inhibitor1 padj_REH+Inhibitor1 log2FoldChange_REH+Inhibitor2 padj_REH+Inhibitor2
INHBE -2.817895533 1.05E-17 -4.5354116 5.11E-12
GPR146 -2.330779848 2.44E-09 -3.270120485 2.48E-27
SPNS3 -1.562393688 1.90E-05 -3.207335705 1.24E-16
TSC22D3 -1.822349851 3.40E-43 -3.008286892 0
AK4 -1.626876834 1.22E-06 -2.957628492 7.81E-42
SNX20 -1.446135711 0.040082837 -2.64837463 0.003122858
CD9 -1.849706003 2.95E-44 -2.61356339 9.19E-146
IL21R -3.646765469 1.45E-24 -2.612847617 8.02E-18
DDIT4 -1.533153244 3.13E-42 -2.575327233 1.73E-207
ALDOC -1.433075655 9.61E-21 -2.515859656 6.08E-82
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different human breast cancer cell lines with a small molecule inhibitor targeting NSD1, 

a separate epigenetic modifier that also methylates H3K36. The final study sought to 

examine the effect of a separate molecule targeting ASH1L on a human leukemia cell 

line. This molecule is more potent and the cell line used was one of those used in study 

1, so an overlap analysis comparing the more potent molecule to the weaker was the 

primary objective. I obtained the sequencing files and ran them through my analysis 

pipeline to determine differentially expressed genes. These data revealed significant 

changes in the genome upon treatment with either of the ASH1L targeting molecules. 

However, the gene expression changes did not exhibit a striking overlap across the 

different cell lines. In contrast, the two different molecules targeting ASH1L showed a 

remarkable overlap in gene expression changes, which is supportive of their selectivity. 

Further, the more potent molecule induced downregulation of a larger number of genes, 

as would be expected. Finally, there were also significant changes in transcriptomes 

when breast cancer cells were treated with the NSD1 inhibitor, but the changes were 

again variable across the two different cell lines. I also analyzed the gene programs that 

were significantly changed after treatment with these molecules using CAMERA gene 

set analysis and discovered that there are dramatic changes in the gene programs after 

treatment with these molecules in all cell lines. These data will be used to identify 

targets and critical gene programs that are affected by these molecules to gain further 

insight into the mechanism by which they affect cancer cell growth. representative plots 

and tables that were generated in this differential gene expression analysis. 
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