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ABSTRACT 

Iron oxide deposits have provided important amounts of metal to society since the dawn 

of the Iron Age. In 2017 alone, they supplied 2.4Gt of raw iron ore globally, in addition to other 

valuable elements (e.g. Au, Ag, Cu, and Co). In order to meet industry’s growing resource 

demand, it is imperative to test and refine current genetic models that explain the occurrence of 

these deposits. On the basis of their elemental contents, iron oxide deposits are divided into two 

distinct groups: the iron oxide–copper–gold (IOCG) and iron oxide–apatite (IOA) deposits. 

Nearly a century of geological research has produced several working models to explain how 

they formed, but agreement is lacking. Two predominant models invoke magnetite 

mineralization either directly from a magma or from hydrothermal fluids, where the occurrence 

of both types requires multiple fluid sources. Additionally, previous studies have hypothesized 

IOAs may form the deeper roots of some IOCG deposits, citing similarities among ore related 

minerals and the occurrence of both deposit types both spatially and temporally, and have 

proposed an IOA-IOCG continuum model. If we are to explore for more deposits of these types, 

it is imperative to test and refine these models, which is the objective of this thesis research. 

After a brief introductory chapter, Chapter II deals with models for the Proterozoic Pea Ridge 

and Pilot Knob IOA deposits of Missouri, USA. Stable Fe and O isotopes and trace elements in 

the ore forming magnetite from these deposits indicate a silicate magma source for the magnetite 

ore bodies and at least three generations of magnetite. Two generations grew from a 

hydrothermal fluid, while one high-Ti variety crystallized from a magma. These observations 
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suggest a new genetic model that incorporates the occurrence of both hydrothermal and 

magmatic magnetite via magnetite microlite flotation where orthomagmatic magnetite may be 

enveloped by a buoyant Fe-rich fluid within a magma that further precipitates hydrothermal 

magnetite. This new model demonstrates that both magmatic and hydrothermal magnetite may 

originate from a single source. Chapter III focuses on the Jurassic Mantoverde IOCG deposit in 

Chile. It compares Fe and O isotopes and trace element contents of Mantoverde magnetite and 

hematite to the same minerals in the neighboring Los Colorados IOA deposits. The isotopes and 

trace elements indicate that both early magnetite and late hematite were sourced from a silicate 

magma. Similar isotopic signatures and cooling trends in trace element concentrations at Los 

Colorados support the previously proposed IOA-IOCG continuum hypothesis. In Chapter IV, 

triple O, H, and Fe isotopes were analyzed in the ore forming iron oxides of the enigmatic near-

surface El Laco IOA deposits of Chile. This combination of isotopic measurements reveal that 

magnetite was sourced from a silicate magma and, when interpreted in combination with drill 

core data, indicate magnetite in these deposits formed from an evolving magmatic fluid that 

crystallized orthomagmatic and hydrothermal magnetite. Significantly, this supports the 

magnetite microlite flotation model that is compatible with all of these observations. This 

research effectively rules out other genetic models, and links IOAs and IOCGs in a continuum 

model. Future refinement of these models is key to better understanding of the petrologic and 

hydrothermal processes that form these important deposits, as well as to bolster exploration 

strategies for the IOAs and IOCGs. 



1 

CHAPTER I 

INTRODUCTION 

 

IRON OXIDE DEPOSITS 

Iron oxide deposits are broadly defined as bodies of rock containing > 10% low-Ti iron 

oxides such as magnetite and hematite, where individual deposits may contain millions to 

billions of tons of iron ore. These deposits are differentiated based on their unique elemental 

contents. They often contain economically significant concentrations of Cu, Au, REE, P, U, Ag, 

and Co. Ages of these deposits range from the Archean through the Cenozoic, are often 

stratigraphically or structurally controlled, and are temporally and spatially associated with 

intense and voluminous Na-Ca-K metasomatism. In contrast, these iron oxide deposits generally 

lack well defined tectonic and igneous correlations, which has led to a disparity in genetic 

models (Barton, 2014).  

Iron oxide deposits are primarily divided into their Cu- and Au-rich and Cu- and Au-

poor, P-rich endmembers - the iron oxide–copper–gold (IOCG) and iron oxide–apatite (IOA) 

deposits (both with their own subdivisions). Several models have been proposed to explain the 

origin of IOCGs and IOAs: 1) the magmatic-hydrothermal model, where a metal bearing fluid 

evolved from a silicate magma may transport and deposit metals (e.g., Pollard, 2006; Nyström et 

al., 2008; Rieger et al., 2010, 2012; Jonsson et al., 2013); 2) the non-magmatic hydrothermal 
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model, where metal scavenging meteoric fluids or basinal brines derived from evaporites 

circulate through the crust, accumulate metals, and later deposit them (e.g., Barton and Johnson, 

1996; Sillitoe and Burrows, 2002; Benavides et al., 2007); 3) the metamorphic hydrothermal 

model, where fluids are derived from metamorphic devolatilization of continental crust which 

then scavenge metals from host rocks and redeposit them (e.g. Fisher and Kendrick, 2008); 4) the 

immiscible Fe-rich melt model, where a volatile- and Fe-rich melt separates from an initially Fe-

rich silicate melt and is later emplaced in the crust (Nyström and Henríquez, 1994; Travvisany et 

al., 1995; Naslund et al., 2002; Barton, 2014); and 5) the magmatic magnetite flotation model, 

where a silicate magma grows magnetite crystals which are then wetted by exsolving Fe-rich 

fluids, lowering their overall density and floating them upward in a magma where they may be 

erupted into the overlying crust (e.g. Knipping et al., 2015a,b; Ovalle et al., 2018; Simon et al, 

2018). The hydrothermal fluid models (1, 2, and 3) require a heat source (an underlying magma 

or the crustal geothermal gradient) to transport or circulate fluids, whereas all models incorporate 

previously existing geologic structures in order to deposit their metal contents, either by direct 

precipitation from an Fe-rich fluid or metasomatic replacement of host rocks. 

Iron oxide deposits have been exploited by humanity dating back as early 43,000 years to 

the Lion Cave in Swaziland, South Africa (Dart and Beaumont, 1971), where humans mined 

hematite to be used as red pigments for decoration. The earliest known iron artifacts, small 

decorative iron beads mined and refined from meteorite iron, were uncovered from burial graves 

in northern Egypt circa 3200 B.C.E (Rehren et al., 2013). The onset of widespread ironworking 

has thrust humanity into ongoing and unwavering technological advance. Undoubtedly, iron is 

and has been a major factor in the success of humanity, bringing humankind out of the Bronze 

Age and into the Iron Age by 1200 B.C.E. For most contemporary humans, iron has become the 
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foundation of society, forming the structural skeletons of skyscrapers, the bodies and engines of 

automobiles, and a primary component of everyday objects in our offices and households. 

Humanity’s constant and growing demand for development comes with an inherent demand for 

resources. The United States Geological Survey reports a global production (and consumption) 

of 2.4 billion metric tons of iron ore for 2017 (USGS, 2018), roughly a volume of 1km3. In 

addition, with the onset of consumer electronics and computing-based technology, elements such 

as Au, Ag, Cu, Co, and the rare earths are being consumed at higher and higher rates. This 

presents the difficult question: How will humanity continue to meet rapidly increasing resource 

metal demand for the foreseeable future? Geologists must continuously refine their knowledge 

and understanding of the geologic processes which concentrate metals in the earth's crust. In this 

dissertation, I test competing geological models of iron oxide deposit formation by applying 

traditional and non-traditional stable isotopic systems to and analyze trace element abundances in 

magnetite and hematite in several iron oxide deposits that exist in a range of geologic settings 

and geologic time. 

 

IRON OXIDE CHEMISTRY 

Magnetite (Fe2+Fe3
+2O4) is the primary iron ore mineral in IOA deposits, whereas 

magnetite and hematite (Fe3+
2O3) are typically found in IOCG deposits. Magnetite exhibits an 

inverse spinel crystalline structure where ferric iron occupies the tetrahedral coordination site 

and ferric (Fe3+) and ferrous (Fe2+) occupy the octahedral sites. A wide variety of cation 

substitute in each of these sites due to similar ionic radii. Primarily Mg, Mn, Zn, and Ni 

substitute for ferric iron, and Al, V, and Cr substitute for ferrous iron. Titanium occurs in 

magnetite via coupled substitution of Fe2+ in the tetrahedral sites and Ti4+ for Fe3+ in the 

octahedral sites. Titanium can occur as a continuous solid solution between magnetite and 
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ulvöspinel (Fe2+
2Ti4+O4) above 600 ℃, and will typically exsolve as ilmenite at lower 

temperatures (Fe2+Ti4+O3). Trace element substitution is highly dependent on temperature and 

oxygen fugacity, and will occur in greater amounts at higher temperature and lower oxygen 

fugacity (Nadoll et al., 2014). This observation makes magnetite (and its oxidation product, 

hematite) a powerful tool when deciphering its original mineralizing conditions. 

Until recently, magnetite and hematite have traditionally only been examined for their 

stable O isotopes. Delta notation of isotopic systems is defined as: 

 

                              δaXsample (‰) = [(aX/bX)measured / (
aX/bX)standard – 1] * 1000         (1) 

 

where X is the element of interest, a is typically the more abundant isotope of X, and b is the less 

abundant isotope. This delta notation provides a ratio of the isotopic content of a sample in 

question and a well-known standard material, normalized to values of permil (‰). When applied 

to magnetite and hematite and compared to other natural samples, ratios of 18O and 16O 

(represented by δ18O notation) can provide geologic information such as the source of O, the 

degree of post-depositional mineral alteration, and even the temperature at which the iron oxide 

crystallized (e.g. magnetite-diopside isotope thermometer; Matthews et al., 1983). Indeed, O 

isotopes have been well studied in ore forming systems (Taylor 1974), and have been the basis of 

many studies and conclusions of the iron oxides in IOA and IOCG deposits. However, O 

isotopes are easily altered from their original ratios by secondary hydrothermal fluids (ubiquitous 

in IOA and IOCG ore forming systems), obscuring or completely obliterating the original 

isotopic signatures of their minerals. 

More recent studies have found “non-traditional” Fe stable isotopes to be particularly 

useful when applied to iron oxide systems, thanks to a rapidly growing database of natural 
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samples, experiments, and first principles modeled data (Dauphas et al., 2017 and references 

therein). Ratios of 54Fe and 56Fe (represented by δ56Fe notation) isotope abundances in iron oxide 

minerals are more resistant to secondary alteration than are the abundances of H and O (Frost et 

al., 2007, Weis, 2013, Bilenker et al., 2016, Childress et al., 2016, 2019), and will only 

significantly deviate from their original signature (to lighter values) via extensive coupled 

dissolution and reprecipitation reactions with hydrothermal fluids, as has been reported for the 

Mineville IOA deposit (Bilenker et al., 2016) and the Dannemora (Sweden) and Chagangnuoer 

(China) Fe-skarn-type deposits (Weis, 2013; Günther et al., 2017). Using the paired Fe–O stable 

isotope systems for individual samples of iron oxides allows for clearer interpretation of the 

source fluids, style of deposition, and subsequent degree of alteration, where Fe isotopes may 

provide a clearer signature of the initial source fluids, and O isotopes may reveal secondary 

processes affecting the iron oxides. 

Additionally, ratios of H stable isotopes H1 and H2 (represented by either δ2H or δD 

notation) can be used to further support interpretations based on the Fe–O stable isotope systems. 

Minerals will typically incorporate fluid inclusions as they grow, which provide geochemical 

information regarding the fluids which precipitated those minerals. Analyzing fluid inclusions in 

iron oxides and the hydrous iron oxide goethite for their δ2H ratios will provide further 

information regarding the source of fluids, potential mass-dependent fractionation processes 

during mineral precipitation, and degree of alteration (Taylor, 1974). 

 

TESTING IOA AND IOCG MODELS 

The models described above involve distinct geologic processes, metal and fluid sources, 

and each model will ultimately result in a unique geochemical signature, both in the isotopes and 

the trace elements contained within the ore-forming minerals, primarily magnetite and hematite. 
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Iron oxides formed via high-temperature (>500 ℃) hydrothermal processes are expected to 

incorporate greater amounts of mobile trace elements (Si, Al, Mn, Ca) as mineral inclusions or 

within the iron oxide crystalline structure, as opposed to iron oxides formed at low temperatures 

(<500 ℃) (Dupuis and Beaudoin, 2011; Nadoll et al., 2014). Similarly, magnetite formed from 

magmas will incorporate greater amounts of the relatively hydrothermal fluid-incompatible trace 

elements Ti and V into their crystalline structure, as opposed to hydrothermally derived 

magnetite that tends to contain very low Ti and V contents (Dare et al., 2014). Isotopic ratios in 

magnetite are primarily dependent on their source reservoir as well as the temperature of mineral 

formation. Magmatically derived magnetite tends to exhibit a well-defined narrow range of 

heavy values of δ56Fe and δ18O (and relatively heavy δ2H) in comparison to meteoric sources 

which typically exhibit much lighter values (Taylor, 1974; Bindeman, 2008; Weis, 2013; 

Bilenker et al., 2016), and magnetite formed as a result of immiscible Fe-rich melts will exhibit 

isotopic ratios similar to that of their parental silicate melt (Lester et al., 2013). If there are 

multiple generations of iron oxides, this will be evident in their unique textures, isotopic ratios, 

and trace element abundances (e.g. Knipping et al., 2015). 

 

APPLICATION OF FE, O, AND H ISOTOPIC SYSTEMS AND TRACE ELEMENT 

ANALYSIS TO IOA AND IOCG DEPOSITS 

I apply traditional O and H, non-traditional Fe isotopes and analyze trace elements to 

geochemically characterize the ore-forming iron oxides of four geologically and temporally 

distinct iron oxide ore deposits: The Proterozoic Pea Ridge and Pilot Knob IOA deposits of 

Missouri, USA, and the Jurassic Mantoverde manto-type IOCG and the Plio-Pleistocene El Laco 

IOA deposits of northern Chile. Historically, when attempting to decipher the timing of 

mineralization events and mineral/mineralizing fluid provenance(s) of IOA deposits, researchers 
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have overwhelmingly focused on gangue minerals associated with main-stage iron oxide 

deposition. However, these minerals effectively only act as proxies when trying to understand 

the formation conditions of the iron oxide minerals. In this dissertation, I geochemically 

characterize the most modally abundant, ore-forming minerals magnetite and hematite to directly 

characterize the ore forming fluids. 

Chapter II examines magnetite from the Mesoproterozoic Pea Ridge and Pilot Knob 

deposits of Missouri, USA, hosted in rhyolitic tuffs and coeval granites. The Pea Ridge orebody 

displays porphyritic textures, with magnetite phenocrysts occurring in a fine-grained magnetite 

matrix (Emery, 1968; Nuelle et al., 1992). The Pilot Knob deposit contains large zoned 

magnetite and hematite crystals and zones of fine-grained magnetite in contact with host rocks. 

Magnetite analyzed in this study from both deposits exhibits magmatically derived isotopic 

signatures in both deposits, and revealed three textural generations of magnetite range with TiO2 

contents that range from 0.06 to 15.93 wt % at Pea Ridge. This combination of magmatic δ18O 

and δ56Fe stable isotope ratios and the observation of three distinct magnetite generations that 

range from magmatic-hydrothermal to orthomagmatic in regards to their Ti contents indicate a 

combination of magmatic and magmatic-hydrothermal processes. This chapter is published in 

Economic Geology, 111, 2033-2044. 

Chapter III examines early-stage magnetite and late-stage hematite from the Jurassic 

manto-type Mantoverde IOCG deposit of Chile. This is the first application of the paired δ56Fe-

δ18O isotopic systems to IOCG deposits. Within the Andean Cretaceous IOCG province, many 

IOCG deposits are spatially and temporally associated with IOA deposits, and it has been 

suggested that IOCG and IOA mineralization form a continuum, where magmatic fluids deposit 

S- and metal-poor minerals at depth (IOA) and continue upwards in the crust to deposit S- and 
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metal-rich minerals at surface (IOCG) (Benavides et al., 2007; Barra et al., 2017; Simon et al., 

2018). The paired δ56Fe–δ18O data indicate a magmatic source for both magnetite and hematite 

(i.e. early and late stage mineralization). The trace element and isotopic data from both magnetite 

and hematite reveal iron oxide grew from a cooling magmatic fluid. The sum of Fe and O 

isotopic data and trace element data is largely in agreement with the IOA-IOCG continuum 

hypothesis. This chapter was accepted pending revisions to the journal Mineralium Deposita, and 

is expected to be published in early 2019. 

In Chapter IV I apply the Fe, triple O, and H stable isotopic systems to the iron oxides of 

the Plio-Pleistocene El Laco IOA orebodies of Chile. Previous works have only applied O stable 

isotopes to these deposits. El Laco is a unique IOA deposit due to the fact that the orebodies 

apparently formed at and near the surface of the crust, resulting in what appears texturally similar 

to basalt flows (Park, 1961). To test the often suggested hydrothermal replacement (Rhodes and 

Oreskes, 1999; Sillitoe and Burrows, 2002; Dare et al., 2015) and immiscible Fe-rich melt 

formation (Naslund et al., 2002; Velasco et al., 2016; Tornos et al., 2016, 2017) models we 

analyze bulk iron oxides of primarily magnetite with minor hematite and goethite. In this study, 

isotopic analyses reveal unequivocal magmatic signatures in magnetite with minor meteoric 

alteration to hematite and goethite. The sum of this data in combination with historical data from 

El Laco disallow for both the non-magmatic-hydrothermal and immiscible Fe-rich models to 

explain the iron oxide deposits at El Laco, and are most easily explained by a combination of 

magnetite precipitation from a combination of magmatic and magmatic-hydrothermal processes 

(Ovalle et al., 2018). This study will be submitted to Economic Geology for publication in 2019. 

The research presented in this dissertation effectively tests five competing genetic models 

proposed for the Pea Ridge and Pilot Knob IOA deposits of Missouri, USA, and the Mantoverde 
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IOCG and El Laco IOA deposits of Chile using a relatively simple and affordable approach. By 

applying the paired Fe–O isotopic systems to the iron oxides, researchers and exploration 

geologists can determine which of the five major models best fit their deposits, and can readily 

determine whether or not the iron oxides were derived from magmatic or non-magmatic sources. 

Combining stable isotope analyses with textural and trace element analyses of the same samples 

will allow for further contextualization of the temperatures at which those iron oxide samples 

formed, the degree of alteration, and where those samples may exist within a modeled IOA or 

IOCG system. The paired Fe–O isotopic system can be an effective addition to the exploration 

geologist’s toolbox, aiding to build time and cost efficient exploration strategies. 
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CHAPTER II 

IRON AND OXYGEN ISOTOPE SIGNATURES OF THE PEA RIDGE AND PILOT 

KNOB MAGNETITE-APATITE DEPOSITS, SOUTHEAST MISSOURI, USA 
 

ABSTRACT 

New O and Fe stable isotope ratios are reported for magnetite samples from high-grade 

massive magnetite of the Mesoproterozoic Pea Ridge and Pilot Knob magnetite-apatite ore 

deposits and these results are compared with data for other iron oxide-apatite deposits to shed 

light on the origin of the southeast Missouri deposits. The δ18O values of magnetite from Pea 

Ridge (n = 12) and Pilot Knob (n = 3) range from 1.0 to 7.0 and 3.3 to 6.7‰, respectively. The 

δ56Fe values of magnetite from Pea Ridge (n = 10) and Pilot Knob (n = 6) are 0.03 to 0.35 and 

0.06 to 0.27‰, respectively. These δ18O and the δ56Fe values suggest that magnetite crystallized 

from a silicate melt (typical igneous δ56Fe ranges 0.06–0.49‰) and grew in equilibrium with a 

magmatic-hydrothermal aqueous fluid. We propose that the δ18O and δ56Fe data for the Pea 

Ridge and Pilot Knob magnetite-apatite deposits are consistent with the flotation model recently 

proposed by Knipping et al. (2015a), which invokes flotation of a magmatic magnetite-fluid 

suspension and offers a plausible explanation for the igneous (i.e., up to ~15.9 wt % TiO2 in 

magnetite) and hydrothermal features of the deposits. 
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INTRODUCTION 

The St. Francois Mountains terrane in southeast Missouri, USA, consists dominantly of 

early Mesoproterozoic (~1.48– 1.45 Ga) rhyolitic ash-flow tuffs intercalated with mafic to 

intermediate-composition flows and shallow intrusions (Fig. 2.1; Day et al., 2016). The volcanic 

sequence was intruded by hornblende-biotite granites coeval with emplacement of the high silica 

volcanic sequence. These volcanic rocks and associated volcanogenic breccias host several large-

tonnage iron oxide-apatite (IOA) deposits, including Pea Ridge and Pilot Knob that are the focus 

of this study (see Kisvarsanyi, 1990; Marikos et al., 1990; Sims, 1990; Nuelle et al., 1992; Sidder 

et al., 1993b; Van Schmus et al., 1996; Gleason et al., 2000; King et al., 2008; Nold et al., 2014; 

Day et al., 2016). The Pea Ridge and Pilot Knob deposits were both economic iron orebodies, 

from which over 41 and 20 million metric tons (Mt) of iron ore were produced, respectively. Pea 

Ridge also hosts high concentrations of rare earth elements (REEs) in late-stage breccia pipes 

rich in monazite, xenotime, and apatite (Kisvarsanyi, 1990; Nuelle et al., 1992; Sidder et al., 

1993b; Seeger et al., 2001; Aleinikoff et al., 2016; Ayuso et al., 2016). Numerous studies have 

documented crosscutting relationships among the orebodies, the host igneous rocks, and late-

stage aplite dikes, as well as igneous textures in the magnetite orebodies, all of which have been 

interpreted as evidence for coeval magmatism and iron oxide mineralization in the St. Francois 

Mountains terrane (Kisvarsanyi, 1981; Seeger et al., 1989; Marikos et al., 1990; Nuelle et al., 

1992; Sidder et al., 1993a, b; Nold et al., 2013, 2014; Day et al., 2016). The Missouri deposits 

share strong mineralogical and geochemical similarities, e.g., similar concentrations of TiO2 in 

magnetite (Mercer et al., 2015) to the namesake Kiruna magnetite-apatite deposits in Sweden 

(Dupuis and Beaudoin, 2011; Nold et al., 2013, 2014). Genetic models that have been proposed 

to explain the features observed in the Missouri deposits include growth of magnetite from high-
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temperature, magmatic-hydrothermal fluids (e.g., Nuelle et al., 1991a; Sidder et al., 1993b), and 

crystallization of magnetite from an immiscible iron oxide-rich magma, which itself evolved a 

magmatic aqueous fluid that overprinted the igneous magnetite (e.g., Nold et al., 2013, 2014). 

However, other models have also been proposed that suggest some of the magnetite orebodies 

formed as sedimentary iron formations (Anderson, 1976; Nold, 1988) or exclusively by 

hydrothermal replacement of the host volcanic rocks (Crane, 1912; Panno and Hood, 1983). The 

Pilot Knob and Pea Ridge deposits contain as much as 60 to 90 vol % magnetite in the massive 

ores (Sidder et al., 1993b; Nold et al., 2014; Day et al., 2016). Several studies have described 

porphyritic textures in the Pea Ridge orebody, with the cores of magnetite crystals resembling 

magmatic phenocrysts occurring in a matrix of fine-grained magnetite (Emery, 1968; Nuelle et 

al., 1991a, b, 1992). Nold et al. (2014) reported that the Pilot Knob deposit also contains large 

zoned magnetite and hematite crystals, as well magmatic chill zones containing fine-grained 

magnetite on the edges of the ore-body, which they concluded are characteristic features of an 

iron-ore magma. Nold et al. (2013) and Day et al. (2016) suggested that similarities in 

mineralogy of the Pilot Knob magnetite ores and the coeval high Fe, mafic to intermediate-

composition igneous suite are consistent with a genetic relationship between magnetite in the 

orebody and these host igneous rocks. 

Gleason et al. (2000) used the homogeneity of Nd isotopes in ore samples and coeval 

igneous rocks to conclude that REEs in the breccia pipes that cut the Pea Ridge magnetite 

orebody are genetically related to the igneous rocks of the St. Francois Mountains terrane. These 

authors pointed out that significant REE mineralization could be attributed to the presence of 

high-temperature, high-salinity fluids identified in fluid inclusions in ore samples (e.g., Sidder et 

al., 1993b; Day et al., 2016). We note that Gleason et al. (2000) did not discuss whether the 



17 

proposed mineralizing brines were genetically related to (i.e., derived from) the coeval igneous 

rocks, or instead from a separate source. Fluid inclusion microthermometry data indicate that 

primary, three-phase (liquid, vapor, halite) quartz-hosted fluid inclusions in the magnetite ore 

zone of the Pea Ridge deposit have salinities of 54 to >60wt % NaCl equiv and trapping 

temperatures from 480° to >530°C (Sidder et al., 1993b). Oxygen isotope equilibration 

temperatures, calculated for quartz-magnetite pairs from 11 ore samples, range from 269° to 

688°C and average 481°C (Johnson et al., 2013), which is consistent with the fluid inclusion 

homogenization temperatures and agrees with a quartz-magnetite oxygen isotope temperature of 

480°C reported by Sidder et al. (1991). Johnson et al. (2013) presented oxygen isotope 

equilibration temperatures for apatite-magnetite pairs that range from 419° to 725°C. Johnson et 

al. (2013, 2016) point out that these temperatures are below the solidus for the ore assemblages, 

and that the data thus rule out a strictly igneous origin (i.e., via liquid immiscibility) for the 

deposits. 

More than a century of investigations have produced a wealth of field, geochemical, 

petrographic, and geophysical data for the Missouri IOA deposits. However, in total the 

published data are inconclusive with respect to the source reservoir for iron in the ore-grade 

magnetite, and no available data uniquely fingerprint one genetic model for the deposits. In this 

study, we combine “traditional” stable isotope ratios of O (18O/16O) with less-traditional stable 

isotope ratios of Fe (56Fe/54Fe) for ore magnetite from Pea Ridge and Pilot Knob to evaluate a 

possible genetic link between the ore deposits and coeval magmatism. The O and Fe stable 

isotope data are compared with data for magnetite from similar deposit types such as Kiruna in 

Sweden and several deposits in the Chilean iron belt, as well as for unequivocally magmatic 

magnetite from a variety of igneous rock types (e.g., basalt, andesite, dacite), magnetite 
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precipitated from purely magmatic-hydrothermal aqueous fluids (e.g., porphyry ore deposits), 

and from low-temperature hydrothermal fluids (e.g., banded iron formations). Our results 

represent the first combined O and Fe isotope data published for the Pea Ridge and Pilot Knob 

magnetite deposits. 

 

GEOLOGIC BACKGROUND 

The St. Francois Mountains terrane is a Mesoproterozoic igneous province that lies 

within the eastern granite-rhyolite province (Bickford and Mose, 1975; Lidiak et al., 1993; 

Bickford et al., 2015). Based on new geochemical data, the terrane is interpreted to have formed 

in a subduction zone environment, comprising igneous rocks of two distinct age ranges: an older 

(~1.48–1.45 Ga) sequence of volcanic and related plutonic rocks and a younger (~1.33–1.28 Ga) 

series of bimodal granite, mafic dikes, and gabbroic sills (Day et al., 2016, and references 

therein). The older igneous rocks are mainly high silica rhyolitic ignimbrite and associated 

volcaniclastic sedimentary rocks, with lesser amounts of basaltic to basaltic andesitic to volcanic 

and subvolcanic rocks (erroneously classified as “trachyte” in previous studies; Day et al., 2016). 

The volcanic rocks are variously intruded by hornblende-biotite granites that in places form ring 

complexes along presumed caldera structures, and granitic massifs (Kisvarsanyi, 1980; Sides et 

al., 1981). Several caldera structures have been identified that are interpreted to be the source of 

the high silica ignimbrites. All of the IOA and iron oxide-copper-gold (IOCG) deposits are 

hosted in the older early Mesoproterozoic sequence of volcanic rocks. The younger late 

Mesoproterozoic igneous episode represents a period of bimodal magmatism that resulted in the 

formation of highly evolved, two-mica, fluorine-rich “tin granites” and gabbroic sills, plutons, 

and mafic dikes that cut the older volcanic terrane (Kisvarsanyi, 1981, 1988; Bickford et al., 

2015, and references therein).  
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There is evidence for several hydrothermal events in the region during the 

Mesoproterozoic (King et al., 2008; Aleinikoff et al., 2016; Neymark et al., 2016). One event at 

1470 to 1466 Ma records the age of apatite within the magnetite ore at Pea Ridge (Neymark et 

al., 2016). Three later regional hydrothermal events occurred, with the youngest event at ca. 

1100 Ma resetting feldspar δ18O values (Wenner and Taylor, 1976; King et al., 2008; Aleinikoff 

et al., 2016). The geologic details of the IOA and IOCG deposits in the Missouri district have 

been described in many publications and we refer interested readers to the review by Day et al. 

(2016). Herein, we briefly describe the Pea Ridge and Pilot Knob deposits from which the 

samples analyzed in this study were collected. 

 

Pea Ridge 

The Pea Ridge deposit is located in Washington County, Missouri, on the northern edge 

of the Ozark uplift (Fig. 2.1), a regional uplift zone covering ~40,000 mi2 across Missouri, 

Arkansas, and Oklahoma. Magnetite in the deposit was mined for iron ore from 1964 until 2001 

(Nuelle et al., 1992; Nold et al., 2014); the mine is currently inactive. The deposit contains four 

mappable zones that are defined by different alteration assemblages and crosscutting 

relationships. In order of occurrence, from oldest to youngest, these are (1) amphibole-quartz 

zone, (2) magnetite ore zone, (3) hematite zone, and (4) silicified zone (Emery, 1968; Sidder et 

al., 1993b). Gangue minerals spatially associated with the magnetite deposit are predominantly 

apatite, with lesser amounts of quartz, pyrite, and monazite, and sparse chalcopyrite (Nuelle et 

al., 1991b); fluid inclusions are rare (Sidder, 1993a). The main magnetite iron orebody dips 75° 

SE to nearly vertical and strikes N 55° to 60° E (Husman, 1989), is approximately 760 m long 

and 100 to 200 m thick, and extends to an unknown depth. Four steeply dipping, REE-rich 

breccia pipes cut rocks along the footwall on the eastern margin of the deposit (Seeger et al., 



20 

2001). The ore, hosted in rhyolitic pyroclastic rocks, averages >60% Fe (Emory, 1968) and 

consists mainly of magnetite that is fine grained, dense, and massive, without any foliation or 

lineation present. Subordinate hematite is common as pseudomorphic grains after magnetite, 

with the degree of replacement varying from minor rim alteration to complete replacement 

(Sidder et al., 1993b). Specular hematite occurs as discrete crystals, veinlets, irregular inclusions, 

and as crystals lining vugs (Nold et al., 2014).  

Mercer et al. (2015) reported three distinct generations of magnetite in the Pea Ridge 

orebody, rhyolites, and mafic to intermediate-composition suite rocks in the deposit area. One 

generation of magnetite contains 2 to 6 wt % TiO2, a second has 1 to 2 wt % TiO2, and a third 

generation contains <0.8 wt % TiO2.    Mercer et al. (2015) interpreted the compositional and 

textural relationships among the three generations to indicate that the 2 to 6 wt % TiO2 magnetite 

grains are magmatic, and were resorbed and overgrown by the magnetite having 1 to 2 wt % 

TiO2. Magnetite grains that contain <0.8 wt % TiO2 are disseminated throughout the matrix and 

are the modally predominant form of magnetite in the orebody. 

 

Pilot Knob 

The Pilot Knob deposit is located in Iron County, Missouri, about 40 km southeast of Pea 

Ridge (Fig. 2.1). The deposit was mined from 1968 to 1980; this mine is currently inactive. The 

Pilot Knob deposit comprises a series of tabular orebodies that strike northwest and dip 

moderately southwest, and approximately parallel the layering of the host andesitic and rhyolitic 

pyroclastic rocks of the older volcanic rock series. The deposit is ca. 500 m long, 700 m in 

downdip extent, and 100 m thick. Cambrian sedimentary rocks cover the deposit to an average 

depth of about 100 m (Nold et al., 2014). The minimum age of the deposit is constrained by the 

120-m-thick crosscutting Shepherd Mountain Gabbro, which has a Sm-Nd isochron age of 1333 
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± 56 Ma (Lowell and Rämö, 1999). Two main ore types are recognized, one consisting of 

Figure 2.1: Geologic map of the Mesoproterozoic St. Francois Mountain terrane, southeast Missouri, 

USA, showing locations of Pea Ridge and Pilot Knob magnetite deposits. Modified from Day et al. 

(2016). 
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relatively homogeneous, higher grade, black euhedral magnetite that forms the bulk of the 

orebody, and a relatively heterogeneous, lower grade magnetite-cemented breccia that forms an 

envelope around the higher grade ores. Nold et al. (2013, 2014) reported that the higher grade 

ore contains fine- to medium-grained magnetite interspersed with granular silicate minerals, 

mainly albitic plagioclase, together with minerals such as K-feldspar, quartz, and chlorite. 

Magnetite in the high-grade ore contains 0.02 to 0.68 wt % TiO2; the lower grade ore is 

composed predominantly of larger magnetite grains, which typically display optically discernible 

zonation (Nold et al., 2013, 2014). Small inclusions of silicates, carbonates, sulfates, halides, and 

sulfides are present within the cores of low TiO2 magnetite grains, whereas the rims are 

relatively free of inclusions (Nold et al., 2013). The rims of these zoned magnetite grains are 

slightly enriched in Fe and depleted in Al and Si, compared to the cores (Nold et al., 2014). In 

the surrounding lower grade orebody, magnetite is finer grained and disseminated in the host 

rhyolite tuff, in which host-rock porosity appears to have controlled the heterogeneous 

distribution of magnetite (Nold et al., 2014). Magnetite, and in some cases hematite, within this 

low-grade envelope surrounds volcanic shards, an observation that has stimulated debate as to 

whether the iron oxides are mainly hydrothermal replacement features (Panno and Hood, 1983), 

or primarily magmatic (Nold et al., 2014). 

 

SAMPLE SELECTION AND MAGNETITE CHARACTERIZATION 

Seventeen samples from the Pea Ridge and Pilot Knob magnetite orebodies were 

provided by the U.S. Geological Survey and four samples from Pilot Knob were provided by 

John Nold of the University of Central Missouri. The samples from Pea Ridge were collected 

from the high-grade, massive magnetite ore zone at varying depths from the surface: 2,125, 



23 

2,275, 2,370, and 2,440 ft based on the maps of Seeger et al. (2001). Samples from Pilot Knob 

were collected from drill holes PKM-1086 (sample depth 918 ft), PKM-1098 (715 ft), PKM-

1145 (830.1, 965.8, and 979.5 ft), PKM-1174 (1,348 ft), and PKM-2079 (1,160 ft). 

A Cameca SX-100 electron probe microanalyzer (EPMA) and a JEOL 7800FLV field 

emission-scanning electron microscope (FE-SEM) at the University of Michigan were used to 

characterize magnetite ore samples as representative of those processed for Fe and O stable 

isotope analyses (Fig. 2.2). Instrumental conditions for the EPMA analyses were identical to 

those used in Knipping et al. (2015a, b) and Bilenker et al. (2016), and are reported in Table 2.1. 

Three generations of magnetite were identified in the samples (Fig. 2.2; Table 2.2). One 

generation consists of small (10–30 µm), subhedral to euhedral magnetite grains that contain 

<0.02 to 0.26 wt % TiO2. A second generation having a massive, spongy texture contains <0.02 

to 0.35 wt % TiO2. A third generation of magnetite, localized within the massive spongy 

magnetite, contains 10.6 to 15.9 wt % TiO2. The presence of three discernible generations of 

magnetite and their compositions, as determined herein, are consistent with those reported by 

Mercer et al. (2015) for samples from the same orebody. In our study, it was not possible to 

physically separate the three generations of magnetite. The Fe and O stable isotope data reported 

here were obtained by processing and analyzing aggregates of these three generations of 

magnetite. 
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Figure 2.2: Images of a representative Pea Ridge magnetite grain processed for O and Fe stable isotope 

analyses. (A). Backscattered electron (BSE) image of three generations of magnetite are discernible by 

variations in gray hues. Most of the sample is magnetite that contains 0.02 to 0.35 wt % TiO2 (magnetite 

generation Y, Table 2.2). White arrows with diamond tips point to brighter gray, subhedral to euhedral 

magnetite that contains 0.06 to 0.26 wt % TiO2 (magnetite generation X, Table 2.2); arrows without 

diamond tips point to darker gray magnetite that contains 10.62 to 15.93 wt % TiO2 (magnetite generation 

Z, Table 2.2). (B). Fe element map. (C). Ti element map. 

 

STABLE ISOTOPE ANALYTICAL METHODS 

Whole magnetite samples were wrapped in weighing paper and crushed with a plastic-

sheathed mallet to reduce the grain size to less than 1 mm. Magnetite grains were separated from 

the crushed material by use of a hand magnet wrapped in a Kimwipe. The separated grains of 

magnetite were then inspected using a binocular microscope at ~40× magnification to select the 

most uniform grains. Grain sizes between ~0.3 and 0.8 mm were chosen for O and Fe isotope 

analyses. 

Grains selected for Fe analysis were further crushed to hasten acid digestion by use of an 

alumina-ceramic mortar and pestle that were rinsed in ethanol between samples to avoid 

contamination. Aliquots of polished magnetite grains from all samples were inspected at high 

magnification using backscattered electron (BSE) imaging on a Cameca SX-100 electron 

microprobe (SEM) and separately on a JEOL-7800FLV field emission-scanning electron 
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microscope (FE-SEM). The magnetite grains in the size fraction used for analyses were free of 

weathering features and are predominantly magnetite. 

 

Oxygen isotopes 

Oxygen isotope analyses of magnetite were conducted at the University of Oregon using 

a laser fluorination line coupled with a Thermo-Finnigan MAT 253 gas isotope ratio mass 

spectrometer used in dual inlet mode. Magnetite grains (2–3 mg) from each sample were 

subjected initially to low-power lasing, which was slowly increased in order to minimize 

jumping movements during fluorination with BrF5. For samples that did not experience grain 

jumping, O2 yields were close to the theoretical value of 100%. All data were compared to the 

Gore Mountain garnet standard, which was measured before, during, and after analysis of 

magnetite samples. Oxygen isotope values (Table 2.3) are reported relative to the international 

Vienna Standard Mean Ocean Water (VSMOW) standard. Average values for standard Gore 

Mountain garnet (δ18OGMG ± 1σ) over three days of measurements were 7.23 ± 0.10, 7.21 ± 

0.11, and 7.19 ± 0.08‰. Analytical precision for individual analyses is ±0.10‰. The analytical 

values were adjusted by the difference between our measured standard values for each day and 

the recommended δ18O value of 6.52‰ for the Gore Mountain garnet standard. 

 

Iron isotopes 

Magnetite samples were subjected to ion chromatography to isolate Fe for isotopic 

analysis. Between ~0.3 and 0.7 mg of each sample was dissolved and dried down in aqua regia, 

again in 8N HCl, and then loaded into columns of AG1-X8 resin in 8N HCl, following the 

procedure described by Huang et al. (2011). Analyses were performed at the University of 

Illinois, Urbana-Champaign, using a Nu Plasma HR multi collector-inductively coupled plasma-
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mass spectrometer (MC-ICP-MS) in dry plasma mode with a DSN-100 Desolvating Nebulizer 

System. All analyses were conducted following the double-spike method of Millet et al. (2012) 

to correct for instrumental mass bias and increase precision. Two aliquots of each sample were 

analyzed, and between each aliquot the international standard IRMM-14 was analyzed to 

monitor and correct for instrumental drift (Millet et al., 2012). The bracketing standard was also 

analyzed using the DSN-100 System. Iron isotope values (Table 2.3) are reported relative to 

IRMM-14, calculated by using the following equation: 

 

                   δ56Fesample (‰) = [(56Fe/54Fe)measured/(
56Fe/54Fe)IRMM-14 – 1] * 1,000               (1) 

 

The in-house standard UIFe was measured to an average δ56Fe value of 0.73 ± 0.01‰ 

(1SE, n = 16, two sessions over five months); the international standard BCR-2 yielded an 

average δ56Fe value of 0.08 ± 0.02‰ (1SE, n = 2; recommended value is 0.091 ± 0.011‰; 

Craddock and Dauphas, 2011). 

 

RESULTS 

Oxygen isotope compositions of magnetite 

Stable O isotope ratios for magnetite are reported as δ18O values in Table 2.3 and Figure 

2.3. The δ18O (±2σ) values for Pea Ridge magnetite samples collected at depths (from surface) of 

2,125, 2,275, 2,370, and 2,440 ft are 4.56‰ (n = 1), 1.02‰ (n = 1), 4.32 ± 3.93‰ (n = 8), and 

4.77 ± 0.78‰ (n = 2), respectively. Sample 954-5-205 from Pea Ridge was measured to be 

5.50‰ (n = 1). The δ18O (±2σ) values for Pilot Knob magnetite from samples PK-1145 are 3.26, 

6.68, and 6.21‰ for depths of 830.1, 965.8, and 979.5 ft, respectively. 

 

Iron isotope compositions of magnetite 



27 

Stable Fe isotope ratios for magnetite are reported as δ56Fe values in Table 2.3 and Figure 

2.4. We highlight the fact that not all samples that were analyzed for O isotope ratios were 

analyzed for Fe isotopes. The average δ56Fe (±2σ) value for Pea Ridge magnetite is 0.17 ± 

0.20‰ (n = 10), with a low of 0.03‰ and a high of 0.35‰. The average δ56Fe (±2σ) value for 

Pilot Knob magnetite is 0.18 ± 0.15‰ (n = 6), with a low of 0.06‰ and a high of 0.27‰. 

 

DISCUSSION 

Constraints on the source reservoir of O and Fe in the Pea Ridge and Pilot Knob deposits 

Oxygen isotopes: Previous studies: There is a relative paucity of published O isotope data 

for the Missouri iron oxide deposits, albeit new work by Johnson et al. (2016) provides an 

important dataset to help understand the origin of these ore-forming systems. The early study of 

Wenner and Taylor (1976) presented δ18O data for 25 granites, 21 rhyolites, and 10 basaltic sills 

from the St. Francois Mountains terrane. They reported that the whole-rock and feldspar δ18O 

values increase systematically from 7 to 14 and 6 to 13‰, respectively, northeast to southwest, 

with increasing δ18O correlating with partial chloritization of hornblende (where present) and 

increasing degree of alteration of K-feldspar to a “brick-red” K-feldspar containing dust-sized 

hematite inclusions. Wenner and Taylor (1976) reported δ18O values that range from 7.5 to 9.5‰ 

for fresh, unaltered gabbro and basalt, and values ranging from 6.3 to 10.1‰ for altered diabase 

and basalt. Wenner and Taylor (1976) also reported δ18O values of 8.8 to 10.6‰ for primary 

igneous coarse-grained quartz (≥1.0 mm) from regional samples of the St. Francois Mountains; 

these δ18O values are consistent with δ18O values reported for quartz from most igneous rocks 

(Bindeman, 2008). In contrast, the δ18O values for fine-grained quartz (≤0.3 mm) showed spatial 

variability, becoming isotopically heavier from northeast to southwest, consistent with the 

whole-rock and feldspar data, and likely reflecting secondary alteration. Wenner and Taylor 
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(1976) also reported δD values for chlorite and, together with the δ18O data for whole rocks, 

feldspar, and both coarse- and fine-grained quartz, concluded that the entire St. Francois 

Mountains terrane experienced low-temperature hydrothermal alteration several hundred m.y. 

after igneous activity and formation of the ore deposits. Wenner and Taylor (1976) proposed that 

meteoric surface waters were responsible for the ca. 1100 Ma hydrothermal alteration, 

characterized by δ18O and δD values similar to modern-day meteoric waters found in warm 

climates, at low latitude and low elevation. Sidder et al. (1993a) reported a δ18O value of 15.2‰ 

for quartz in the magnetite ore zone of the Pea Ridge deposit, and δ18O values from 14.5 to 

15.7‰ for quartz from the amphibole-quartz zone and the postmagnetite ore silicified zone, 

respectively. Sidder et al. (1993b) described quartz from the amphibole-quartz zone as forming 

both interstitial grains and massive pods 1 to 50 cm in diameter. Within the magnetite ore zone, 

quartz constitutes 1 to 10 modal % of the rock, present as interstitial grains to magnetite as well 

as in pods and linings of vugs. Sidder et al. (1993a) calculated equilibrium δ18O temperatures up 

to 680°C for quartz-magnetite pairs for the premagnetite ore skarn alteration of the host rhyolitic 

tuff, and homogenization temperatures up to 530°C for primary halite-bearing (54–60 wt % 

NaCl equiv.) fluid inclusions in quartz from the magnetite ore zone. These observations were 

interpreted by Sidder et al. (1993b) to indicate that formation of the Pea Ridge iron orebody and 

REE-rich breccia pipes involved highly saline, high-temperature, magmatically derived 

hydrothermal fluids. A similar conclusion was reached by Hofstra et al. (2016), based on new 

fluid inclusion data. 

King et al. (2008) reported δ18O data for samples of the Royal Gorge Rhyolite from the 

Taum Sauk caldera (Fig. 2.1), including one sample of brecciated rhyolite ash-flow tuff at the 

Pilot Knob deposit. Their whole-rock δ18O values range from 12.69 to 15.12‰ (avg δ18O = 14.1 
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± 0.9‰; n = 6). These authors also presented δ18O values for alteration-resistant zircon from the 

St. Francois Mountains terrane that vary from 5.8 to 8.2‰ (avg δ18O = 7.3 ± 1.1‰), which are 

higher than the accepted mantle δ18O value of 5.3‰, but consistent with those for zircons from 

Proterozoic rocks (i.e., δ18O = 7.3 ± 1.5‰; Valley et al., 2005). The highest δ18O value of 8.2‰ 

for zircon would correspond to a magmatic value of 10 to 10.5‰ (Trail et al., 2009). King et al. 

(2008) cited published Sm/Nd and U/Pb data (from Gonzales and Van Schmus, 2007) and 

attributed the elevated δ18O (Zrc) values to a shift in the composition of post-Archean subducted 

sediments, coupled with assimilation of supracrustal rocks in subduction zone magmas. 

New data: The O isotope data from this study are plotted in Figure 2.3 together with δ18O 

data for other IOA deposits from Nyström et al. (2008), Jonsson et al. (2013), Weis (2013), 

Knipping et al. (2015a), and Bilenker et al. (2016). Results for δ18O values in magnetite samples 

from Pilot Knob and Pea Ridge overlap those reported for magnetite from IOA deposits in the 

Kiruna district (i.e., Grängesberg and Kiruna) and several IOA deposits in the Chilean iron belt. 

We highlight the fact that none of the Pea Ridge and Pilot Knob samples has a δ18O value below 

0.9‰, which is interpreted as the lower limit for orthomagmatic (igneous) magnetite (cf. Taylor, 

1967). Magnetite samples from other IOA deposits that have δ18O values below 0.9‰ have been 

attributed to post-mineralization metasomatic alteration that affected the magnetite, which 

originally formed either by crystallization from a silicate melt or precipitation from a magmatic-

hydrothermal fluid (Jonsson et al., 2013; Weis, 2013; Knipping et al., 2015a, b; Bilenker et al., 

2016). The δ18O ratios for magnetite from Pea Ridge range from 1.02 to 7.03‰ and for Pilot 

Knob from 3.26 to 6.68‰. The majority of magnetite samples (11 of 16) analyzed from Pea 

Ridge and Pilot Knob are isotopically heavier than the δ18O range reported for orthomagmatic 

magnetite (Fig. 2.3). These heavier values (i.e., 4‰ ≤δ18O ≤7‰) are consistent with magnetite 
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that formed in equilibrium with a silicate melt. Considering that the magnetite ore bodies are 

hosted in time-equivalent volcanic rocks (Neymark et al., 2016) and radiogenic isotope evidence 

suggests a genetic relationship between the orebodies and magmatic host rocks (e.g., Gleason et 

al., 2000; Ayuso et al., 2016), it seems prudent to test this hypothesis. 

 

Figure 2.3: Oxygen isotope (δ18O) values for magnetite from Pilot Knob and Pea Ridge orebodies 

compared to those for other iron oxide-apatite deposits (adapted from Jonsson et al., 2013). Pink box 

(δ18O = 1–4‰) is range for orthomagmatic magnetite (Taylor, 1967). Red box (δ18O = 2.2–2.6‰) 

represents magnetite in equilibrium with mid-ocean ridge basalt (MORB). Pale orange box (δ18O = 6.6–

7.3‰) is magnetite in equilibrium with silicate magma having δ18O of 10‰. Vertical dash-dot line 

represents cutoff between magnetite derived from silicate magma or magmatic-hydrothermal fluid, which 

in both cases would have δ18O >0.9‰, and with low-temperature hydrothermal fluid having δ18O <0.9‰ 
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(cf. Jonsson et al., 2013). Literature sources for published δ18O values for magnetite from Chilean iron 

belt, El Laco, Kiruna, Grängesberg, and Yellowstone are in Supplementary Table A.1. The 2σ 

uncertainties for all data points are smaller than the symbols, and are reported in Table 2.3. 

Potential source magmas: We calculate the δ18O values of theoretical parent magmas 

using the new δ18O data presented here and published magnetite-melt fractionation factors. The 

host magmatic rocks of both Pea Ridge and Pilot Knob are predominantly rhyolite ash-flow tuff; 

however, spatially associated with these deposits are volumetrically abundant and possibly 

coeval, subvolcanic Fe-rich, mafic to intermediate-composition igneous intrusions (Day et al., 

2016). Fractionation factors are used from Zhao and Zheng (2003) and equation (2): 

 

                                       Δ18Omagnetite-magma = δ18Omagnetite – δ18Omagma,                (2) 

 

to calculate the theoretical δ18O isotope composition of a parent magma. A parent basalt or 

andesite would have δ18O of 9.4 or 9.8‰, respectively, in equilibrium with magnetite that has a 

δ18O value of 7‰ (Δ18Omagnetite-basalt = –2.4‰; Δ18Omagnetite-andesite = –2.8‰). A somewhat higher 

theoretical δ18O value of about 10.3‰ is obtained for rhyolite magma by using Δ18Omagnetite-

rhyolite of –3.3‰. Values of δ18O of 9 to 10‰ for a parent magma in equilibrium with magnetite 

that has a δ18O value of 7‰ are generally slightly higher than those reported for fresh, unaltered 

igneous rock, but are consistent with the limited published δ18O data reported for igneous rocks 

from the St. Francois Mountains terrane, as discussed above, and may also reflect later low-

temperature hydrothermal alteration (cf. Wenner and Taylor, 1976). 

We suggest that the new δ18O data reported here for magnetite are consistent with a 

predominant magmatic source for O in magnetite within the massive magnetite ore zones of both 

the Pea Ridge and Pilot Knob deposits. The magnetite samples having the highest δ18O values 

indicate an origin in equilibrium with a silicate melt (Fig. 2.3); samples with δ18O values 

between ca. 1 and 4‰ indicate equilibrium with a moderate- to high-temperature, magmatic-
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hydrothermal fluid (see also Johnson et al., 2016). Based on magnetite-water fractionation 

factors published by Cole et al. (2004), the lowest δ18O values measured in magnetite from the 

Pea Ridge deposit are consistent with magnetite that grew in equilibrium with a high-temperature 

fluid evolved from a magmatic source (Fig. 2.3; cf. Hedenquist and Lowenstern, 1994). For 

example, a δ18O value of 1.0‰ in magnetite requires a fluid with δ18O = 8‰ at 600°C and 10‰ 

at 300°C, which is entirely consistent with reported O isotope values for magmatic-hydrothermal 

fluids generated in arc magma systems (Hedenquist and Lowenstern, 1994). We recognize that 

the lower δ18O values could reflect reequilibration of magnetite during one of several 

hydrothermal events that overprinted the St. Francois Mountains terrane, which undoubtedly 

involved crustally derived fluids (King et al., 2008; Hofstra et al., 2016; Johnson et al., 2016). 

Similar observations have been made for magnetite in IOA deposits of the Grängesberg and 

Kiruna districts, Sweden (cf. Jonsson et al., 2013). However, complete dissolution and 

reprecipitation of magnetite shifts δ18O to values of <0.9‰ (Fig. 2.3; Jonsson et al., 2013; Weis, 

2013). Further, as discussed below, Fe isotope data for magnetite from the Pilot Knob and Pea 

Ridge deposits presented here are consistent with a magmatic source reservoir for iron in 

magnetite from the Pea Ridge and Pilot Knob magnetite deposits. The observed δ18O values for 

magnetite do not allow us to directly resolve the origin of the heavy δ18O composition of quartz 

within the deposits (e.g., Johnson et al., 2013, 2016). However, it is plausible that these heavy 

values for quartz reflect low-temperature hydrothermal alteration by crustal fluids that evolved 

from sedimentary rocks, which is evident in the comparison of δ18O data from zircon and quartz 

(King et al., 2008; Barton, 2014). 

Iron isotopes: The δ56Fe values determined here average 0.17 ± 0.20‰ (n = 10) and 0.16 

± 0.13‰ (n = 6) for magnetite from the Pea Ridge and Pilot Knob deposits, respectively. These 
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values are similar to those for magnetite from other IOA deposits such as in the Grängesberg 

district, Sweden, and several deposits in the Chilean iron belt (Fig. 2.4; Weis, 2013; Knipping et 

al., 2015a, b; Bilenker et al., 2016). The data for Pea Ridge and Pilot Knob overlap δ56Fe values 

of magnetite from a variety of igneous rocks and are consistent with the magnetite-hosted iron in 

the orebodies having a genetic relationship with the coeval igneous rocks. The δ56Fe data for 

magnetite from IOA deposits such as Mineville (New York) and Grängesberg that plot outside 

the magmatic/magmatic-hydrothermal range (Fig. 2.4) were interpreted by Weis (2013) and 

Bilenker et al. (2016) to reflect hydrothermal alteration that shifted the Fe isotope compositions 

to lower δ56Fe values. For example, in the Mineville IOA deposit, primary magnetite was 

completely dissolved and reprecipitated (Valley et al., 2011), resulting in isotopically lighter Fe 

in secondary magnetite owing to Fe isotope fractionation between aqueous fluids and magnetite 

(cf. Heimann et al., 2008). If magnetite in the Pea Ridge and Pilot Knob deposits precipitated 

from an ore fluid that was meteoric in origin, this fractionation process would result in δ56Fe 

values of <0.0‰ (Fig. 2.4). 
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Figure 2.4: Iron isotope (δ56Fe) values of magnetite from Pilot Knob and Pea Ridge orebodies compared 

to those from other IOA ore deposits, igneous magnetite, magmatic-hydrothermal magnetite, and low-

temperature hydrothermal magnetite (adapted from Bilenker et al., 2016). Data are from Weis (2013; 

triangles), Bilenker et al. (2016; diamonds), and this study (circles). Open triangles represent data for 

volcanic reference materials (Weis, 2013). Pink box encompasses complete range of δ56Fe values for 

magnetite from unaltered volcanic and plutonic rocks, based on data in Heimann et al. (2008) and 

Bilenker et al. (2016). Blue box encompasses complete range of δ56Fe values for magnetite from low-

temperature hydrothermal ores, based on data in Anbar (2004), Shüßler (2008), and Severmann and 

Anbar (2009). The 2σ uncertainties for all data points are smaller than the symbols, and are reported in 

Table 2.3. The δ56Fe values from the literature are provided in Supplementary Table A.2. 

The δ56Fe data presented here cannot be used alone to discriminate between models that 

invoke magnetite crystallization from an igneous melt versus magnetite that precipitated from a 

high-temperature, magmatic-hydrothermal fluid. However, the combination of new δ56Fe and 

δ18O stable isotope data, which argue for a predominant magmatic reservoir for Fe and O in 
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magnetite in the Pilot Knob and Pea Ridge orebodies (Figs. 2.3, 2.4), and the observation of local 

Ti-rich magnetite within the deposits (Fig. 2.2; Table 2.2; Mercer et al., 2015), allow us to 

suggest a new model for the Pea Ridge and Pilot Knob deposits. 

 

A fluid-suspension model for the magnetite at Pea Ridge and Pilot Knob magnetite deposits 

Knipping et al. (2015a, b) recently proposed a model that combines magmatic and 

magmatic-hydrothermal processes and offers a plausible explanation of interpreted magmatic 

and magmatic-hydrothermal features in many IOA deposits. Their model was based on an 

investigation of mineralization in the world-class Los Colorados IOA deposit in the Chilean iron 

belt. The model invokes magnetite crystallization from an intermediate-composition silicate 

melt, followed by volatile saturation of the melt and wetting of the magnetite crystals owing to 

the much more favorable surface tension properties between oxides and aqueous fluid, relative to 

silicate minerals (cf. Hurwitz and Navon, 1994; Matveev and Ballhaus, 2002). Coalescence of a 

buoyant, magnetite-fluid suspension allows the igneous magnetite to ascend through the magma 

chamber, most likely via hydraulic fractures created by tectonic stress changes in the magmatic 

system. Fast decompression allows the magnetite-fluid suspension to segregate into the fractures, 

and in the southeast Missouri deposits to percolate through porous and brecciated pyroclastic 

host rocks. Similar observations have been made for the Los Colorados deposit where diorite 

contains as much as 25 vol % magnetite adjacent to the main magnetite orebodies (Knipping et 

al., 2015a, b). Finally, during ascent of the magnetite-fluid suspension, magnetite growth 

continues during decompression and forms hydrothermal magnetite rims on igneous magnetite 

cores. 

The textures reported for massive magnetite from Los Colorados are similar to those 

reported for magnetite from the Pea Ridge deposit where magnetite locally has cores interpreted 
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as igneous phenocrysts (Nuelle et al., 1992; Nold et al., 2014). Gangue mineral inclusions found 

in magnetite from this deposit are predominantly apatite, plus lesser amounts of quartz, pyrite, 

and monazite (Nuelle et al., 1991b). A polymineralic solid inclusion assemblage in magnetite is 

also present in the Los Colorados deposit (Deditius et al., 2015; Knipping et al., 2015a, b). These 

observations can be explained if minerals such as apatite were floated as part of the magnetite-

fluid suspension, and/or by post-entrapment reactions between magnetite and the surrounding 

aqueous fluid that can precipitate mineral phases otherwise not stable at the formational 

temperature of the inclusions (cf. Matveev and Ballhaus, 2002). The high solubility of SiO2 in 

most magmatic-hydrothermal fluids easily accounts for the presence of quartz in the deposits 

(Newton and Manning, 2000). The presence of monazite likely reflects secondary fluid-induced 

alteration of primary REE-rich apatite (Harlov, 2015; Harlov et al., 2016); geochemical evidence 

(e.g., high Co/Ni ratios) presented by Reich et al. (2016) for pyrite from Los Colorados indicates 

that pyrite also can form from a cooling, magnetite-fluid suspension. 

Magnetite in the Los Colorados deposit contains three-phase, halite-liquid-vapor fluid 

inclusions, which indicate a minimum salinity of 35 wt % NaCl equiv. for the magmatic-

hydrothermal fluid that is invoked in the magnetite-fluid suspension model (Knipping et al., 

2015a, b). This salinity is lower than those reported for hypersaline fluid inclusions in apatite 

from the magnetite ore zone in the Pea Ridge deposit (Hofstra et al., 2016). The highly saline 

fluid is a critical part of the Knipping et al. (2015a) model, because a fluid of this composition is 

able to transport significant amounts of Fe as FeCl2 (cf. Simon et al., 2004; Bell and Simon, 

2011), and also rare earth metals (cf. Reed et al., 2000; Tanis et al., 2012). At Los Colorados, the 

host diorite is brecciated and magnetite rich, with the proportion of magnetite increasing toward 

the contact with the massive magnetite orebody. These features are consistent with the proposed 
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fluid suspension having percolated into the host diorite where magnetite precipitated in open 

pore space and around igneous minerals in the diorite. The magnetite-fluid suspension model is 

also plausible for the magnetite-cemented breccia at Pilot Knob, which also contains a Fe-rich 

envelope around the magnetite deposit. After the majority of the magnetite in the ascending fluid 

is deposited to form the massive magnetite ore, the fluid, which still contains a high 

concentration of Fe (Simon et al., 2004), can percolate through the porous and permeable 

pyroclastic host rock where it precipitates magnetite in open space and around volcanic shards. It 

is also possible that magnetite replaced the volcanic groundmass. Textural evidence in support of 

this process was described by Nold et al. (2014) and is entirely consistent with the magnetite-

fluid suspension model for IOA deposits proposed by Knipping et al. (2015a). We recognize that 

the model does not address every aspect of the Pea Ridge and Pilot Knob deposits. However, 

similarities between the geochemical and textural features of the Missouri IOA deposits and the 

Los Colorados IOA deposit are consistent with this genetic model. 

 

FINAL REMARKS 

Stable Fe and O isotope data presented here suggest a magmatic source for the iron and 

oxygen in high-grade massive magnetite in the Mesoproterozoic Pea Ridge and Pilot Knob 

orebodies and provide new insights into the origin of these IOA deposits. The igneous δ18O and 

δ56Fe signatures of the analyzed magnetite samples allow us to infer that meteoric fluids or 

basinal brines were not involved in formation of the deposits. Our new δ18O and δ56Fe data are 

consistent with a combination of magmatic and magmatic-hydrothermal growth of magnetite, 

and with the magnetite-fluid flotation model proposed recently for IOA deposits elsewhere. 
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TABLES 

Table 2.1: Oxygen and iron stable isotope ratios of magnetite measured in this study from the Pea Ridge and Pilot 

Knob iron oxide-apatite orebodies 

Location Sample Depth (ft) δ18O (‰) 2σ δ56Fe (‰) 2σ 

Pea Ridge, USA PR-148 2125 4.56 0.06    
  PR-153 2275 3.18 0.04    
  PR-158 2275   0.26 0.08 
  PR-18 2370 2.12 0.04 0.32 0.05 
  PR-64A 2370 4.87 0.10 0.20 0.05 
  PR-65 2370 5.10 0.06    
  PR-73 2370 1.24 0.06    
  PR-77A 2370 5.11 0.08 0.21 0.02 
  PR-82A 2370 5.90 0.06 0.10 0.02 
  PR-82B 2370 7.03 0.04 0.03 0.02 
      0.07 0.05 
  PR-163 2370 1.02 0.06    
  PR-37 2440 4.50 0.06 0.07 0.05 
  PR-144 2440 5.04 0.08 0.26 0.09 
      0.10 0.02 
  954-5-205 ? 5.50 0.08    
         
Pilot Knob, USA PK-1145-830.1 830.1 3.26 0.08    
  PK-1145-965.8 965.8 6.68 0.08 0.19 0.03 
  PK-1145-979.5 979.5 6.21 0.06 0.24 0.04 

  PK-1086-9181 918   0.14 0.05 

  PK-1098-7151 715   0.18 0.03 

  PK-1174-13481 1348   0.06 0.05 

  PK-2079-11601 1160     0.27 0.06 

 
1Sample provided by Dr. John Nold of the University of Central Missouri  



46 

Table 2.2: Analytical conditions for electron probe microanalysis 

(EPMA)   

20kV, 30 nA, focused; MDL is mean detection limit 

Element/Line Crystal Standard Counting time [s] 
MDL [Oxide 

wt%] 

Mg/Kα TAP geikielite 100 0.02 
Al/Kα TAP zoisite 100 0.02 
Si/Kα LTAP wollastonite 100 0.01 
Ca/Kα PET wollastonite 100 0.01 
Ti/Kα PET ilmenite 120 0.02 

V/Kα LLIF V2O5 120 0.01 

Cr/Kα LLIF Cr2O3 100 0.01 
Mn/Kα LLIF rhodondite 100 0.01 
Fe/Kα LLIF magnetite 20 0.03 
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Table 2.3: EPMA data for three generations of magnetite (see Figure 2.2) in Pea Ridge sample PR-144, 

reported in weight percent oxides. Blank spaces indicate an analysis that was below detection limit as 

reported in Table 2.2. The generations X, Y, Z are shown in Figure 2.2 and described in the Figure 2.2 

caption. 

Magnetite 
Generation 

MgO Al2O3 SiO2 CaO TiO2 V2O3 Cr2O3 MnO FeO Total 

X     0.03     0.06 0.01   93.07 93.19 
   0.02 0.02   0.07 0.01  92.96 93.11 
    0.02   0.06  0.05 93.08 93.23 
   0.02 0.05   0.06  0.06 92.95 93.14 
   0.04 0.02   0.06 0.01  93.38 93.52 
    0.01   0.06   93.39 93.51 
    0.02   0.07  0.04 93.50 93.64 
   0.03 0.02   0.06  0.03 93.19 93.36 
    0.02  0.25 0.06  0.01 92.77 93.12 
    0.03   0.06  0.02 93.15 93.28 
    0.02   0.06   93.29 93.40 
   0.04 0.02  0.09 0.07  0.02 93.33 93.56 
   0.02 0.04  0.26 0.05 0.01 0.01 92.68 93.08 
    0.03  0.14 0.05  0.01 93.41 93.67 
   0.02 0.02  0.06 0.06 0.01 0.02 93.45 93.64 
   0.07 0.10  0.20 0.06 0.01 0.01 92.54 93.00 
    0.03  0.25 0.05 0.01  92.55 92.91 
    0.02  0.15 0.06   93.06 93.34 
   0.02 0.02   0.06 0.01  93.16 93.28 
    0.02   0.06  0.02 93.38 93.48 

      0.02     0.06   0.02 92.96 93.08 

Y   0.06 0.02     0.04     90.26 90.39 
   0.05 0.02   0.07   89.85 89.98 
   0.09 0.02  0.05 0.10 0.01  89.81 90.06 
   0.06 0.01  0.09 0.07 0.03  89.95 90.21 
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   0.06 0.02  0.13 0.05   90.33 90.57 
   0.06 0.03  0.02 0.08   90.23 90.41 
   0.08 0.02  0.35 0.06 0.01  89.59 90.11 
   0.06 0.02   0.07 0.02  89.96 90.23 
   0.03 0.02   0.07 0.01  89.91 90.04 
   0.07 0.02   0.10   90.52 90.71 
   0.12 0.01   0.05   90.51 90.68 
    0.04 0.01     0.07     89.81 89.94 

Z 0.05 0.03 0.02   15.93 0.03 0.02 0.02 74.96 91.03 
  0.04 0.05 0.01  13.14 0.05  0.02 77.57 90.90 
  0.04 0.04 0.02  13.26 0.05  0.01 77.84 91.27 
  0.05 0.04 0.03  10.62 0.07 0.01 0.02 80.17 90.99 
  0.04 0.04 0.02  13.10 0.05  0.02 77.31 90.58 
  0.19 0.03 0.01  15.08 0.04  0.05 76.32 91.72 
  0.10 0.06 0.02  14.48 0.05  0.03 75.77 90.49 
  0.04 0.06 0.02  14.71 0.04  0.01 75.89 90.79 
  0.05 0.03 0.01  13.11 0.05  0.02 77.68 90.97 

  0.06 0.04 0.01   14.80 0.05   0.02 76.15 91.13 
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CHAPTER III 

FORMATION OF THE MANTOVERDE IRON OXIDE - COPPER - GOLD DEPOSIT, 

CHILE: INSIGHTS FROM FE AND O STABLE ISOTOPES AND COMPARISON TO 

IRON OXIDE - APATITE DEPOSITS 

ABSTRACT 

The Mantoverde iron oxide – copper – gold (IOCG) deposit, Chile, contains hundreds of millions 

of tonnes (Mt) of mineable iron oxide and copper sulfide ore. While there is agreement that 

mineralization at Mantoverde was caused by hydrothermal fluid(s), there is a lack of consensus 

for the role(s) that non-magmatic vs. magmatic fluid(s) played during the evolution of the 

mineralized system. In order to overcome the extensive hydrothermal overprint at Mantoverde, 

which is known to disturb most conventional stable isotope systems (e.g., oxygen), we report the 

first δ56Fe and δ18O pairs for early-stage magnetite and late-stage hematite that fingerprint the 

source of the ore fluids for these modally dominant oxide minerals in the Mantoverde system. 

Magnetite δ56Fe values range from 0.46 ± 0.04 ‰ to 0.58 ± 0.02 ‰, and average 0.51 ± 0.16 ‰ 

(n = 10; 2σ). Three hematite δ56Fe values were measured to be 0.34 ± 0.10 ‰, 0.42 ± 0.09 ‰, 

and 0.46 ± 0.06 ‰. Magnetite δ18O values range from 0.69 ± 0.04 ‰ to 4.61 ± 0.05 ‰ and 

average 2.99 ± 2.70 ‰ (n = 9; 2σ). Hematite δ18O values range from -1.36 ± 0.05 ‰ to 5.57 ± 

0.05 ‰ and average 0.10 ± 5.38 ‰ (n = 6; 2σ). These new δ56Fe and δ18O values complement 

published data for isotopes of Re, Os, C, O, S, Sr, Pb, Ar, Kr, Xe and halogen ratios for samples 

from hypogene mineralization, and fingerprint a magmatic-hydrothermal fluid as the 

predominant ore forming fluid responsible for IOCG mineralization in the Mantoverde deposit.
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INTRODUCTION 

Iron oxide - copper - gold (IOCG) deposits contain anomalous concentrations of 

magnetite and/or hematite and Cu- and Au-bearing sulfides. Since the discovery in the 1970s of 

the giant Precambrian Olympic Dam deposit in Australia, the largest discovered deposit of this 

type, investigations of IOCG deposits have focused on determining the source reservoir(s) of the 

ore-forming fluids (and their contained metals) responsible for mineralization (Roberts and 

Hudson 1983; Hitzman et al. 1992; Porter 2000). Iron oxide - copper - gold deposits occur 

globally, are commonly associated with crustal extension related to subduction zone tectonism 

(Sillitoe 2003; Richards and Mumin 2013a,b; Montreuil et al. 2016), and ages of mineralization 

range from the Archean to the Cenozoic (Groves et al. 2010; Barton 2014). The deposits 

typically exhibit variable quantities of their namesake metals, containing up to several billion 

tonnes of Fe ore and hundreds of millions of tonnes of Cu ore, and some deposits contain 

elevated and mineable grades of light rare earth elements (LREE), P, U, Ag, Co, Ba and F 

(Sillitoe 2003; Williams et al. 2005; Groves et al. 2010; Barton 2014). Despite decades of 

studies, and multiple comprehensive genetic models (Mumin et al. 2010; Richards and Mumin 

2013a,b; Barton 2014; Simon et al. 2018), consensus on the formation of IOCG deposits remains 

elusive. Disagreement on a genetic model stems from a lack of correlation between IOCG 

deposits and specific tectonic or magmatic settings and a lack of geochemical constraints on the 

source of the ore fluids required for efficient metal transport and mineralization. Working 

hypotheses proposed to explain the origin of the ore-forming fluids include: 1) a magmatic-

hydrothermal fluid evolved from a silicate magma (e.g., Pollard 2006; Nyström et al. 2008; 

Rieger et al. 2010, 2012; Jonsson et al. 2013; Knipping et al. 2015a,b; Reich et al. 2016); 2) non-

magmatic hydrothermal fluids such as meteoric fluids or basinal brines driven by heat from 
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either a magma body or the crustal geotherm (e.g., Barton and Johnson 1996; Sillitoe and 

Burrows 2002; Benavides et al. 2007); 3) metamorphic hydrothermal fluids derived from 

metamorphic devolatilization and water-rock interaction (Fisher and Kendrick 2008); and 4) a 

magmatic-hydrothermal fluid evolved from a volatile-bearing iron oxide melt, which itself 

evolved via liquid immiscibility from a silicate magma (Nyström and Henríquez 1994; 

Travvisany et al. 1995; Naslund et al. 2002; Barton 2014). However, it is relevant to note that no 

single genetic model explains the formation of the whole spectrum of IOCG deposits, and it has 

been proposed that the smaller and rarer Phanerozoic IOCG deposits formed in tectonic settings 

where conditions similar to those in the Precambrian were replicated (Groves et al. 2010; 

Richards and Mumin 2013a,b). 

Within the Andean Cretaceous IOCG province, many IOCG deposits are spatially and 

temporally associated with Kiruna-type iron oxide - apatite (IOA) deposits, which have been 

suggested to be the sulfur-poor end member of ore systems that contain both IOA and IOCG 

mineralization. Sillitoe (2003) reported that IOCG deposits in general are associated with calcic, 

potassic and sodic alteration, and that IOCG systems transition at depth to IOA mineralization. 

Sillitoe (2003) hypothesized that Andean IOCG deposits formed from magmatic-hydrothermal 

fluids, which evolved and scavenged metals, Cl and S from intermediate to mafic composition 

magmas, and were channeled toward the surface via ductile and brittle fault systems (e.g., 

Atacama Fault System). Recent studies at the world class Los Colorados IOA deposit, Chile, 

support the hypothesis for a genetic connection between IOCG and Kiruna-type IOA deposits 

(Knipping et al. 2015a,b; Bilenker et al. 2016; Reich et al. 2016; Barra et al. 2017). These 

aforementioned studies report and discuss data that are consistent with IOCG mineralization 

resulting from a magmatic-hydrothermal fluid, which contains sufficient dissolved metals and S 



52 

after IOA ore formation to form IOCG mineralization at shallower levels of the crust. These 

studies do not eliminate the potential presence and importance of non-magmatic fluids, which 

may mix with ascending S- and metal-enriched magmatic-hydrothermal fluids and promote 

mineralization. Data from many studies indicate that fluids from different geologic sources (i.e., 

basinal brines, meteoric water, magmatic-hydrothermal fluid) play a role in the evolution of 

IOCG deposits (Williams et al. 2005; Groves et al. 2010; Barton 2014). However, the degree of 

influence these secondary, non-magmatic fluids had on ore formation remains controversial, and 

the primary source reservoir of ore metals remains unconstrained. 

In this study, we focus on the world class Mantoverde IOCG deposit in northern Chile 

(Fig. 3.1). New stable Fe and O isotope data are reported for magnetite and hematite that 

fingerprint a magmatic source reservoir for these modally dominant constituents in the 

Mantoverde orebodies. The data complement published data for isotopes of Re, Os, C, O, S, Sr, 

Pb, Ar, Kr, Xe, and halogen ratios for samples from hypogene mineralization, and are consistent 

with a magmatic-hydrothermal ore forming fluid for magnetite and sulfide mineralization at 

Mantoverde. We also present stable Fe and O isotope data from IOA deposits in the Chilean Iron 

Belt and other mineralized districts and use the combined data set to discuss the evolution of 

Mantoverde as part of a continuum where S-Cu-Au-poor iron oxide - apatite mineralization 

represents the deeper levels of mineralized systems that transition from IOA mineralization at 

depth to IOCG mineralization at shallow levels of the crust. 
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Figure 3.1: Map of the Mantoverde district showing general district geology, structures, iron oxide 

deposits; the location of the drill hole from samples were collected is shown. The inset shows the general 

location of the deposit relative to Copiapó, Chile. Figure from Rieger et al. (2012). 

 

GEOLOGIC BACKGROUND AND PREVIOUS STUDIES AT MANTOVERDE 

The Mantoverde deposit is located approximately 50 km east of the Pacific coastline in 

northern Chile along the Atacama Fault Zone (AFZ) in what has become known as the Chilean 

Iron Belt (CIB). The formation of the CIB is associated with the subduction of the Aluk plate 
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under the South American continent. Subduction led to arc and associated back-arc basin 

formation during Jurassic – Early Cretaceous magmatism, which developed on late-Paleozoic to 

Triassic basement (Mpodozis and Ramos 1990). Late Jurassic andesitic volcaniclastic 

conglomerates, breccias, or flows make up the majority of rock types within the CIB. These 

volcanic rocks were subsequently intruded by Cretaceous granitoids of the Chilean Coastal 

Batholith (Lara and Godoy 1998), including subalkaline to alkaline, metaluminous, magnetite 

series, I-type granitoids of the calc-alkaline suite ranging from diorite to granodiorite, tonalite, 

and monzodiorite to quartz monzodiorite, all of which range in age from 90 to 130 Ma (Rieger et 

al. 2010; Barra et al. 2017). The majority of volcanic rocks within the Mantoverde IOCG district 

belong to the Late Jurassic La Negra Formation and Early Cretaceous Punta del Cobre Formation 

(Benavides et al. 2007). The Mantoverde IOCG deposits themselves are hosted in basaltic 

andesite and andesite flows and volcaniclastic rocks correlated with the La Negra Formation 

(Lara and Godoy 1998). The regionally extensional, north-south trending strike-slip Atacama 

Fault Zone transects both the arc and basement rocks, and the region is covered by Neogene to 

Quaternary alluvial and colluvial deposits. 

The central and eastern branches of the Atacama Fault Zone in the Mantoverde district 

mark the western and eastern limits of IOCG mineralization in the Mantoverde system, and are 

connected by the NW-trending, east-dipping Mantoverde Fault, which is interpreted to be a 

scissor fault (Fig. 3.1; Zamora and Castillo 2001; Rieger et al. 2012). The Mantoverde Fault is 

considered to be the main ore fluid conduit and hosts the majority of ore mineralization in the 

deposit. Mineralization styles at Mantoverde include specularite-cemented hydrothermal 

breccias, specularite stockwork zones, magnetite-rich zones where magnetite occurs as cement in 

hydrothermal breccias, stockworks, and disseminations, and tectonic breccias (Vila et al. 1996; 
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Rieger et al. 2010). The Mantoverde deposit can be described as a zoned system, with magnetite 

occurring at depth and hematite occurring at shallow or distal levels of the Mantoverde Fault. 

The oxidation level reaches between 200 and 250 m below the surface and marks the transition 

of the supergene zone to the hypogene zone where pyrite and chalcopyrite are commonly present 

(Rieger et al. 2012). The host rocks are characterized by intense K-metasomatism, silicification, 

and carbonatization and lack district scale Na and/or Ca alteration (Marschik and Fontboté 2001; 

Rieger et al. 2010). 

Mineralization at Mantoverde is interpreted to be the result of three major fluid events 

that define the paragenetic stages as described by Rieger et al. (2010): 1) the early Iron Oxide 

Stage, 2) the Sulfide Stage, and 3) the Late Stage. Benavides et al. (2007) recognized slightly 

different paragenetic relations and separated them into stages I, II, III, and IV, where stage I is 

responsible for magnetite mineralization, stage II is responsible for hydrolytic alteration resulting 

in minor hematite and pyrite, stage III is responsible for the majority of hematite mineralization, 

and stage IV resulted in the terminal calcite and quartz veining. We follow the paragenetic 

scheme of Rieger et al. (2010). Magnetite formed during the Iron Oxide Stage at deeper levels of 

the system, at temperatures between 278 and 530 °C (median = 435 °C), whereas hematite 

crystallized at more shallow levels at temperatures between 208 and 468 °C (median = 334 °C). 

These temperature ranges are based on fluid inclusion microthermometry of primary, 

hypersaline, magnetite- and hematite-bearing L-V-S fluid inclusions hosted in Iron Oxide Stage 

quartz that is temporally equivalent to magnetite and hematite (Benavides et al. 2007; Rieger et 

al. 2012). Calculated salinities vary from 32 to 64 wt. % NaCl eq., with a median salinity of 42 

wt. % NaCl eq. (Rieger et al. 2012). 
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Sulfide Stage sulfide mineralization, which paragenetically follows Iron Oxide 

mineralization stage and occurred before late-stage calcite (Rieger et al., 2012), accounts for the 

bulk of pyrite and chalcopyrite in the Mantoverde district. The temperature range for the sulfide 

mineralization was bracketed by the homogenization temperatures for the Iron Oxide stage 

described above and by fluid inclusion homogenization temperatures for L-V-S and L-V 

inclusions hosted in late-stage calcite (Rieger et al. 2012). Three-phase L-V-S fluid inclusions 

homogenize by halite dissolution from 221 to 325 °C (median = 266 °C), with salinities ranging 

from 33 to 40.2 wt. % NaCl eq. (mean = 35.7 wt. %); one inclusion homogenized at 462 °C by 

vapor bubble disappearance.  Two-phase L-V inclusions homogenize by halite dissolution from 

160 °C to 322 °C (median = 244 °C), with salinities ranging from 30.1 to 40.0 wt. % NaCl eq. 

(mean =34.3 wt. %). 

Several studies report isotope data for host rocks, gangue minerals, and fluid inclusions 

associated with mineralization in the Mantoverde district, including isotopes of C, O, S, Sr, Pb, 

and noble gas isotopes of Ar, Kr, and Xe (Benavides et al. 2007, 2008; Rieger et al. 2010, 2012; 

Marschik and Kendrick 2015). Benavides et al. (2007) reported overlapping δ34S values for 

pyrite and chalcopyrite that range from -6.8 to +11.2 ‰. Those authors pointed out that Iron 

Oxide Stage pyrite, cogenetic with main stage magnetite, has a narrow range of δ34S values from 

-0.6 to +2 ‰, whereas pyrite from main Sulfide Stage (Stage II of Benavides et al. 2007) of 

mineralization yielded a wider range of δ34S values from -1.2 to +9.1 ‰. The youngest 

generation of sulfides in the district yielded a wider range of δ34S values from +1.4 to +11.2 ‰. 

Rieger et al. (2010) reported δ34S values for hypogene chalcopyrite and pyrite associated with 

Iron Oxide Stage magnetite that range from -6 to 3 ‰ and 1 to 11 ‰, respectively. A decreasing 

trend of δ34S values in chalcopyrite was observed from north to south in the district 
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(approximately 5 km from the Manto Ruso deposit in the far north to Manto Sur deposit in the 

south), and may be related to depth within the system, controlled by the tilting of the hanging 

wall block of the Mantoverde fault. Deeper magnetite-rich portions of the system were tilted 

upward and are exposed to the south, whereas more shallow, more oxidized, and hematite-rich 

portions of the system were tilted downward and are exposed to the north (Mantos Copper, 

written communication). Rieger et al. (2010) offered an alternative explanation for this trend, 

suggesting that the southern part of the district could represent the proximal upflow zone of 

mineralizing fluids, and the northern part the proximal outflow zone. Both Benavides et al. 

(2007) and Rieger et al. (2010) concluded that the δ34S data require a magmatic-hydrothermal 

ore fluid for the main magnetite and sulfide stages, and that a non-magmatic fluid was present 

during later stages of mineralization. These studies demonstrate that at Mantoverde, the δ34S 

values from sulfides from the magnetite-rich ores, which make up the bulk of the hypogene ore, 

preclude mixing of a significant volume of a non-magmatic fluid. Rieger et al. (2010) also point 

out that mixing of a metal-bearing magmatic fluid and a sulfate-bearing non-magmatic fluid 

would result in low δ34S values in the oxidized hematite-rich zones, and higher δ34S values in the 

reduced magnetite-rich zones, which is the opposite of what is observed at Mantoverde. 

Strontium isotope data for the Mantoverde district are published in Rieger et al. (2010) for 

altered volcanic rocks and hydrothermal calcite. The initial Sr isotope data from altered volcanic 

rocks range between igneous (0.703 to 0.705) and Early Cretaceous seawater (0.70235 to 

0.70746; Jones et al. 1994). Calcite has an initial Sr isotope signature consistent with either an 

igneous Sr source or equilibration with an igneous source. Rieger et al. (2010) concluded that the 

Sr isotope data are compatible with a cooling magmatic-hydrothermal fluid that mixed with 

meteoric fluids, possibly coeval seawater. Rieger et al. (2010) also reported Pb isotope 
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compositions for chalcopyrite from Sulfide Stage sulfides. Their values of Pb isotope 

compositions of chalcopyrite define a narrow range that overlaps with Pb isotope compositions 

from Early Cretaceous plutonic rocks from the Candelaria-Punta del Cobre district near Copiapó 

(Lucassen et al. 2006). Considering that the Pb isotopes were measured in Sulfide Stage 

chalcopyrite, these Pb isotope data were interpreted by Rieger et al. (2010) to indicate that Pb 

and Cu were likely derived from Early Cretaceous magmatism and not the Jurassic country 

rocks, and concluded that the Pb isotope values are consistent with a (predominantly) magmatic 

source for Pb and Cu. Further work by Rieger et al. (2012) found that δ13C isotopes of calcite 

intimately associated with hematite from Late Stage mineralization indicate that a fluid in 

equilibrium with calcite would exhibit a δ13C between -5.0 and -3.0 ‰. This Late Stage fluid lies 

between upper mantle and marine limestone or subducted carbon δ13C values (-5 ‰ and -1 ‰, 

respectively), and indicates the significance of magmatic fluids even during the latest 

mineralization at Mantoverde. 

Marschik and Kendrick (2015) reported noble gas (Ar, Kr, Xe) and halogen (Cl, Br, I) 

compositions of fluid inclusions in hydrothermal quartz and calcite from the Mantoverde district. 

They report 40Ar/36Ar ratios that indicate crustal or mantle-derived excess 40Ar in fluid inclusions 

in most samples, with salinities for these fluid inclusions that range from 3.5 to 64 wt. % NaCl 

eq. and Br/Cl and I/Cl molar halogen abundance ratios that are comparable to, but do not 

distinguish among, mantle, magmatic-hydrothermal fluid, and bittern sedimentary formation 

water values. The authors highlight that these values show no evidence of the involvement of 

evaporites, precluding halite dissolution as the dominant source of fluid salinity, and conclude 

that their findings are compatible with mixing of magmatic-hydrothermal fluids and evaporated 

seawater modified by interaction with back-arc basin sediments. 



59 

 

 

METHODS 

Magnetite and hematite were sampled from a single drill core provided by Mantos 

Copper (Fig. 3.1). The aim of sample selection was to select iron oxides that were free of gangue 

minerals, to quantify the trace element chemistry of magnetite in selected samples, and to 

quantify stable Fe and O isotope concentrations in magnetite and hematite from those same 

samples. 

 

Sample selection 

Access to drill core samples was provided by Mantos Copper. Samples were collected 

from drill core DDH-14-DS91, located just north of Mantoverde Norte pit, and are representative 

of multiple mineralization styles. The surface elevation of this drill hole is approximately 1008 

meters above sea level (m.a.s.l.) with a western azimuth. Samples in this study were collected 

from a core depth of 262 m to 492 m. Several fragments of rock from each sampled depth were 

prepared for electron probe micro analyses (EPMA). Additionally, samples from five depths 

(291, 340, 355, 456, 492 m) were cut into thin sections for transmitted and reflected light 

microscopy. For isotope analyses, magnetite grains were sampled where present, and hematite 

from veinlets was sampled where magnetite was not present. Iron oxides are not abundantly 

present at all depths and consequently were not sampled at every depth. See Table 3.1 for a list 

of analyses conducted for samples from each depth. 

 

Hand sample descriptions 

Massive magnetite is the modally dominant mineral in the upper parts of the core, from 

262 m to 314 m, and becomes more disseminated with depth. Magnetite is a modally minor 
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mineral, or absent, in the lower section of the core. Potassium feldspar and chlorite are the 

dominant matrix forming minerals throughout the core, with common but varying amounts of 

sericite after K-feldspar throughout. Pyrite is a major mineral in the upper parts of core (262 to 

314 m) where it occurs as large blotches and filling veins. Chalcopyrite is a modally minor (<5 

vol. %) mineral and occurs with greater abundance than pyrite in the K-feldspar-rich samples at 

depth. Specularite veinlets (≤1-2 mm), K-feldspar veinlets (0.5-1.5 mm), and calcite veinlets 

(0.2-5 mm) occur pervasively throughout the drill core, and quartz occurs as a minor mineral in 

some K-feldspar veinlets. Samples at depths ≥331.7 m have greater amounts of K-feldspar 

alteration, with the K-feldspar matrix containing large blotches of microcline and thin specularite 

(<0.5 mm), pyrite (~1 mm), and chalcopyrite (~1 mm) veinlets. See Fig. 3.2 for photos of 

representative hand samples and Table 3.2 for mineralization styles from nearby deposits. 

 

Sample preparation for stable isotope analysis 

Samples of massive magnetite (e.g., Fig. 3.2A) were wrapped in weighing paper and 

crushed with a plastic-sheathed mallet to reduce the grain size to less than 1 mm and 

disaggregate magnetite and gangue minerals. Magnetite grains were separated from the crushed 

material by use of a hand magnet wrapped in a Kimwipe. Hematite veinlets were broken open 

with the plastic-sheathed mallet, whereupon hematite (e.g., Fig. 3.2B) was easily friable with the 

use of a plastic scraper. The separated grains of magnetite and hematite were then inspected 

using a binocular microscope at ~40x magnification to pick the most uniform grains and to 

remove any other remaining minerals. Grain sizes of magnetite between ~0.3 and 0.8 mm and of 

hematite between ~0.1 and 0.6 mm were selected for O and Fe isotope analyses. 
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Figure 3.2: Hand sample photographs of drill core DDH-14-DS91, located at 368875m E 7063667m N, 

surface elevation approximately 1008masl with a western azimuth, and ranging from a core depth of 

262m to 492m. The pictured samples were chosen to demonstrate the range of textural and mineralogical 

composition throughout the drill core. Scale bars equal 1 cm per square. Inset BSE images of 

representative magnetite and hematite sampled for O and Fe isotope analysis and trace element EPMA. 

BSE 262 shows cavity in massive magnetite filled with magnetite octahedra approximately 20μm and 

less. BSE 324 shows cleavage planes in hematite (var. specularite). Bright areas indicate surface charging. 

Mgt = magnetite, ksp = K-feldspar, py = pyrite, hmt = hematite, cpy = chalcopyrite, chl = chlorite, scp = 

scapolite. 

 

Grains selected for Fe isotope analysis were further crushed to hasten acid digestion by 

use of an alumina ceramic mortar and pestle that were cleaned with ethanol between samples to 

avoid contamination. Aliquots of polished magnetite and hematite grains from all samples were 

inspected at high magnification by using backscattered-electron (BSE) imaging on a Cameca 

SX-100 scanning electron microscope (SEM) and separately on a JEOL-7800FLV field 

emission-scanning electron microscope (FE-SEM); both instruments are located at the University 

of Michigan Electron Microbeam Analysis Lab (EMAL). Magnetite analyzed in this study does 

not display specularite textures (i.e., from mushketovization of specularite) and is more 

consistent with magnetite from Stage I mineralization described by Benavides et al. (2007) and 
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the paragenetic “mt II” from the Iron Oxide Stage as described by Reiger et al. (2010). Hematite 

is interpreted to be that of Stage III mineralization described by Benavides et al. (2007) and Late 

Stage mineralization by Rieger et al. (2010) due its occurrence as veinlets and matrix enclosing 

angular to subangular fragments of K-feldspathized and chloritized host rock and. The magnetite 

and hematite grains in the size fraction used for analyses were free of weathering features and 

contain minimal inclusions. 

 

EPMA and FE-SEM 

 For this study, EPMA and an FE-SEM were used to acquire BSE images and to 

characterize the concentrations of the trace elements Mg, Al, Si, Ca, Ti, V, Cr, and Mn in 

magnetite and late-stage hematite samples representative of those processed for Fe and O stable 

isotope analyses. The instrumental conditions for the EPMA analyses were identical to those 

used in Knipping et al. (2015a, b) and Bilenker et al. (2016), utilizing a 20 kV, 30 nA, focused 

beam with counting times of either 100 or 120 seconds for trace elements. Microprobe analysis 

conditions are reported in Table A1. 

 

Iron isotopes 

Magnetite and hematite samples were subjected to ion exchange chromatography to 

isolate Fe for isotopic analysis. Between ~0.3 and 0.7 mg of each sample was dissolved and 

dried down in aqua regia, again in 8N HCl, and then loaded into columns of AG1-X8 resin in 8N 

HCl, following the procedure described by Huang et al. (2011). Analyses were performed at the 

University of Illinois, Urbana-Champaign, over two sessions using a Nu Plasma HR multi 

collector-inductively coupled plasma-mass spectrometer (MC-ICP-MS) in dry plasma mode with 
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either a DSN-100 or an Aridus II Desolvating Nebulizer System. All analyses were conducted 

following the double-spike method of Millet et al. (2012) to correct for instrumental mass bias 

and increase precision. Each sample was analyzed two times, with all analyses bracketed by the 

international standard IRMM-14 to correct for small changes in mass bias with time (Millet et al. 

2012). Iron isotope values (Table 3.3) are reported relative to IRMM-14, calculated by using 

equation 1: 

  

δ56Fesample (‰) = [(56Fe/54Fe)measured / (
56Fe/54Fe)IRMM-14 – 1] * 1000             (1) 

 

The in-house standard UIFe was measured to average δ56Fe value of 0.67 ± 0.05 ‰ (n = 

8, 2σ, one session over four days) in the first session using the DSN-100; the international 

standard BCR-2 yielded a δ56Fe value of 0.08 ± 0.05 ‰ (n = 1, 2σ ; recommended value 0.091 ± 

0.011 ‰; Craddock and Dauphas 2011) during the same session. The in-house standard UIFe 

was measured to average 0.65 ± 0.05 ‰ (n = 2, 2σ, one session in one day) using the Aridus II; 

BCR-2 was not measured during this session. 

 

Oxygen isotopes 

Oxygen isotope analyses of magnetite and hematite were conducted at the University of 

Oregon by using a laser fluorination line coupled with a Thermo-Finnigan MAT 253 gas isotope 

ratio mass spectrometer in dual inlet mode. Magnetite and hematite grains (2–3 mg) from each 

sample were initially subjected to low-power lasing. Laser power was slowly increased to 

minimize jumping movements of the grains during fluorination with BrF5. For samples that did 

not experience grain jumping, O2 yields were close to the theoretical 100%. All data were 
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compared to the Gore Mountain garnet (GMG) standard, which was measured before, during, 

and after analysis of magnetite samples. Oxygen isotope values (Table 3.3) are reported relative 

to the international Vienna Standard Mean Ocean Water (VSMOW). Average values for 

standard GMG (δ18OGMG ± 1σ) over three days of measurements were 7.23 ± 0.10 ‰, 7.21 ± 

0.11 ‰, and 7.19 ± 0.08 ‰. Analytical precision for individual analyses is ± 0.10 ‰. The 

analytical values were adjusted by the difference between our measured standard values for each 

day and the recommended δ18O value for the GMG standard 6.52 ‰. Theoretical O2 yields for 

magnetite and hematite are 7.8 and 10.4 μmol/gram and analyzed magnetite and hematite 

samples average 7.8 and 8.3 μmol/gram, respectively. 

 

RESULTS 

Major and trace element concentrations of magnetite and hematite 

Minimum, maximum, and average concentrations are reported for Mg, Al, Si, Ca, Ti, V, 

Cr, Mn, and Fe in magnetite and hematite from multiple depths in Table 3.4. Backscattered 

electron images of magnetite and hematite representative of analyzed samples are presented in 

Figs. 3.2 and 3.4. All individual EPMA data are reported in supplemental Table A.3. The 

average concentrations of Fe in magnetite (n = 335) and hematite (n = 195) across all samples at 

all depths are 70.8 ± 1.0 and 68.8 ± 1.1 wt. %, respectively. Where element concentrations were 

below detection limit (BDL), the detection limit of that analysis was substituted when calculating 

average values and standard deviations for each depth. Magnesium, Ca, Cr, and Mn were 

commonly BDL. Magnetite across all depths contains low and similar concentrations of Mg, Al, 

Ca, V, Cr, and Mn (average of 0.03, 0.11, 0.08, 0.07, 0.01, and 0.01 wt. %, respectively), 

elevated Si (0.24 wt. %), and low Ti (0.05 wt. %) relative to hematite. Hematite across all depths 



65 

contains low and similar concentrations of Mg, Al, Ca, V, Cr, and Mn (0.02, 0.11, 0.05, 0.06, 

0.01, and 0.01 wt. %, respectively), is depleted in Si (0.03 wt. %), and is elevated in Ti (0.56 wt. 

%) relative to magnetite. 

 

Fe isotope compositions of magnetite and hematite 

Stable Fe isotope ratios for magnetite and hematite are reported as δ56Fe in Table 3.3. The 

δ56Fe values (± 2 sigma) for magnetite range from 0.46 ± 0.04 ‰ to 0.58 ± 0.02 ‰ and average 

0.51 ± 0.16 ‰ (n = 10). The δ56Fe values (± 2 sigma) for three late stage hematite are 0.34 ± 

0.10 ‰, 0.42 ± 0.09 ‰, and 0.46 ± 0.06 ‰. 

 

Oxygen isotope compositions of magnetite and hematite 

Stable O isotope ratios for magnetite and hematite are reported as δ18O in Table 3.3. The 

δ18O values (± 2 sigma) for magnetite range from 0.69 ± 0.04 to 4.61 ± 0.05 ‰ and average 2.99 

± 2.70 ‰ (n = 9) and for late stage hematite range from -1.36 ± 0.05 ‰ to 5.57 ± 0.05‰ and 

average 0.10 ± 5.38 ‰ (n = 6). 

 

DISCUSSION 

Trace element compositions of magnetite and hematite 

Trace element concentrations of magnetite and hematite can be useful fingerprinting tools 

in provenance studies and for mineral exploration (Dupuis and Beaudoin 2011; Dare et al. 2014; 

Nadoll et al. 2014; Knipping et al. 2015a,b). Dupuis and Beaudoin (2011) and Nadoll et al. 

(2014) used trace elements that substitute for Fe in the magnetite and hematite crystal lattices to 

develop several discriminant diagrams for magnetite and hematite from different ore forming 
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environments. Those authors determined that concentrations of Al, Mn, Ti, and V were most 

useful when discriminating primary magnetite among skarn, IOCG, Kiruna-type IOA, porphyry 

Cu-Mo(-Au), and orthomagmatic Fe-Ti-V deposits. The concentrations of [Al+Mn] vs [Ti+V] 

reported in the current study for magnetite and hematite from Mantoverde are plotted on the 

magnetite discriminant diagram in Fig. 3.3. Data for magnetite from the Los Colorados IOA 

deposit, Chile, from Knipping et al. (2015a,b), are also plotted on Fig. 3.3. The average [Ti+V] 

and [Al+Mn] values for all magnetite analyses from Mantoverde plot in the IOCG field on the 

discriminant diagram. However, [Ti+V] and [Al+Mn] concentrations within and among 

magnetite grains spread across all fields. There is no apparent correlation between trace element 

concentrations of magnetite and the depth of samples within the deposit. The average [Al+Mn] 

and [Ti+V] values for late-stage hematite from Mantoverde plot in the Kiruna field, and the trace 

element compositions of individual hematite grains plot across the Kiruna, IOCG, porphyry and 

Fe-Ti-V fields; these are not included in Figure 3.3. Upon inspection under BSE and FE-SEM, 

some magnetite grains were found to have chemical zonation (Fig. 3.4), and display concentric 

(Fig. 3.4 A, B) and mottled (not pictured) zoning of Si- and Al-rich and Si- and Al-poor 

magnetite. Several grains were found to have Si- and Al-rich cores surrounded by Si- and Al-

poor rims (Fig. 3.4 E, F). In general, the average trace element composition of hematite in this 

study is more comparable to Fe-oxides from the porphyry and igneous environments examined 

by Dupuis and Beaudoin (2011). 
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Figure 3.3: The concentrations of [Al+Mn] vs. [Ti+V] for magnetite from the Mantoverde IOCG deposit 

are plotted on the magnetite trace element discrimination diagram from Nadoll et al. (2014), along with 

[Al+Mn] vs. [Ti+V] for magnetite from the Los Colorados Kiruna-type IOA deposit in the Chilean Iron 

Belt. The data from Los Colorados are from Knipping et al. (2015a,b). The solid red circles and grey 

diamonds represent magnetite from Mantoverde and Los Colorados, respectively. The temperatures on 

the top abscissa are from Nadoll et al. (2014) who used homogenization temperatures for fluid inclusions 

trapped in paragenetically equivalent quartz to constrain temperatures of magnetite crystallization from 

each of the ore deposits types on the diagram. The color-graded arrow indicates the expected trend for the 

trace element chemistry of magnetite that grows from a cooling magmatic-hydrothermal fluid. EPMA 

conditions are reported in Table A1; general statistics for EPMA data located in Table 4; full list of data 

in supplementary Table A.3. 
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Figure 3.4: A-C: BSE images of magnetite from sample depths 298m and 305m; D-F: FE-SEM images of 

Si concentrations in magnetite. Panels A and D display concentric zoning of trace element rich and trace 

element poor growth bands. Panels B and E display similar concentric zoning as in A and D and display a 

trace element rich core and poor rim. Panels C and F display trace element rich core and trace element 

poor rim. Bright spots within magnetite are silicate inclusions, either formed in-situ or as inclusions along 

rims during magnetite growth. 

 

The new trace element data for magnetite reported here are similar to the concentrations 

of Ti, V, Al, and Si in magnetite from Mantoverde Norte and Sur reported by Rieger et al. 

(2010). The large range of trace element concentrations in magnetite and hematite likely reflects 

the effects of oscillatory zoning during precipitation (Fig. 3.4), unresolvable nano-inclusions 

trapped during replacement of host rocks, and of fluids responsible for later potassic alteration, 

silicification, and hydrolytic alteration of the host rocks in the Mantoverde system. Care was 

taken during the EPMA to analyze only magnetite and hematite that appeared texturally 

homogeneous (i.e., grains that had no visible fluid inclusions or mineral inclusions) under BSE 

examination. In spite of the scatter, the values of [Al+Mn] and [Ti+V] for magnetite from 

Mantoverde are, generally, positively correlated with each other. Nadoll et al. (2014) used 
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homogenization temperatures of fluid inclusions hosted in transparent mineral phases that are 

paragenetically equivalent with magnetite from a wide variety of mineral deposit environments 

to determine approximate crystallization temperatures for magnetite that correlate with the 

abundances of [Al+Mn] and [Ti+V] in magnetite. Comparison of magnetite trace element 

chemistry with published estimates for the temperatures of magnetite crystallization allowed 

Nadoll et al. (2014) to determine that magnetite with [Al+Mn] of 0.001 - 0.1 wt. % and [Ti+V] 

of 0.0008 - 0.01 wt. % crystallized from hydrothermal fluid at <200 ℃, [Al+Mn] of 0.01 - 0.2 

wt. % and [Ti+V] of 0.001 - 0.1 wt. % crystallized from hydrothermal fluid at 200 - 300 ℃, 

[Al+Mn] of 0.1 - 3 wt. % and [Ti+V] of 0.03 - 1 wt. % crystallized from hydrothermal fluid at 

300 - 500 ℃, and [Al+Mn] >0.1 wt. % and [Ti+V] >0.3 wt. % crystallized from hydrothermal 

fluid at >500 ℃. Published microthermometry data for magnetite-bearing fluid inclusions in Iron 

Oxide Stage quartz from Mantoverde indicate that mineralization occurred over a temperature 

range from 278 to 530 ℃ (Rieger et al. 2012), consistent with the apparent cooling trend 

revealed by the [Al+Mn] and [Ti+V] data shown in Figure 3.3. The same positive correlation 

between [Al+Mn] and [Ti+V] values is also observed for magnetite from the Los Colorados IOA 

deposit (Fig. 3.3) (Knipping et al. 2015a, b). Those authors used melt inclusion homogenization 

temperatures, O-isotope thermometry for magnetite-actinolite pairs, and the presence of halite-

saturated fluid inclusions in magnetite to conclude that the [Al+Mn] and [Ti+V] values record 

magnetite crystallization from a cooling magmatic-hydrothermal fluid. 
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Figure 3.5: The trace element compositions of magnetite from the Mantoverde IOCG deposit and the Los 

Colorados IOA deposit are plotted as weight percents of Ca vs. Al (A,B), Ca vs. Si (C,D), and Si vs. Al 

(E,F). The symbols are the same as those used in Fig. 3.3. Only data from drill core LC-04 that intersects 
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the main massive magnetite ore body at Los Colorados have been plotted for clarity, although data from 

magnetite in drill core LC-05 from Los Colorados shows very similar trends (Knipping et al., 2015b). 

Hematite is only plotted in panel E owing to lack of detectable Ca concentrations. The concentrations of 

Mg vs. Si, not included here, show very similar correlations. Note the “elbows” in panels E and F. 

Further evidence of the apparent overall cooling trend revealed by magnetite trace 

element chemistry is supported by Si- and Al- rich cores in some magnetite grains from 

Mantoverde. It is well established that minerals such as magnetite incorporate greater amounts of 

trace elements at higher temperatures. Shimazaki (1998) examined magnetite from over 40 skarn 

deposits and found four distinct types of Si-bearing (silician) magnetite. Silician magnetite poor 

in Al, Mg, and Ca (type-one) was found in more than half of the studied skarn deposits, whereas 

silician magnetite rich in Al, Mg, Ca, and other elements (type-two) was only found in four 

deposits. The trace elements in type-two magnetite appeared to be dissolved within the magnetite 

crystalline structure based on the lack of evidence of inclusions under high-magnification BSE 

imaging. However some type-two magnetite grains did contain very fine, dust-like inclusions 

that were interpreted to be either exsolution products or inclusions that were incorporated during 

magnetite growth. The former interpretation, combined with the observation of type-two 

magnetite that has no visible inclusions, is indicative of greater partitioning of trace elements 

into magnetite that grows in the presence of a high temperature hydrothermal fluid. Calcium, Al, 

and Mg concentrations in type-two magnetite were demonstrated to have positive, coupled 

relationships with Si (Neumann et al. 2017). Those authors examined magnetite from the 

Angara-Ilim IOCG located within East Siberia and found hydrothermal magnetite contains 

variable, but positively related, amounts of Ca, Al, Mg, and Si, variably correlated with Fe2+ and 

Fe3+ concentrations. Backscatter electron images and core-to-rim trace element analyses of 

concentrically zoned massive magnetite indicate an overall trace element depletion in magnetite 

over time, indicative of a cooling trend. The concentrations of Ca vs. Al, Ca vs. Si, and Si vs. Al 
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in magnetite and hematite from Mantoverde and Los Colorados are plotted next to one another in 

Figure 3.5. All three pairs of elemental concentrations in oxides from both deposits exhibit the 

same positive correlation with increasing concentration of trace elements and, when combined 

with the observation of Si-, Al-, Mg- and Ca-rich magnetite cores and depleted rims, indicate a 

systematic, progressive decrease in trace element concentrations with decreasing temperature. 

Hematite data only exist at Mantoverde and were only plotted in panel E of Figure 3.5 since Ca 

concentrations were mostly below MDL. In spite of this, both hematite and magnetite show very 

strong correlations between Si and Al concentrations implying that not only did magnetite 

precipitate from a cooling fluid, but hematite also crystallized from a cooling hydrothermal fluid. 

The implications for the apparent down-temperature continuity of magnetite trace element 

compositions at the Mantoverde IOCG and Los Colorados IOA deposits are discussed below. 

We highlight that while the trace element compositions and BSE images of magnetite 

from Mantoverde are consistent with crystallization of magnetite from a cooling fluid, the wide 

distribution of trace element abundances demonstrates how susceptible trace elements in 

magnetite and hematite are to hydrothermal alteration. The observations reported here indicate 

that caution should be exercised when using discriminant diagrams to fingerprint provenance and 

geochemical processes. Other geochemical proxies must be used to fingerprint the fluid source(s) 

for magnetite and hematite. 

 

Iron isotopes 

The ranges of δ56Fe for magnetite (0.46 to 0.58 ‰) and hematite (0.34 to 0.46 ‰) from 

Mantoverde overlaps published δ56Fe values for magnetite formed by magmatic and magmatic-

hydrothermal processes. In Fig. 3.6, the published global range of δ56Fe values from ~0.0 to 0.86 
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‰ are indicated for magmatic and magmatic-hydrothermal magnetite based on data from 

Heimann et al. (2008), Craddock and Dauphas (2010), Weis (2013), and Bilenker et al. (2016, 

2017). Notably, the study by Craddock and Dauphas (2010) presents a comprehensive δ56Fe data 

set for basalt, basaltic andesite, andesite, dacite and rhyolite, their intrusive equivalents, and 

peridotite. Also shown in Fig. 3.6 are δ56Fe data for magnetite from several Kiruna-type IOA 

deposits that are proposed to represent the stratigraphically deeper, sulfur poor end-member of 

IOCG systems (see Fig. 3.6 caption for references). Importantly, published studies conclude that 

the magnetite-rich orebodies at Pea Ridge and Pilot Knob (Childress et al. 2016; Hofstra et al. 

2016), Los Colorados, Chile (Knipping et al. 2015a,b; Bilenker et al. 2016; Reich et al. 2016), 

and Grӓngesberg, Sweden (Jonsson et al. 2013; Weis 2013) formed by magmatic-hydrothermal 

processes based on fluid inclusion data, and trace element and isotopic compositions of ore and 

gangue minerals. Data are also shown for the Plio-Pleistocene El Laco magnetite - apatite 

deposit, Chile (Weis 2013; Bilenker et al. 2016), for which magmatic (Tornos et al. 2016; 

Velasco et al. 2016) and magmatic-hydrothermal genetic models (Sillitoe 2003; Dare et al. 2015) 

are proposed. 
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Figure 3.6: Iron isotope values (δ56Fe) for primary magnetite and hematite from this study along with 

δ56Fe values for magnetite from several iron oxide - apatite deposits and volcanic reference materials. The 

pink box represents the global range of δ56Fe values (~ 0.0 – 0.86 ‰) reported in the literature for igneous 

and magmatic-hydrothermal magnetite. The  blue box represents the global range of δ56Fe values (-1.0 – 

0.0 ‰) for magnetite that formed from low temperature hydrothermal processes. Solid symbols for 

Mantoverde data points represent magnetite samples and open symbols represent hematite samples. Data 

points and ranges from Anbar (2004), Schüßler (2008), Weis (2013), Bilenker et al. (2016), and Childress 

et al. (2016). Full list of data are reported in supplemental Table A.5. 

 

Comparison of the δ56Fe values for magnetite from Mantoverde (0.46 to 0.58 ‰) with the 

global range of δ56Fe for magmatic and magmatic-hydrothermal magnetite (~0.0 to 0.86 ‰) 

suggests that the variable degrees of potassic alteration, chloritization, sericitization, 

silicification, and/or carbonatization of the host rocks in the Mantoverde deposit (Cornejo et al. 

2000; Rieger et al. 2010) did not significantly alter the primary δ56Fe signatures of modally 

abundant magnetite (Fig. 3.6). Extensive hydrothermal alteration of magnetite, such as partial or 
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total dissolution, transport, and reprecipitation (Weis 2013) or Fe ion exchange between a 

mineral and magnetite above closure temperature (Frost et al. 2006), drives the δ56Fe signature to 

values <0.0 ‰. This has been documented for the Dannemora iron-skarn in Sweden and 

magnetite-rich ore deposits in the Adirondack Mountains, U.S.A. At Dannemora, Lager (2001) 

proposed that volcanic activity drove circulation of Fe- and Mn-rich hydrothermal fluids that 

migrated from a high-relief hinterland into evaporite pans which served as traps for magnetite 

mineralization, the traps being strata-bound to dolomitic limestone. Lager (2001) provided 

evidence for multiple episodes of low-temperature dissolution, mobilization, and reprecipitation 

of magnetite. Similarly, Valley et al. (2011) reported that magnetite ore bodies within the Lyon 

Mountain Granite, near Mineville, New York, were subjected to extensive sodic alteration, 

which resulted in albitization and complete dissolution and remobilization of originally 

magmatic/magmatic-hydrothermal magnetite. The U-Th-Pb abundances in hydrothermal zircon 

in the magnetite orebodies record at least 40 Ma of episodic sodic metasomatism, with 

hydrothermal fluid circulation driven by regional extension of the Adirondack Highlands (Valley 

et al. 2011). Weis (2013) analyzed magnetite samples from the Dannemora deposits and reported 

an average δ56Fe value of -0.28 ‰ (n = 4) for magnetite. Bilenker et al. (2016) reported that 

magnetite from the Mineville deposit yields a δ56Fe value of -0.92 ‰. The δ56Fe data for 

magnetite from Dannemora and Mineville indicate that extensive dissolution and reprecipitation 

of magnetite by secondary, low-temperature (i.e., <300 °C) hydrothermal processes results in 

progressively decreasing δ56Fe values for magnetite (Fig. 3.6). 

The new magnetite δ56Fe data presented here are consistent with a magmatically derived 

ore fluid for the modally abundant stage-one magnetite at Mantoverde. Late-stage hematite 

yields an average δ56Fe value of 0.41 ± 0.12 ‰ (2σ, n = 3), consistent with growth from an 
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oxidized magmatic-hydrothermal fluid. Experimental data indicate negligible Fe isotope 

fractionation between oxidized Fe3+-bearing aqueous fluid and hematite at 200 ℃ (Saunier et al. 

2011). Considering that reduced isotopic partition function ratios (β-factors) for magnetite and 

hematite are similar (Polyakov et al. 2007; Blanchard et al. 2009), isotopic fractionation among 

these minerals and other phases will be similar. It is plausible that an oxidized magmatic, Fe-rich 

fluid precipitated hematite that exhibits a similar isotopic signature as the initial magnetite. 

 

Oxygen isotopes 

Several published studies report stable O isotope data for magnetite, hematite and gangue 

minerals from multiple deposits within the Mantoverde district. Benavides et al. (2007) report 

δ18O values that range from 1.4 to 3.1 ‰ (n = 5) for Iron Oxide Stage magnetite from the sulfide-

bearing orebodies, and range from 2.2 to 4.1 ‰ (n = 5) for magnetite from spatially associated 

magnetite-apatite ± pyrite bodies located along the eastern branch of the Atacama Fault Zone. 

Those authors report δ18O values that range from -1.9 to +1.7 ‰ (n = 10) for Late Stage 

hematite. Benavides et al. (2007) used oxygen isotope fractionation factors for magnetite-water 

from Bottinga and Javoy (1975) to calculate that at temperatures from 460° to 550°C (the 

temperature range constrained by fluid inclusion microthermometry in paragenetically equivalent 

quartz), Iron Oxide Stage magnetite would have been in equilibrium with a fluid with δ18O of 

+7.3 to +10 ‰. They reported that magnetite from the magnetite-apatite ± pyrite orebodies 

spatially and temporally associated with IOCG mineralization would have been in equilibrium 

with a fluid with δ18O values of +8 to +9 ‰ at ~650 °C, a temperature that was constrained by 

δ18O thermometry of co-genetic magnetite and apatite. Benavides et al. (2007) used their δ18O 

data and published sulfur isotope data for pyrite from Mantoverde to conclude that Iron Oxide 
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Stage mineralizing fluids were magmatic-hydrothermal, and that non-magmatic fluids became 

prominent after magnetite mineralization, during the bulk of sulfide deposition. 

Rieger et al. (2012) investigated hydrothermal quartz, K-feldspar, and calcite, which are 

co-depositional to the Iron Oxide (Stage 1), Sulfide (Stage 2), and Late Stage (Stage 3) 

mineralization, respectively, from the Manto Ruso, Mantoverde Norte, and Mantoverde Sur 

deposits within the Mantoverde district. Those authors report δ18O values that range from 11.8 to 

13.6 ‰ for quartz from the Iron Oxide stage. Rieger et al. (2012) used fractionation factors from 

Zheng (1993) to calculate that at 435 °C, quartz with δ18O values ranging from 11.8 to 13.6 ‰ 

would be in equilibrium with an aqueous fluid with δ18O values ranging from 7.9 to 9.7 ‰. 

Rieger et al. (2012) report δ18O values ranging from 10.46 to 12.06 ‰ for potassium feldspar 

from the Sulfide Stage of mineralization, and used fractionation factors from Zheng (1993) to 

calculate that an aqueous fluid in equilibrium with this K-feldspar would have δ18O values 

ranging from 6.3 to 7.9 ‰ at 300 °C, the temperature for sulfide mineralization. Late Stage 

calcite δ18O values from the same study range from 10.8 to 13.3 ‰ and indicate that a fluid in 

equilibrium with calcite at 244 °C (median Th) would exhibit δ18O values ranging from 3.4 to 5.9 

‰ (fractionation factors from Ohmoto and Rye 1979). A second generation of calcite yielded the 

highest measured δ18O value of 15.8 ‰, but was not studied further due to a lack of fluid 

inclusions. Rieger et al. (2012) concluded that the calculated δ18O values for aqueous fluid in 

equilibrium with quartz from the Iron Oxide Stage and K-feldspar from the Sulfide Stage, which 

are, respectively, the main oxide and sulfide mineralizing events in the deposits, are consistent 

with magmatic-hydrothermal fluids derived from I-type magmatism and noted their similarity to 

whole-rock δ18O isotope values of 6.9 – 8.6 ‰ reported for the Coastal Batholith (Marschik et al. 

2003; Rieger et al. 2012).  
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The new δ18O data reported here for magnetite and hematite from the Iron Oxide Stage 

and Late Stage, respectively, are presented in Fig. 3.7, together with δ18O values for magnetite 

from IOCG deposits in the Cloncurry District and broader eastern Mt. Isa Block, NW 

Queensland, Australia (Marshall and Oliver 2006), as well as several Kiruna-type IOA deposits 

for which a magmatic or magmatic-hydrothermal genesis has been proposed in the literature (see 

Fig. 3.7 caption for references). Globally, δ18O values for magnetite in the range of 0.9 to 5.0 ‰ 

fingerprint an ortho-magmatic origin for magnetite, as indicated in Fig. 3.7 (Taylor 1967). All 

except one δ18O value for magnetite from Mantoverde are consistent with the global database for 

magnetite crystallized from silicate melt and magmatic-hydrothermal fluids.  
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Figure 3.7: Oxygen isotope values (δ18O) for primary magnetite and hematite from this study along with 

δ18O values for magnetite from the Mt Isa IOCG deposit (Australia) and several IOCG deposits including 

deposits from the Chilean Iron Belt. The pink box represents range the global range for δ18O values (~1 – 

5 ‰) for magmatic-hydrothermal magnetite. The orange box represents the δ18O range (2.4 ± 0.3 ‰) for 

magnetite in isotopic equilibrium with MORB. The vertical dashed line at ~ δ18O = 1.0 ‰ represents the 

divide between magmatic-hydrothermal magnetite and magnetite crystallized from non-magmatic low-

temperature hydrothermal fluids. The solid line at ~ δ18O = 0.0 ‰ represents the δ18O value of seawater. 

The solid symbols represent δ18O values for magnetite samples and the open symbols represent δ18O 

values for hematite samples. Data from Marshal and Oliver (2006), Nystrӧm et al. (2008), Weis (2013), 

Jonnson et al. (2014), Bilenker et al. (2016), Childress et al. (2016), and Bilenker et al. (2017). Full list of 

data are reported in supplemental Table A.4. 

We used fractionation factors from Cole et al. (2004) to calculate that over the 

temperature range of 300 to 550 °C (based on published fluid inclusion microthermometry data 

for paragenetically equivalent quartz), magnetite in isotopic equilibrium with fluid with δ18O 

values of 7.9 ‰ (at 300 °C) – 9.7 ‰ (at 550 °C), will have δ18O values ranging from 0.9 ‰ (at 
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300 °C) to 2.3 ‰ (at 550 °C). The magnetite sample from Mantoverde that yielded a δ18O value 

of 0.69 ‰ likely reflects post-mineralization alteration, an observation similar to results reported 

for magnetite samples from Kiruna and the Grängesberg districts, Sweden (Jonsson et al. 2013), 

and consistent with the trace element chemistry for Mantoverde magnetite discussed above (Fig. 

3.3). One Late Stage hematite sample from Mantoverde yielded a δ18O value of +5.57 ‰; 

however, most δ18O values for late stage hematite fall below 0 ‰. 

We used published values for δ18O of quartz and calcite from Rieger et al. (2012) and 

quartz-fluid and calcite-fluid fractionation factors from Zheng (1991) and Cole et al. (2004), 

respectively, to calculate theoretical δ18O values for Iron Oxide Stage and Late Stage fluids that 

would have been in equilibrium with Iron Oxide Stage magnetite and Late Stage hematite. These 

results are shown in Fig. 3.8, and indicate that the new δ18O values for magnetite reported here 

are consistent with δ18O values predicted by using published δ18O values of quartz and quartz-

fluid fractionation factors. However, the new δ18O values for late-stage hematite reported here 

are consistent with a heavier fluid (i.e., greater magmatic component) than predicted by using 

published δ18O values of late-stage calcite and calcite-fluid fractionation factors.  
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Magnetite and hematite samples from Mantoverde yield δ18O values that are similar to 

values reported for samples from the Cloncurry District and neighboring IOCG deposits within 

Figure 3.8: The ranges of δ18O values for model (theoretical) hydrothermal fluids in 

equilibrium with ore-stage magnetite and late-stage hematite from this study; one sigma 

standard deviations are plotted and symbols are the same as were used in Fig. 3.5. The solid 

and long-dashed black lines were calculated by using the magnetite-H2O fractionation factors 

published in Zheng (1991) and Cole et al. (2004), respectively. The short-dashed and dotted 

grey lines were calculated by using the hematite-H2O fractionation factors published in Zheng 

(1991). The lines were calculated by using average δ18O values for ore-stage quartz and late-

stage calcite from Rieger et al. (2012). 
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the Proterozoic eastern Mt. Isa Block, Australia (Marshall and Oliver 2006). Magnetite and 

hematite from Cloncurry and Mt. Isa yield δ18O values that range from 0.7 to 10.0 ‰ (average 

4.78 ‰, n = 10) and -5.3 to 1.1 ‰ (average -0.9 ‰, n = 5), respectively. The majority of 

magnetite samples from Cloncurry and Mt. Isa yield δ18O values between 1 and 5 ‰, which led 

Marshall and Oliver (2006) to conclude that magnetite and hematite in the Cloncurry and Mt. Isa 

districts precipitated from magmatically sourced ore fluids that experienced variable re-

equilibration with igneous host rocks. 

Magnetite and hematite δ18O values reported here, and those reported by Benavides et al. 

(2007), indicate that the ore fluids from which these minerals precipitated were derived from a 

magmatic source. The δ18O values for both Late Stage calcite associated with hematite (as in 

Rieger et al. 2012) and Stage IV post-hematite calcite (as in Benavides et al. 2007) record 

incursion of, and mixing with, a non-magmatic fluid. 

 

A magmatic-hydrothermal origin for Mantoverde 

The δ56Fe and δ18O data for magnetite and hematite samples from Mantoverde, plotted 

together in Fig. 3.9, are consistent with a magmatic source for Fe and O (e.g., Weis 2013; 

Bilenker et al. 2016; Childress et al. 2016). Together, the paired δ18O and δ56Fe values for 

magnetite and hematite, combined with published data for isotopes of C, O, S, Sr, Pb, Ar, Kr, 

Xe, and halogen ratios for samples from hypogene mineralization, all consistently fingerprint a 

magmatic-hydrothermal ore forming fluid for the ore bodies in the Mantoverde district. The data 

do indicate the presence of a non-magmatic fluid, plausibly a basinal brine, but the sum of the 

isotopic data indicate that such a fluid was volumetrically minor and present only during the 

waning stages of mineralization. 
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Figure 3.9: Paired oxygen (δ18O) and iron (δ56Fe) isotope values determined for the same primary 

magnetite and hematite samples measured in this study are plotted. The pink box represents the global 

range of δ18O and iron δ56Fe values reported for igneous and magmatic-hydrothermal magnetite.  The 

solid and open red circles represent δ18O and iron δ56Fe for magnetite and hematite from Mantoverde, 

respectively. The white squares represent δ18O and iron δ56Fe values for magnetite from the Los 

Colorados IOA deposit, Chile (Bilenker et al., 2016). The error bars plotted for both δ18O and δ56Fe 

values are 2σ, and some δ18O error bars are smaller than the symbols. Data are reported in Table 3.3. Note 

that not all magnetite and hematite samples were analyzed for both O and Fe stable isotopes; only those 

samples for which both O and Fe data were obtained are plotted on Fig. 3.9. 

 

It has been suggested that IOCG deposits represent the more shallow, evolved 

endmembers of systems that contain IOA orebodies at depth (Sillitoe 2003). A genetic model 

linking IOCG deposits and IOA deposits has recently been proposed by Knipping et al. (2015a). 

Those authors used major, minor and trace element concentrations of magnetite from the Los 
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Colorados IOA ore deposit located within the Punta del Cobre Formation, approximately 200 km 

south of Mantoverde, to reveal that magnetite in the Los Colorados deposit retains both an 

igneous and a magmatic-hydrothermal chemical signature. The magnetite cores are chemically 

equivalent to magnetite grown in equilibrium with a silicate melt, and magnetite rims are 

chemically equivalent to magnetite grown in equilibrium with a cooling magmatic-hydrothermal 

fluid. Briefly, they proposed that magnetite cores crystallized from a silicate melt, that the melt 

subsequently reached volatile saturation, and the magnetite crystal surfaces served as nucleation 

sites for the exsolving magmatic volatile phase (cf. Hurwitz and Navon 1994). Initial growth of 

magnetite in equilibrium with silicate melt is indicated by the enrichment of trace elements such 

as Ti, V, Al and Mn in magnetite cores, and the presence of polycrystalline mineral inclusions 

that rehomogenize at >850 °C (Knipping et al. 2015a,b). Regional extension allowed the magma 

to ascend along pre-existing faults and, during decompression, resulted in the formation of a 

magnetite - fluid suspension that ascended from the source magma. Growth of the magnetite 

rims from an Fe-rich magmatic-hydrothermal fluid is indicated by the trace element chemistry of 

magnetite, and also the presence of halite-bearing fluid inclusions in the outer rims of magnetite. 

The abundances of trace elements such as Ti, V, Al and Mn in magnetite rims systematically 

decrease from core to rim, consistent with magnetite growth from a cooling magmatic-

hydrothermal fluid (Fig. 3.3, 3.5) (Nadoll et al. 2014). Knipping et al. (2015a) reported model 

results that indicate the magnetite - fluid suspension is buoyant as long as the proportion of 

magnetite is <37 vol. % of the suspension Similarly, the Cretaceous age IOA El Romeral located 

to the south of Los Colorados was found to have zoned magnetite containing high V and Ti 

contents (~2500 - 2800 and ~80 - 3000 ppm respectively) rich in high-temperature (up 1020 ℃) 

silicate mineral inclusions rimmed by a second generation of magnetite that is relatively 
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inclusion free with high V and low Ti contents (2300 -2700 ppm and 50 - 400 ppm respectively) 

(Rojas et al. 2018a,b). Rojas et al. (2018a) interpreted this observation along with high-

temperature actinolite (Ca- and Mg-rich cores), fluorapatite, and high Co:Ni (1-10) pyrite at 

depth within the deposit and lower temperature, low Co:Ni (<0.5) pyrite and hydroxyapatite at 

more shallow levels to indicate a shift from high-temperature (up to 840 ℃) magmatically 

derived mineralization to a lower temperature (<600 ℃) magmatic-hydrothermal fluid 

precipitation. The El Romeral IOA ore body was determined to be genetically linked to the 

nearby Romeral diorite. 

 Regional changes in tectonic stress can rapidly destabilize a magma body and cause the 

magnetite - fluid suspension to ascend through high-flux permeable channels that become well 

developed with increasing crystallinity of ductile magma (Hersum et al. 2005; Hautmann et al. 

2014). Once the magnetite-fluid suspension evolves from its source magma, it will ascend along 

pre-existing faults and magnetite will drop out of the fluid suspension when it reaches a level of 

neutral buoyancy, forming the structurally controlled orebodies observed in the Los Colorados 

deposit. Depending on the permeability-porosity of the host rocks adjacent to the fault, the ore 

fluid may migrate into the host rocks and form disseminated orebodies, also observed at Los 

Colorados. We highlight that magnetite - apatite orebodies globally exhibit styles of 

mineralization identical to that observed at Los Colorados, and fluid inclusion microthermometry 

and mineral-mineral stable isotope fractionation record temperatures at the time of 

mineralization that range from approximately 500 to >650 °C (Bilenker et al. 2016). 

The magmatic-hydrothermal ore fluid will continue to ascend via pre-existing faults, and 

percolate into the host rocks proximal to pre-existing faults, depending on the local porosity and 

permeability of fault-adjacent rocks. Importantly, data from natural systems (Williams-Jones and 
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Heinrich 2005) and experimental studies (Chou and Eugster 1977; Wood and Samson 1998; 

Simon et al. 2004; Hurtig and Williams-Jones 2014; Williams-Jones and Migdisov 2014) 

demonstrate that the fluid will be enriched in S and metals such as Fe, Cu and Au as it cools to 

temperatures < 500 °C. Thus, the ore fluid is capable of precipitating iron oxides and metal 

sulfides during decompression and cooling within, above, and proximal to the magnetite-rich 

orebodies. 

Reich et al. (2016) examined the geochemistry of pyrite from the Los Colorados 

magnetite ore body and host diorite intrusion. Pyrite is present as disseminated grains within the 

orebody and host diorite, and as veins that cross-cut the main orebodies. They found 

anomalously high concentrations of Co and Ni (up to ~3.9 and ~1.5 wt. %, respectively) in 

pyrite, with Co/Ni ratios ranging from ~0.5 to >2. Reich et al. (2016) compared the pyrite 

chemistry from Los Colorados to published pyrite chemistry from magmatic Cu-Ni, VMS, 

porphyry Cu-Mo, Fe-Cu skarn, orogenic Au, and IOCG deposits, including pyrite from 

orebodies in the Mantoverde district, and concluded that the high Co and Ni concentrations and 

high Co/Ni ratios (>1) in pyrite from Los Colorados indicate growth of pyrite from a magmatic-

hydrothermal ore fluid sourced from an intermediate to mafic magma. Reich et al. (2016) 

propose that the pyrite at Los Colorados precipitated from the same magmatic-hydrothermal ore 

fluid that formed the Los Colorados IOA deposit. Precipitation of pyrite likely occurred as the 

temperature of the ore fluid decreased below 500 °C, consistent with experimental data for the 

mobility of Fe and S in aqueous fluid (Wood and Samson 1998). 

Pyrite from the Mantoverde IOCG deposits has Co/Ni ratios that range from about 5 to 

15, overlapping the Co/Ni ratios for pyrite at Los Colorados (Reich et al. 2016). Three 

chemically distinct groups of pyrite were found to exist from the Mantoverde IOCG deposit, 
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containing Co/Ni ratios of <1, 1-20, and >90, partially overlapping Co/Ni rations from Los 

Colorados (Johansson et al. 2017). These ratios grade high (i.e. >90) to low (i.e. <1) from the 

deeper sections of the deposit to the upper sections, indicative of a cooling and evolving fluid. 

The elevated Co/Ni ratio for pyrite at Mantoverde is consistent with an intermediate to mafic 

magma source for the ore fluid. Iron oxide - copper - gold orebodies within the Mantoverde 

district are also spatially and temporally associated with magnetite - apatite ± pyrite 

mineralization (Benavides et al. 2008; Rieger et al. 2010), and it seems geologically plausible 

that the formation of the Mantoverde system is consistent with the combined igneous/magmatic-

hydrothermal model proposed by Knipping et al. (2015a). Such a model predicts the presence of 

magnetite-rich mineralization at depth in the Mantoverde system, which is corroborated by 

geophysical data (Mantos Copper, written communication, July 4, 2017). 

The igneous/magmatic-hydrothermal genetic model predicts a continuum for the trace 

element chemistry of magnetite in the sulfur-poor, IOA orebodies and magnetite in the sulfur-

enriched, IOCG orebodies. This continuum should manifest in progressively lower 

concentrations of trace elements such as Ti, V, Mn and Al as a function of the temperature at 

which magnetite equilibrates with the evolving (cooling) magmatic-hydrothermal ore fluid 

(Nadoll et al. 2014). This feature is observed in the trace element chemistry for magnetite from 

the Los Colorados IOA deposit and the Mantoverde IOCG deposit (Fig. 3.3). Clearly, these two 

deposits are not themselves genetically related to each other, but the trace element composition 

of magnetite in each deposit is consistent with a single, down-temperature continuum from a 

magmatic-hydrothermal fluid. From an exploration perspective, this may allow the trace element 

chemistry of magnetite to be useful, provided that extensive alteration (i.e., complete dissolution-

reprecipitation) has not affected the orebody. We note that field observations of the depth of 
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mineralization for IOCG and IOA deposits are consistent with a model wherein IOCG and IOA 

deposits represent end-members of a single evolving ore system (Benavides et al., 2008; 

Richards and Mumin 2013a; Barra et al. 2017). 

Lastly, we note that the magmatic/magmatic-hydrothermal model is supported by Re-Os 

data for Mantoverde and a plethora of other IOCG (i.e., Candelaria, Casualidad, Diego de 

Almagro, and Barreal Seco) and IOA (i.e., Los Colorados, El Romeral, and Carmen) ore 

deposits. Barra et al. (2017) report that these deposits have low to moderate Re concentration 

(<250 ppb), low Os concentration (<300 ppt total Os), and are dominated by radiogenic Os 

(>90% Os) and variable initial Os ratios. The Re-Os systematics for the deposits are similar to 

those for Chilean porphyry Cu-Mo systems, which formed unequivocally from magmatic-

hydrothermal fluids.  

 

CONCLUSIONS 

New Fe and O isotope data reported here for Iron Oxide Stage magnetite and Late Stage 

hematite from the Mantoverde IOCG district, combined with published data for isotopes of C, O, 

S, Sr, Pb, Ar, Kr, and Xe for hypogene samples from the Mantoverde district, support the 

hypothesis that mineralization in the Mantoverde district is primarily the result of magmatic-

hydrothermal fluids. Magnetite mineral cores exhibit high Si, Al, Mg, and Ca contents relative to 

the surrounding magnetite rim, indicating magnetite grew from an initially hotter and gradually 

cooling source-fluid. Oxygen isotope δ18O values vary among individual magnetite and hematite 

samples due to variable degrees of hydrothermal alteration, supported by widely varying Al, Ca, 

Mn, Ti, and V concentrations in magnetite and hematite, while Fe isotope δ56Fe values remain 
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relatively unaffected by hydrothermal alteration and, when coupled with O isotopes, are a robust 

tool to differentiate between magmatic and meteoric fluid sources. 
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Table 3.1: Sample descriptions determined by hand samples and transmitted and reflected 

microscopy. All depths were subject to EPMA. Asterisk indicates samples analyzed for both 

Fe and O isotopes. 

Sample Depth(m) Minerals present (in order of abundance) Phases  

sampled 

Isotope  

analyses 

1 262 Magnetite, pyrite, K-feldspar, chlorite, specularite 

veinlets (1-3mm) 
magnetite* O, Fe 

2 276 Pyrite, K-feldspar, chlorite, magnetite, specularite 

veinlets (1-2mm) 
magnetite* 

; hematite 

O, Fe; O 

3 284 K-feldspar, chlorite, pyrite, K-feldspar veinlets 

(<1mm) , magnetite, calcite veinlets (<1mm), 

specularite veinlets (<1mm), chalcopyrite 

magnetite O 

4 291 Magnetite, pyrite, K-feldspar, chlorite, calcite 

veinlets (3-6mm), K-feldspar veinlets (<1-2mm), 

specularite veinlets (1mm) 

magnetite O 

5 298 K-feldspar, magnetite, pyrite, chlorite, K-feldspar 

veinlets (<1-1mm), specularite 
magnetite* 

; hematite 

O, Fe; 

none 

6 305 Magnetite, K-feldspar, chlorite, pyrite, K-feldspar 

veinlets (<1-1mm), specularite 
magnetite* 

; hematite 

O, Fe; 

none 

7 314 K-feldspar, chlorite, pyrite, magnetite, specularite 

(<1-2mm) 
magnetite* 

; hematite 

O, Fe; O 

8 324 K-feldspar, hematite veinlets (<1mm), pyrite 

veinlets (<1-1mm), chalcopyrite, chlorite 
hematite none 

9 331 K-feldspar, specularite, chalcopyrite, pyrite, 

magnetite 
magnetite, 

hematite 

Fe; none 
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10 340 Magnetite, K-feldspar, chlorite, K-feldspar veinlets 

(<1-1mm), pyrite 
magnetite* O, Fe; 

none 

11 356 K-feldspar, chlorite, magnetite, calcite vein (1-

>6mm), pyrite, specularite 
hematite none 

12 411 K-feldspar, chlorite, magnetite, K-feldspar veinlets 

(<1mm), calcite veinlets (<1mm), quartz, 

specularite, chalcopyrite 

magnetite* O, Fe 

13 416 K-feldspar, calcite veinlets (<1mm), chlorite, 

magnetite, specularite, chalcopyrite, pyrite 
hematite none 

14 423 K-feldspar, chlorite, specularite veinlets (1mm), 

chalcopyrite veinlets (<1mm), pyrite, calcite 
hematite none 

15 438 K-feldspar, chlorite, magnetite, K-feldspar veinlets 

(<1mm), specularite veinlets (1-4mm), calcite 

veinlets (<1-1.5mm), pyrite, chalcopyrite 

magnetite;  

hematite 

Fe; none 

16 449 K-feldspar, specularite veinlets (<1-2mm), chlorite, 

chalcopyrite veinlets (<1mm) 
hematite* O, Fe 

17 455 K-feldspar, specularite veinlets (<1-3mm), 

chalcopyrite, pyrite, chlorite 
hematite* O, Fe 

18 471 K-feldspar, chlorite, magnetite, chalcopyrite, 

pyrite, specularite 
magnetite Fe 

19 489 K-feldspar, chlorite, specularite veinlets (<1-2mm), 

calcite, chalcopyrite 
hematite* O, Fe, 

EMPA 

20 492 K-feldspar, chlorite, specularite veinlets (<1-2mm), 

calcite veinlets (<1mm), chalcopyrite 
hematite O, EMPA 
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Table 3.2: Major characteristics of deposits near drillhole DDH-18-DS91. Readers are 

referred to Benavides et al. (2007) and Rieger et al. (2010) for more detailed information. 

 

 

Deposit General Major mineralization 
 

Manto Ruso Large ore zone with both 

supergene and hypogene 

copper ore; east of 

Mantoverde fault; contains 

primarily hematite with 

local magnetite rich rocks 

Specularite-cemented hydrothermal breccia 

with andesite and diorite fragments affected by 

strong K feldspar alteration and silicification ± 

chloritization. Pyrite, chalcopyrite, and, 

locally, bornite and digenite occur interstitial 

to specularite; breccia grades to specularite 

stockwork zone containing chalcopyrite-pyrite; 

host rocks characterized by strong pervasive 

quartz, K feldspar, or sericite alteration ± 

chlorite alteration. 

 

Mantoverde 

Norte 

Hosted within and proximal 

to the Mantoverde 

fault;  main ore-bearing 

units all parallel the fault; 

contains supergene copper 

oxides 

Specularite-calcite hydrothermal breccia with 

andesite or granitoid clasts commonly affected 

by variable K feldspar alteration with 

chloritization, sericitization, silicification, 

and/or carbonatization; cut by K feldspar ± 

quartz, tourmaline, sericite, calcite, and 

specularite veinlets pyrite, chalcopyrite, 

digenite present 

 

Mantoverde 

Sur 

Weak relation to 

Mantoverde fault; magnetite 

stockworks and 

disseminations; pervasive 

argillic alteration 

magnetite-chlorite-sericite-K feldspar-

cemented breccias, igneous clasts altered 

mainly by magnetite, K feldspar, and quartz, 

cut by K feldspar ± quartz, calcite, sericite, and 

late specularite-calcite veinlets; magnetite, 

mushketovite, pyrite, and chalcopyrite present 
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Table 3.3: Oxygen and iron stable isotope ratios of magnetite and hematite measured in this 

study from drill hole DDH-14-DS91 in the Mantoverde district, which is located at 368875m E 

7063667m N, north of Mantoverde Norte pit. Theoretical yields for magnetite are 7.8 and 10.4 

µmol/gram. Blank spaces indicate samples that were not analyzed for either Fe or O. 

Sample δ18O (‰) 2σ µmol/gram δ56Fe (‰) 2σ 

262m mt 1.57 0.09 8.5 0.54 0.05 

276m mt 0.69 0.03 7.9 0.55 0.02 

284m mt 4.01 0.05 6.8   

291m mt 4.58 0.06 10.4   

298m mt 2.34 0.06 8.5 0.61 0.04 

305m mt 3.62 0.07 8.6 0.5 0.04 

314m mt 2.5 0.08 8.9 0.58 0.02 

331m mt    0.37 0.06 

340m mt 4.61 0.11 6 0.46 0.04 

411m mt 3.02 0.06 4.9 0.53 0.04 

438m mt    0.55 0.06 

471m mt    0.38 0.02 

276m hmt -1.16 0.2* 8   

314m hmt -0.67 0.2* 8.6   

449m hmt -1.36 0.09 5.8 0.34 0.1 

455m hmt -0.96 0.04 9.2 0.42 0.09 

489m hmt -0.84 0.08 9.1 0.46 0.06 

492m hmt 5.57 0.11 9.3   
 



101 

Table 3.4: EPMA results for magnetite and hematite in weight percent. Where analyses were BLD, the detection limit was substituted for 

statistical calculations. Depths of magnetite samples ranges 262 to 471m. Depths of hematite samples ranges 299 to 492m. 

Comprehensive list of individual analyses and their respective depths are located in Table 1. 

   Mg Al Si Ca Ti V Cr Mn Fe O Total 

magnetite Max 0.55 1.64 1.59 0.71 3.62 0.20 1.40 0.02 72.64 22.11 94.40 

n= 323 Min 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 64.43 19.83 88.83 

  Average 0.03 0.11 0.24 0.08 0.05 0.07 0.01 0.01 70.80 20.78 92.17 

  SD 0.05 0.16 0.25 0.10 0.22 0.04 0.08 0.00 1.02 0.31 0.85 

               

hematite Max 1.26 0.50 0.97 0.30 3.02 0.53 0.02 0.08 70.93 21.74 92.06 

n= 195 Min 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 65.16 19.87 88.04 

  Average 0.02 0.11 0.03 0.05 0.56 0.06 0.01 0.01 68.79 20.27 89.88 

  SD 0.09 0.11 0.07 0.05 0.73 0.05 0.00 0.01 1.13 0.27 0.71 
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CHAPTER IV 

TRIPLE OXYGEN, HYDROGEN, AND IRON STABLE ISOTOPES SIGNATURES 

INDICATE A SILICATE MAGMA SOURCE AND MAGMATIC-HYDROTHERMAL 

GENESIS FOR MAGNETITE ORE BODIES AT EL LACO, CHILE 

 

ABSTRACT 

The El Laco iron oxide – apatite (IOA) ore bodies are some of the most enigmatic 

mineral deposits on Earth, interpreted to have formed as lava flows or hydrothermal 

replacements, two radically different processes. Field observations provide some support for 

both processes, but ultimately fail to explain all observations. Previously proposed genetic 

models include magnetite crystallization from an erupting immiscible Fe- and P-rich (Si-poor) 

melt and metasomatic replacement of andesitic lava flows by a hypogene hydrothermal fluid. A 

more recent interpretation of drill core at El Laco suggests a new model that invokes shallow 

emplacement and surface venting of a magnetite-bearing magmatic-hydrothermal fluid 

suspension. The 734 Mt (at 49.2% Fe) Plio-Pleistocene El Laco (IOA) deposits are hosted within 

a ~20-km2 andesitic stratovolcano complex in northern Chile. In this study, we measured triple 

O, H, and Fe stable isotope abundances in bulk iron oxide (primarily magnetite with minor, 

secondary hematite and goethite) from five ore bodies around the El Laco volcano and used 

calculated values of ẟ18O, Δ17O, ẟ2H, and ẟ56Fe to fingerprint the source of the ore forming 

fluid(s). Magnetite and bulk iron oxide from Laco Sur, Cristales Grandes, and San Vicente Alto 

ẟ18O values display grouped ranges from 4.3 to 4.5‰ (n = 5), 3.0 to 3.9‰ (n = 5), and -8.5 to 
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-0.5‰ (n = 5), respectively. Magnetite from Rodados Negros was determined to be of the least 

altered samples and was also analyzed for ẟ17O ratios, and yielded ẟ18O values that range from 

2.6 to 3.8 ‰ (n = 9), and Δ17O values that range from -0.13 to 0.10 ‰ (n = 5). Bulk iron oxide 

from Laco Norte yielded ẟ18O values that range from -10.2 to 4.5 ‰ (avg = 0.8 ‰, n = 18), and 

δ2H of magnetite and bulk iron oxide (with H being in fluid inclusions and in minor goethite) 

from all five ore bodies ranges from -189.4 to -61.1 ‰ (n = 33). Values of ẟ56Fe for magnetite 

and bulk iron oxide from all five ore bodies range from 0.04 to 0.70 ‰ (avg = 0.29, σ = 0.15 ‰, 

n = 26). The Fe isotope data indicate a silicate magma source for Fe in magnetite and its 

alteration products from all sampled El Laco ore bodies. The O isotope data indicate a hydrous 

silicate magma source for O in magnetite and a volcanic degassing trend in δ2H from fluid 

inclusions contained in magnetite from Laco Sur, Cristales Grandes, and Rodados Negros. 

Oxygen and H isotopic ratios for bulk iron oxide from Laco Norte and San Vicente Altos reveal 

a magmatic/magmatic-hydrothermal signature (ẟ2H   ≃ -60 to -80 ‰) that has been altered to 

meteoric values consistent with goethite in equilibrium with local O and H meteoric isotopic 

values (≃  -15.4 and -211 ‰, respectively). The sum of the data unequivocally fingerprint a 

silicate magma as the source of the ore fluids responsible for mineralization at El Laco and are 

consistent with a model that explains mineralization as the synergistic result of common 

magmatic and magmatic-hydrothermal processes during the evolution of a caldera-related 

explosive volcanic system.  

 

INTRODUCTION 

Investigations to determine the genesis of iron oxide – apatite (IOA) deposits have been 

ongoing for decades, with proposed models that range from those that invoke purely 
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hydrothermal processes to those invoking purely magmatic processes. One of the most enigmatic 

and hotly debated deposits is the El Laco IOA deposit, located at about 5000 masl in the Chilean 

Altiplano (Fig. 4.1). Park (1961) documented the outcrops at El Laco and hypothesized the ore 

bodies represent surficial or shallow intrusion of iron oxide lava flows, citing textures among the 

iron oxide ore bodies that resemble aa, pahoehoe, volcanic bombs, and vesicular bubble-like 

shapes. At El Laco, two opposing models have been proposed and tested at length to explain the 

coexistence of arguably volcanic and hydrothermal features of the orebodies: liquid 

immiscibility (Naslund et al., 2002; Velasco et al., 2016; Tornos et al., 2016, 2017) and 

hydrothermal replacement of andesitic lava flows (Rhodes and Oreskes, 1995; Rhodes et al., 

1999; Sillitoe and Burrows, 2002; Dare et al., 2015). 
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The liquid immiscibility hypothesis, originally proposed by Philpotts (1967) to explain 

the magmatic/volcanic textures observed in many IOA deposits, invokes unmixing of a silicate 

melt into two physiochemically distinct melts, one Fe- and P-rich and the other Si-rich and Fe-

poor (Naslund et al., 2002). In order for the Fe-P-rich melt to ascend from its source magma into 

the overlying crust and form an ore body, the model requires that H2O partition preferentially 

into the Fe-P-rich melt in order to lower its density and increase its buoyancy relative to the 

conjugate Si-rich melt (Tornos et al., 2016, 2017). In contrast, the replacement model calls upon 

a hypogene Fe-rich hydrothermal fluid to percolate through andesitic lava flows and entirely 

replace the host rock with magnetite and hematite and, importantly, preserve all original volcanic 

Figure 4.1: Geologic map of El Laco from Ovalle et al. (2018). The El Laco volcanic complex is 

primarily made up of andesite and pyroclastic rocks (green) with major iron oxide deposits (maroon). Red 

stars denote sampling locations. LN = Laco Norte, LS = Laco Sur, RN = Rodados Negros, CG = Cristales 

Grandes, SVA = San Vicente Alto, SVB = San Vicente Bajo. 
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textures (Rhodes et al., 1999; Sillitoe and Burrows, 2002; Dare et al., 2015). A new model by 

Ovalle et al. (2018) presents extensive textural and geochemical evidence for magnetite from 

surface and drill core samples at El Laco that is consistent with this model. Those authors 

propose that the El Laco ore bodies formed by eruption of a buoyant magnetite-fluid suspension 

that evolved from a silicate magma. Their model is based on Knipping et al. (2015a,b), who 

invoke crystallization of magnetite microlites from an intermediate silicate melt, followed by 

volatile saturation of the melt wherein the surface of magnetite microlites are preferentially 

wetted and swept up by the volatile phase to form a magnetite-fluid suspension (i.e., froth) that 

has a lower density than the surrounding melt. 

In this study, we measured Fe, O, and H stable isotope compositions of magnetite, 

hematite, and goethite samples from five of the six largest deposits at El Laco to identify the 

source of the ore forming fluids and use the data to assess these three competing genetic 

hypotheses. In addition, we report the first Δ17O values of iron oxides from an IOA deposit, and 

further prove that the combined use of conventional and non-conventional stable isotope tracers 

provide new insights on the formation of the IOA ore deposits, allowing tracing the source 

reservoirs for ore fluids and constraining the isotopic fractionation within and among iron oxide 

mineral systems. 

 

GEOLOGIC BACKGROUND 

The El Laco volcanic complex is located in a structurally-controlled volcanic zone of the 

Central Andes (23°48’ S, 67°30’ W (Fig. 4.1)), and records an uncommon set of both magmatic 

and hydrothermal stages. It is composed by variably preserved andesitic to dacitic lava flows, 

pyroclastic rocks and volcanic breccias, which are the products of several stages of volcanic 

activity developed from the Pliocene to Pleistocene (5.3 ± 1.9 to 1.6 ± 0.5 Ma; K-Ar) (Naranjo et 
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al., 2010). These volcanic products host large iron oxide ore bodies with remarkably volcanic 

and subvolcanic features, which have been dated to 2.1 ± 0.1 Ma (apatite fission track, Maksaev 

et al., 1988). In addition, extensive zones of penetrative hydrothermal alteration are widespread 

at El Laco.  

Stratigraphically from oldest to youngest, the major volcanic units are described as the 

lower andesites, upper andesites, dome-like edifices, and volcanic breccia bodies that crosscut 

the older units, The majority (>90%) of the andesitic volcanic materials are porphyritic, massive, 

rarely vesicular and contain abundant plagioclase and pyroxene phenocrysts. Unaltered andesites 

are silica oversaturated according to the total alkali-silica (TAS) classification diagram (Le 

Maitre et al., 2005) where they plot near the silica-saturated trachyandesite field, and are 

geochemically similar to nearby recent edifices such as Llullaillaco and Lascar (Matthews et al., 

1999; Velasco et al,. 2016). The El Laco andesites are calc-alkaline I-type rocks that range in 

composition from basaltic andesite to primitive dacite, and their chemistry does not vary 

significantly among magmatic pulses (Velaso et al., 2016). 

The magnetite orebodies are located around the central volcanic plug (Pico Laco), 

structurally associated with collapse-related fissures and secondary craters. (Frutos and Oyarzun, 

1975; Naranjo et al., 2010; Ovalle et al., 2018). Based on their morphologies and surface textures 

they can be classified as stratabound (Laco Norte, Laco Sur, Laquito, San Vicente Alto), dome-

shaped (San Vicente Bajo), and tabular (Rodados Negros, and Cristales Grandes). A recent study 

by Ovalle et al. (2018) reported that such ore bodies show a complex vertical zonation, 

composed by an outcropping portion of trace elements-depleted massive magnetite (e.g., Ti: 218 

ppm and V: 586 ppm, average contents) partially to totally martitized (oxidized), with minor 

clinopyroxene, apatite and REE-rich and iron phosphates. Upper massive magnetite grades at 
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depth to large magnetite-(± clinopyroxene-scapolite) breccia bodies, characterized by a 

systematic increase of Ti in magnetite with depth (average contents of up to 7637 ppm; Ovalle et 

al., 2018).  Magnetite from surface (focused of this study) exhibits a variety of textures. Massive 

stratabound ore bodies (above listed) are dominated by flow and highly vesicular textures, as 

well as octahedral and pyroclastic-like or friable magnetite. Whereas tabular ore bodies (above 

listed) are characterized by subvolcanic cooling textures such as columnar and bladed magnetite, 

and lack vesicularity (Figs. 4.2, 4.3A, 4.3C). Highly vesicular, friable magnetite is found in 

abundance at Laco Sur and occurs elsewhere to lesser degrees (Figs. 4.3B, 4.3D) (Nystrom et al., 

2016). Columnar magnetite is observed locally within the deposits, and numerous vertically 

oriented gas escape tubes lined with octahedral magnetite are found at Laco Sur, Laco Norte, and 

San Vicente Alto; the tubes themselves ranging up to tens of centimeters in diameter to meters in 

height. Hydrothermal alteration at El Laco occurs widespread at both surface and depth, and 

although it appears to be spatially close to the iron bodies, there is not always a synchronous 

relationship between hydrothermal alteration and iron oxide mineralization (Tornos et al., 2017). 

Aureoles that are pervasive in the andesite surrounding the magnetite bodies consist of a 

magnetite-diopside-quartz assemblage (Vivallo et al., 1994; Rhodes et al., 1999). At depth, an 

alkali-calcic alteration assemblage is particularly well developed, and comprises intense 

scapolitization and diopside formation, that partially to pervasively replace andesitic fragments, 

which occur immersed in a magnetite-diopside-scapolite matrix (Rhodes et al., 1999; Naranjo et 

al., 2010; Ovalle et al., 2018). Late magnetite-clinopyroxene-pyrite and pyrite-bearing gypsum 

veinlets crosscut the breccia body at depth (Ovalle et al., 2018). Andesite is locally crosscut by 

coarse-grained veins with unidirectional growth mainly composed of diopside, magnetite, and 

anhydrite with crystals up to 10 cm long (Tornos et al., 2016).  
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Figure 4.2: Panel A shows a vesicular basalt sample from Hawaii. Panels B and C show vesicular 

magnetite from Laco Norte and Rodados Negros, respectively. Panel D shows octahedral magnetite from 

San Vicente Alto. Vesicular textures are nearly ubiquitous among the iron oxide deposits at El Laco, 

along with bomb and spinifex textures, demonstrating the volatile rich and fast cooling nature of these 

samples. Terminal euhedral magnetite tends to line the inner walls of vesicles. Scales in panels A and B 

are both in centimeters; marker for scale in panel C. 

 

 

Figure 4.3: Select hand samples from El Laco. Panels A and C are hand samples RN-4 and -3, 

respectively, featuring columnar magnetite from Rodados Negros with octahedral terminations and 

oriented actinolite in panel C. Panel B shows highly vesicular magnetite from Laco Sur (LS-1). Panel D 

shows highly vesicular and oxidized magnetite from San Vicente Alto, similar to samples analyzed in this 

study. Black and white scale bars are 1 cm wide. 

Weak regional propylitic alteration (chlorite-epidote-sericite; Vivallo et al., 1994; Rhodes et al., 

1997) appears to temporally overlap sodic, potassic, and calcic alteration (Rhodes et al., 1999). 

Widespread andesite bleaching at El Laco is a result of a late argillic alteration, which occurs as 
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extensive steam-heated zones marked by a penetrative replacement of andesites by argillic 

assemblages dominated by tridymite, cristobalite, alunite, jarosite, trace secondary copper 

minerals, and minor native sulfur, forming silicic vein-like structures and irregular hydrothermal 

breccia bodies (Vivallo et al., 1994; Sillitoe and Burrows, 2002). In addition, large exhalative 

deposits represented by gypsum-rich mounds, which appear to be fossil fumaroles, are located in 

discrete emission centers spatially associated with NW-trending collapse structures which 

control the late hot-spring-like geothermal activity at ELVC (Vivallo et al., 1994; Rhodes and 

Oreskes, 1994). Sulfate-rich alteration altered magnetite to hematite in some orebodies and 

replaced andesite with alunite and minor kaolinite, gypsum, and tridymite, and gypsum veins 

locally crosscut magnetite in several deposits (Sillitoe and Burrows, 2002).  

 

METHODS 

Sample Selection 

Access to El Laco was provided by CAP Minería. Samples were collected from five of 

the seven surficial iron oxide deposits: Laco Norte, Laco Sur, Rodados Negros, Cristales 

Grandes, and San Vicente Alto. San Vicente Bajo and Laquito were not sampled. Sites range in 

elevation from about 4640 masl at Laco Sur to >5000 masl at Cristales Grandes. Samples at each 

site were selected in the field for their uniqueness in texture and appearance (e.g., columnar 

magnetite, octahedral magnetite, volcanic bomb-like) in order to sample a wide variety of 

textural types. With the exception of samples from Cristales Grandes and San Vicente Alto that 

contain large apatite and actinolite crystals, iron oxide hand samples were free of visible non-

iron oxides. 
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Sample preparation for stable isotope analysis 

Sample preparation followed the same procedure documented in Bilenker et al. (2016, 

2017) and Childress et al. (2016). Samples of iron oxide were cut by diamond saw into small 

cubes in order to exclude as much as possible all non-iron oxide minerals. Samples were then 

wrapped in weighing paper and crushed with a plastic-sheathed mallet to reduce the grain size to 

less than 1 mm and disaggregate iron oxides and any gangue minerals. Magnetite grains were 

then separated from the crushed material by use of a hand magnet wrapped in a Kimwipe. The 

separated iron oxides grains were inspected by using a binocular microscope at ~40x 

magnification and only the most uniform grains were handpicked. Grain sizes of magnetite 

between ~0.1 and 0.8 mm were selected for H, O, and Fe isotope analyses. These grains were 

visually estimated to contain > 90 % magnetite for samples from Laco Sur, Cristales Grandes, 

and Rodados Negros. Samples from Laco Norte and San Vicente Alto were visually estimated to 

contain < 90 % magnetite and in some cases were primarily hematite and goethite and are 

referred to as bulk iron oxide samples. Figure 4.4 shows typical iron oxide textures in these 

samples, including magnetite replaced by hematite with goethite filling space between grains at 

Laco Norte (panel A), relatively homogeneous magnetite from Rodados Negros and Cristales 

Grandes (panels B and C), and magnetite intergrown with occasional FePO4 replacing apatite at 

San Vicente Alto (panel D). Approximately 10 mg, 2-3 mg, and 0.5-1.5 mg of sample were used 

for H, O, and Fe analyses, respectively.  
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Figure 4.4: Backscatter images of typical magnetite textures from El Laco. Panel A (LN-2) shows 

magnetite (mgt) being replaced by hematite (hmt) on outer rims, with goethite (gt) filling space between 

grains. Panel B shows homogeneous magnetite from Rodados Negros (RN-1; black area is epoxy). Panel 

C shows magnetite intergrown with diopside (di) at Cristales Grandes (CG-5). Panel D (SVA-1) shows 

magnetite intergrown with FePO4 that has replaced apatite. 

 

 Grains selected for Fe isotope analysis were further crushed to hasten acid digestion by 

use of an alumina ceramic mortar and pestle that were cleaned with ethanol and compressed air 

between samples to avoid contamination. Aliquots of polished magnetite and bulk iron oxide 

grains from all samples were inspected at high magnification using backscattered-electron (BSE) 

imaging on a Cameca SX-100 scanning electron microscope (SEM) and separately on a JEOL-

7800FLV field emission-scanning electron microscope (FE-SEM); both instruments are located 

at the University of Michigan Electron Microbeam Analysis Lab (EMAL).  
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Oxygen isotopes 

Oxygen isotope analyses of iron oxides were conducted at the University of Oregon by 

using a laser fluorination line coupled with a Thermo-Finnigan MAT 253 gas isotope ratio mass 

spectrometer (IRMS) in dual inlet mode. Iron oxide grains (2–3 mg) from each sample were 

subjected initially to low-power lasing. Laser power was slowly increased to minimize jumping 

movements of the grains during fluorination with BrF5. For samples that did not experience grain 

jumping, O2 yields were close to the theoretical 100%. All data were compared to the Gore 

Mountain garnet (in-house standard, UOG, recommended 6.52 ‰) which was measured before, 

during, and after analysis of iron oxide samples to correct for instrumental drift. The average 

value for standard UOG (δ18OUOG ) was 6.50 ‰ and the average 2σ for UOG for each day of 

analysis was ~0.27 ‰ (n = 14), calculated from variance. Individual sample analyses typically 

have 2σ of < 0.1 ‰. Theoretical O2 yields for magnetite, hematite, and goethite are 7.8, 10.4, and 

31.2 μmol/mg respectively. Oxygen isotope values are reported relative to the international 

Vienna Standard Mean Ocean Water (VSMOW) and were calculated using Equation 1: 

 

                             δ18Osample (‰) = [(18O/16O)measured / (
18O/16O)VSMOW – 1] * 1000            (1) 

 

The average UOG during Δ17O analyses was 6.41 ± 0.01‰ (2σ, n = 3). Capital delta values were 

calculated using Equation 2: 

 

                                                 Δ17Osample = δ17Osample  – δ18Osample * 5.305                        (2) 
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where 5.305 is the slope of the reference line for minerals formed at high temperatures (Pack and 

Herwartz, 2014). Five samples from Rodados Negros were analyzed three times and averaged.  

Triple oxygen isotopes were measured in a single session with O2 gas as analyte run 

against calibrated reference gas, and an additional gas chromatographic purification step in a 

controlled He flow using 6ft long zeolite column that was added to the University of Oregon 

fluorination line (Bindeman et al., 2018). This procedure is needed to minimize potential 17O 

contaminants (Pack and Herwartz, 2014) such as NF and organics. 

 

Hydrogen isotopes 

Hydrogen isotope analyses of iron oxides were also conducted at the University of 

Oregon by using a Thermo Scientific high temperature conversion elemental analyzer (TC/EA) 

with a MAT253 gas source IRMS following the procedure described in Bindeman et al. (2012). 

We used a glassy carbon reactor held at 1450 °C and gas chromatographic peak separation using 

continuous He flow and a CONFLOW gas interface. The reference materials USGS57 (biotite) 

and USGS58 (muscovite) (Qi et al., 2017) were measured throughout the analytical session to 

account for a range of δ2H values, and were measured to be -91.0 ‰ (n = 5, 2σ = 9.7 ‰) and -

28.0 ‰ (n = 5, 2σ = 4.7 ‰), respectively, with calculated wt% H2O contents of 3.6 (n = 5, 2σ = 

0.1 %) and 4.1 (n = 5, 2σ = 0.0 %), respectively. Water was determined by peak integration of H 

and D areas relative to that of the known NBS30 and USGS57 micas (nominal H2O = 3.5 wt%). 

Results are reported relative to VSMOW, calculated using Equation 3: 

 

                                 δ2Hsample (‰) = [(2H/1H)measured / (
2H/1H)VSMOW – 1] * 1000                (3) 
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Iron isotopes 

Iron oxide samples were subjected to ion exchange chromatography to isolate Fe for 

isotopic analysis. Between ~0.5 and 1.5 mg of each sample was dissolved and dried down in 

aqua regia, again in 8N HCl, and then loaded into columns of AG1-X8 resin (Biorad, 200-400 

mesh) in 8N HCl, following the procedure described by Huang et al. (2011). Analyses were 

performed at the Pacific Centre for Isotopic and Geochemical Research, University of British 

Columbia, Canada, using a Nu Plasma 1700 HR multi collector-inductively coupled plasma-

mass spectrometer (MC-ICP-MS) in dry plasma mode with a DSN-100. The large geometry of 

the instrument allowed for complete separation of Ar interferences in high resolution. Cr was 

monitored and 54Fe and measurements were corrected because of isobaric interference with 54Cr. 

Each sample was analyzed three to four times, with all analyses bracketed by the international 

standard IRMM-14 to correct for small changes in mass bias over time. Average IRMM-14 

measured 0.00 ‰, (2σ = 0.077, n = 12) (Millet et al., 2012). Iron isotope values (Table 4.1) are 

reported relative to IRMM-14, calculated by using Equation 4: 

  

δ56Fesample (‰) = [(56Fe/54Fe)measured / (
56Fe/54Fe)IRMM-14 – 1] * 1000         (4) 

 

RESULTS 

Oxygen isotope compositions 

Stable O isotope ratios for magnetite and bulk iron oxide are reported as δ18O and Δ17O in 

Tables 4.1 and 4.2, respectively. The δ18O values (± 2σ) range from a very low meteoric -10.15 

‰ to normal magmatic 4.49 ‰. All negative values occur in samples from either Laco Norte or 

San Vicente Alto and correspond to a decrease in magnetite abundance and increase in 
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(secondary) hematite and/or goethite. The δ18O values (± 2σ) for individual deposits Laco Norte, 

Laco Sur, Rodados Negros, Cristales Grandes, and San Vicente Alto average 0.81 ± 9.07 (n = 

18), 4.41 ± 0.14 (n = 5), 3.69 ± 0.21 (n = 9), 3.65 ± 0.71 (n = 5), and -3.77 ± 8.39 ‰ (n = 5) 

respectively. Five samples from Rodados Negros were analyzed for Δ17O, yielding a nearly 

vertical array with values of -0.13, -0.12, -0.09, 0.03, and 0.10 ‰. 

Hydrogen isotope compositions 

Stable H isotope ratios for magnetite and bulk iron oxide are reported as δ2H in Table 4.1. 

The δ2H values (± 2σ) range from -189.4 to -78.2 ‰ and average -128.2 ± 60.8 ‰. The average 

δ2H values (± 2σ) for individual deposits Laco Norte, Laco Sur, Rodados Negros, Cristales 

Grandes, and San Vicente Alto are -143.4 ± 83.1 (n = 12), 124.4 ± 18.6 (n = 6), -95.6 ± 29.0 (n = 

5), -123.1 ± 25.2 (n = 5) and -133.8 ± 14.8 ‰ (n = 5), respectively. Calculated H2O contents 

(H2Oeq) for Laco Norte, Laco Sur, Rodados Negros, Cristales Grandes, and San Vicente Alto 

average (± 2σ) 0.63 ± 1.24 (n = 12), 0.11 ± 0.13 (n = 6), 0.08 ± 0.11 (n = 5), 0.09 ± 0.18 (n = 5), 

and 1.06 ± 0.90 wt% (n = 5), respectively, and may originate from either fluid inclusions, H 

within goethite, or both. 

Fe isotope compositions 

Stable Fe isotope ratios for magnetite and bulk iron oxides are reported as δ56Fe in Table 

4.1. The δ56Fe values (± 2σ) range from 0.04 ± 0.06 ‰ to 0.7 ± 0.03 ‰ and average 0.29 ± 0.15 

‰ (n = 26). The δ56Fe values (± 2σ) for individual deposits Laco Norte, Laco Sur, Rodados 

Negros, Cristales Grandes, and San Vicente Alto average 0.27 ± 0.13 (n = 6), 0.35 ± 0.09 (n = 5), 

0.17 ± 0.02 (n = 5), 0.20 ± 0.11 (n = 5), and 0.47 ± 0.15 ‰ (n = 5), respectively. 
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DISCUSSION 

Magmatic and magmatic-hydrothermal δ18O and Δ17O 

One of the major issues dividing opinion on the origin of the El Laco ore bodies is the 

occurrence of both hydrothermal and magmatic textures of magnetite, and textures in some 

samples that may be interpreted as either. Rhodes and Oreskes (1999) carried out the first 

comprehensive stable isotope study completed at El Laco. They measured stable O isotope 

abundances in magnetite and bulk iron oxide via laser fluorination of 2 to 5 mg of iron oxide 

powders and chips from surface samples of the same five ore bodies as the current study, as well 

as samples from San Vicente Bajo and Laquito, and also whole rock samples of altered and 

unaltered andesite host rock from El Laco. A major goal of their study was to determine whether 

or not there were two populations of δ18O values among primary magnetite samples that varied 

from magmatic textures to hydrothermal textures. Their analyses revealed a very narrow range of 

δ18O values (i.e., mean ± 2σ for all samples = 4.1 ± 0.49 ‰, total range = 1.7 ‰, n = 16) in 

unaltered samples of both textural types of magnetite, and they concluded that both textural types 

formed from the same ore fluid. 

 Nyström et al. (2008) measured O isotope ratios in magnetite from the same ore bodies 

sampled by Rhodes and Oreskes (1999) and report a mean ± 2σ value for all samples of 3.0 ± 1.2 

‰ and a total range from 2.3 - 4.2 ‰ (n = 14) (Fig. 4.5). Nyström et al. (2008) report that, when 

categorized by their respective magmatic and hydrothermal textures, “magmatic” magnetite at 

San Vicente Bajo and “hydrothermal” magnetite at Cristales Grandes, respectively, show two 

distinct populations of magnetite with a Δ18OSanVicenteBajo-CristalesGrandes value of 1.3‰. Those 

authors used the small range of δ18O values, which overlap those reported by Rhodes and 

Oreskes (1999), to conclude that all of the orebodies at El Laco share a common source and 
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proposed that the ore bodies formed from a cooling Fe-rich magma, with slightly lower 

magnetite δ18O values for vein magnetite at Cristales Grandes (as low as 2.3 ‰) being the result 

of magnetite growth from a magmatic-hydrothermal fluid phase (with fluids in high-T, O and H 

isotope equilibrium with magma) that exsolved from the Fe-rich magma. The results presented in 

the current study are consistent with data from Rhodes and Oreskes (1999) and Nyström et al. 

(2008) and collectively indicate that magnetite in the El Laco ore bodies does not exhibit 

exclusively magmatic or magmatic-hydrothermal isotopic signatures, but rather both, consistent 

with the occurrence of igneous and hydrothermal features in these deposits (Ovalle et al., 2018). 

 

Figure 4.5: Plot of δ18O values for samples from Laco Norte, Laco Sur, Rodados Negros, Cristales 

Grandes, and San Vicente Alto, and from previous studies. Blue line denotes seawater (0 ‰), orange box 

denotes magnetite in equilibrium with MORB (2.2-2.6 ‰), and pink box denotes magnetite in 

equilibrium with typical continental magmas (~1-5 ‰; Taylor 1967, 1968; Bindeman 2008). 
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High temperatures of mineralization at El Laco are indicated by homogenization 

temperatures of fluid inclusions hosted in pyroxene phenocrysts intimately intergrown with 

magnetite at Laco Sur and Cristales Grandes that reveal pyroxene growth from a fluid-saturated 

silicate melt occurred at >800 °C (Broman et al., 1999), and homogenization temperatures of 

silicate melt inclusions in pyroxene from San Vicente Alto and Laco Norte indicate 

mineralization temperatures that range from 820 to 840 °C (Sheets, 1997). The δ18O values 

discussed above for magnetite ore samples from El Laco can be used with δ18O values that range 

from 7.2 to 7.9 ‰ for unaltered (or least altered) andesite whole rock from El Laco reported by 

Rhodes and Oreskes (1999) to calculate equilibrium temperatures for magnetite-andesite pairs. 

Based on the fractionation factors reported by Zhao and Zheng (2003), magnetite in equilibrium 

with andesite that has δ18O values of 7.2 to 7.9 ‰ at temperatures between 700 and 900 °C will 

range in δ18O from 3 to 5 ‰, a range that encompasses the majority of unaltered magnetite 

samples from all five ore bodies in the current study and all published studies of El Laco. By 

comparison, the global range of δ18O values of typical magmatic waters is 5.5 to 10 ‰ (Taylor, 

1967, 1968), which could result in magmatic-hydrothermal magnetite with δ18O values between 

0.8 and 5.3 ‰ at 900 °C. Applying these fractionation factors (Zhao and Zheng, 2003) and 

comparing to δ18O values from natural samples demonstrates the overlap between magmatically 

and magmatic-hydrothermally derived magnetite, and highlights the necessity for careful 

statistical analysis. Notably, the δ18O values for samples from the El Laco ore bodies (Table 

4.1;  Fig. 4.5) overlap with δ18O values for magnetite from both IOA and iron oxide-copper-gold 

(IOCG) deposits from the Chilean Iron Belt and IOA and IOCG deposits globally (e.g., Marshal 

and Oliver, 2006; Nystrӧm et al., 2008; Weis, 2013; Jonsson et al., 2013; Bilenker et al., 2016; 

2017; Childress et al., 2016, 2019), highlighting the challenge of discriminating between 
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magmatic and magmatic-hydrothermal magnetite using limited iron oxide sampling while in the 

field and analysis of bulk iron oxide for δ18O rather than in situ analyses of individual magnetite 

textures and different geochemical generations of magnetite (e.g., Günther et al., 2017; Knipping 

et al., 2019). 

In addition to the more traditional δ18O analyses presented in this study, we also 

measured the abundance of 17O in the least altered samples from Rodados Negros and used the 

calculated Δ17O values to assess the source reservoir(s) for oxygen in those samples. The use of 

three, rather than two, isotopes allows an independent solution for the source and water-rock 

ratio as well as end member compositions (Pack and Herwartz, 2014; Zakharov et al., 2017; 

Bindeman et al., 2018). 

 



122 

 

Figure 4.6: Plot of δ18O and Δ17O for magnetite from Rodados Negros from this study. Blue circle denotes 

average value of seawater, blue line is the meteoric water line, and the red box is typical mantle values 

(Pack and Herwartz, 2014). Samples analysed from Rodados Negros clearly exhibit a trend from 

magmatic values to meteoric values due to post-depositional alteration. 

 

 Rodados Negros was chosen for this analysis based on the narrow ranges of Fe and O 

isotopes in these samples and the lack of hematite and goethite. The Δ17O data for three samples 

from Rodados Negros (Table 4.2), when plotted against corresponding δ18O values for the same 

samples, reveal a near magmatic signature in agreement with igneous minerals studied by Pack 

and Herwartz (2014) ( Fig. 4.6), whereas two samples from Rodados Negros reveal alteration by 

high δ18O meteoric water. Further analyses of IOA and IOCG deposits from inherently different 

geological settings will highlight similarities or dissimilarities between deposit types, and may 
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prove as a useful tool for understanding the formation of the ore deposit types, the source 

reservoirs for ore fluids, and isotopic fractionation within and among mineral systems.  

 

Hydrogen in magnetite, degassing, and meteoric alteration to goethite 

The occurrence of hematite and goethite in magnetite from the El Laco orebodies has 

been assumed to be hydrothermal alteration of magnetite by meteoric waters, and Rhodes et al. 

(1995), Rhodes et al. (1999) and Rhodes and Oreskes (1999) suggest that the orebodies 

themselves could be the result of metasomatic replacement of andesite lava flows by Fe-rich 

basinal brines or perhaps fluids from nearby saline lakes or buried evaporites in accordance with 

the evaporite fluid source model by Barton and Johnson (1996). To test both of these hypotheses, 

we measured H isotopes in all of our samples, and report the first δ2H data for magnetite from El 

Laco. Hydrogen in magnetite may be present as fluid inclusions, hydrogen in goethite 

(FeO(OH)), or a combination of both. The δ2H values in our samples range from -193 to -61‰ 

for 33 samples (Table 4.1), where Laco Norte exhibits the greatest range (135 ‰) and all other 

deposits exhibit significantly smaller ranges (≤39 ‰). The difference in ranges may, however, 

reflect sampling bias. The δ2H values for typical magmatic waters range from about -40 to -80 ‰ 

(Taylor, 1974; Dixon et al., 2017) and local modern δ2H and δ18O meteoric values range from 

about -106 to -70.5 ‰ and -15.1 to -12.8 ‰ respectively (Waterisotopes Database, 2018), where 

lighter values correspond to higher elevation. For reference, goethite in equilibrium with the 

lightest modern δ2H and δ18O will exhibit values of -211 and -15.4 ‰ at 25 ℃, respectively 

(Yapp and Pedley, 1985; Müller, 1995). In volcanic rocks, early degassing results in strong 

fractionation of 2H into the vapor phase, and will result in a range of δ2H values of >40 ‰ 

towards lower values, as observed in natural samples (Taylor, 1986).  
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Figure 4.7: Plot of δ2H and measured H2Oeq contents of hydrogen in iron oxides from Laco Norte, Laco 

Sur, Rodados Negros, Cristales Grandes, and San Vicente Alto (same legend as Fig. 4.5). Samples 

analyzed from these deposits show a clear trend from magmatic values, with increasing meteoric 

alteration where Laco Norte and San Vicente Alto show the highest degree of alteration of magnetite to 

goethite, incorporating more meteoric H. Magmatic range from Taylor and Epstein (1966). 

 

Based on our new data, δ2H ranges from purely magmatic to meteoric, where the large 

range of δ2H values for samples from Laco Norte record the greatest degree of incorporation of 

meteoric fluids. Decreasing δ2H values in samples from Laco Sur, Rodados Negros, and 

Cristales Grandes are consistent with initial degassing of a vapor-rich fluid (these samples also 

show least δ18O variation), while Laco Norte and San Vicente Alto are more consistent with 

increasing goethite content, and therefore influence of meteoric fluids  
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Figure 4.8: Plot of δ18O and δ2H from iron oxides from Laco Norte, Laco Sur, Rodados Negros, Cristales 

Grandes, and San Vicente Alto (same legend as Fig. 4.5). Samples show a clear trend from magmatic 

values to meteoric values, where Laco Norte and San Vicente Alto show highest degree of alteration of 

magnetite to goethite, approaching equilibrium with modern day meteorically derived goethite 

(Waterisotopes, 2018). Magmatic range from Taylor (1974). 

 

The latter is demonstrated by the systematic increase of the measured H2Oeq content of samples 

(Fig. 4.7), with a maximum of 2.2 % H2Oeq (pure goethite = ~10% H2Oeq) corresponding to the 

lightest δ2H and δ18O values in this study (sample LN-2) in the most altered samples from Laco 

Norte, which likely also underwent an initial degassing phase. When the magnetite and bulk iron 

oxide δ2H values are combined with corresponding δ18O values from the same samples, a clear 

trend from typical magmatic values to meteoric values is observed ( Fig. 4.8) among altered 

samples. Alteration of magnetite to hematite will decrease δ18O values, and alteration to goethite 
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will decrease both δ2H and δ18O values. Rhodes and Oreskes (1999) reported that nearby playa 

lake water (Laguna Tuyajto) has a δ18O value of 8.7 ‰ and suggested magnetite precipitating at 

low temperatures from such a fluid could yield δ18O values such as those measured in samples at 

El Laco. While this is plausible considering O and H isotopes alone, the addition of 

corresponding Fe isotopes for these sample allows for a much clearer (and less altered!) look at 

the original isotopic signature of the iron oxides at El Laco. 

 

Iron isotopes - an unaltered view 

The iron isotopic system is relatively new as a tool in high-temperature systems when 

compared to other well-known stable isotope systems (e.g, O, H, and S), and is considered “non-

traditional” due to its less developed but rapidly growing database of natural, experimental, and 

first principles modeled data (Dauphas et al., 2017 and references therein). Iron isotope 

abundances in iron oxide minerals are more resistant to secondary alteration than are the 

abundances of H and O (Frost et al., 2007, Weis, 2013, Bilenker et al., 2016, Childress et al., 

2016, 2019), and will only significantly deviate from their original signature (to lighter values) 

via extensive coupled dissolution and reprecipitation reactions with hydrothermal fluids, as has 

been reported for the Mineville IOA deposit (Bilenker et al., 2016) and the Dannemora (Sweden) 

(Fig. 4.9) and Chagangnuoer (China) Fe-skarn-type deposits (Weis, 2013; Günther et al., 2017). 
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Figure 4.9: Plot of δ18O and δ56Fe from iron oxides from Laco Norte, Laco Sur, Rodados Negros, 

Cristales Grandes, and San Vicente Alto (same legend as Fig. 4.5). The majority of samples from this 

study plot within the magmatic range, similar to the Los Colorados deposit (Bilenker et al. 2016). Laco 

Norte and San Vicente Alto trend towards lower δ18O values, indicating higher degrees of alteration. 

Low-T and dissolution-reprecipitation derived magnetite will commonly exhibit low δ56Fe values. 

Magmatic range and additional data from Taylor (1974), Weis (2013), and Bilenker et al. (2016, 2017). 

 

At El Laco, δ56Fe values range from 0.04 to 0.70 ‰ for all samples from all five ore 

bodies, with the greatest variation at San Vicente Alto (0.15 ‰, 2σ) and lowest variation at 

Rodados Negros (0.02 ‰, 2σ) (Table 4.1). When plotted against the δ18O data from the same 

samples (Fig. 4.9), the majority of δ56Fe and δ18O values lie within the established range of 

magmatic/magmatic-hydrothermal magnetite. The exceptions to this are samples from Laco 

Norte and San Vicente Alto, which largely plot outside the box due to their exceptionally low 
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δ18O values. The fact that both δ18O and δ56Fe values for these two deposits exhibit the greatest 

ranges further implies that these deposits have experienced extensive alteration by meteoric 

water. The δ56Fe and δ18O values for samples from El Laco overlap values of magnetite from the 

Los Colorados IOA deposit in the Cretaceous Chilean Iron Belt, for which the original flotation 

model by Knipping et al. (2015a,b) was conceived. Los Colorados consists of two sub-parallel, 

sub-vertical magnetite-dominant orebodies hosted in dioritic and andesitic rocks. Bilenker et al. 

(2016) used Δ18O for coexisting magnetite-actinolite separates to calculate a minimum formation 

temperature of 630 ℃ for Los Colorados, a temperature that is consistent with closure 

temperature of magmatic magnetite for O isotopes (e.g., Farquhar et al., 1993; Farquhar and 

Chacko, 1994). Those authors also calculated a temperature range of 610 to 820 ℃ using the Fe 

numbers for actinolite intergrown with magnetite. The isotopic values and calculated 

temperatures at Los Colorados are consistent with those at El Laco considering the Δ18O between 

magnetite and co-genetic andesite (discussed below), and suggest Fe ore formation at El Laco 

occurred at < 900 ℃. 

 

Testing the liquid immiscibility hypothesis 

One of the proposed genetic models for the formation of El Laco and other IOA deposits 

invokes unmixing of a silicate melt into immiscible Fe-P-rich, Si-poor melt and conjugate Fe-

poor, Si-rich melt (Philpotts, 1967, Naslund et al., 2002, Tornos et al,. 2016, Velasco et al., 2016, 

Hou et al. 2018). Proponents of the liquid immiscibility model cite the presence of what are 

interpreted to be Fe- and P-rich globules hosted exclusively in silicate melt inclusions within 

pyroxene and plagioclase phenocrysts in the andesite host rocks (Naslund et al., 2009, Tornos, 

2016, Velasco et al., 2016). Tornos et al. (2016) reported stable δ18O values for the andesite host 
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(7.4 to 9.6 ‰), stratabound magnetite from an undesignated ore body (4.3 to 5.0 ‰), and 

magnetite from a diopside-magnetite-anhydrite vein (4.4 to 6.7 ‰) (Fig. 4.5). The δ18O values 

reported by those authors generally agree with data reported in the current study as well as 

Rhodes and Oreskes (1999) and Nyström et al. (2008), with the exception of heavier δ18O values 

in magnetite from the diopside-magnetite-anhydrite vein. Tornos et al. (2016) used δ18O values 

of coexisting magnetite and diopside from a vein that crosscuts the host andesite to calculate a 

temperature range of 900 to 1300 °C, with most calculated temperatures in the range 900 to 1125 

°C, based on the diposide-magnetite geothermometer of Matthews et al. (1983). A temperature of 

1300 °C is hotter than any shallow-level crustal igneous system except for the eruption of 

ultramafic lavas known as komatiites that erupted predominantly in the Proterozoic and Archean 

(Condie et al., 2016). Tornos et al. (2016) point out that experimental studies demonstrate that 

water-saturated andesite melt at low pressure crystallizes over the temperature range 1030 to 950 

°C (Moore and Carmichael 1998; Blundy et al. 2006), and that the δ18O values they determined 

for magnetite and host andesite from El Laco are consistent with magnetite that crystallized in 

equilibrium with andesite melt over a temperature range of 650 to 1350 °C. The liquid 

immiscibility hypothesis that invokes crystallization of the magnetite-rich ore bodies from an Fe- 

and P-rich liquid in equilibrium with host andesite at El Laco can be tested directly by using 

experimental data that constrain the partitioning of O isotopes between immiscible Si-rich and 

Fe-rich melts over the temperature range at which andesites crystallize.     

Kyser et al. (1998) demonstrated experimentally at 1180 °C and 0.1 MPa that 18O 

isotopes will only slightly fractionate into the Si-rich melt relative to the conjugate Fe-rich melt 

that forms by unmixing of an initial silicate melt in the Fe2SiO4-KAlSi2O6-SiO2 system. Those 

authors report a Δ18O value, which is defined as δ18OSi-rich-melt- δ
18OFe-rich-melt, of 0.5-0.6 ‰. Lester 
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et al. (2013b) performed experiments at 1100-1200ºC to quantify O isotope fractionation 

between Si-rich and Fe-rich melts and report Δ18O values that vary between ~0.0 and 0.5 ‰. 

These experimentally constrained fractionation factors for O isotopes in Si-rich and conjugate 

Fe-rich melts indicate that the iron oxide ore bodies at El Laco should yield δ18O values of ~7 to 

9 ‰ if the ore bodies crystallized from Fe-rich liquid that had been in equilibrium with andesite 

host rocks, even when projected to lower temperatures. However, unaltered magnetite at El Laco 

yields δ18O values of ~3.5 to 5 ‰, as reported in the current study as well as in Tornos et al. 

(2016) and Rhodes and Oreskes (1999). The δ18O values for magnetite at El Laco are entirely 

consistent with the range of typical igneous and magmatic-hydrothermal magnetite (cf. Taylor, 

1967; Loewen and Bindeman, 2016) (Fig. 4.5). 

Lester et al. (2013a) performed experiments in the systems Fe2SiO4–Fe3O4–KAlSi2O6–

SiO2, Fe3O4–KAlSi2O6–SiO2 and Fe3O4–Fe2O3–KAlSi2O6–SiO2 at temperatures of 1075 - 1200 

°C at 200 MPa and oxygen fugacities (𝑓O2) within the magnetite stability field to assess the 

possible effects of H2O alone or H2O in combination with P, S, F and Cl on liquid immiscibility. 

Importantly, the authors added 10 % H2O by mass to their experiments and did not measure the 

H2O content of the quenched immiscible Si-rich and Fe-rich liquid. The authors did quantify and 

report that P, S, and Cl partition preferentially into the Fe-rich immiscible liquid, with P and S 

strongly preferring the Fe-rich melt and F showing equal preference for the Fe-rich and Si-rich 

melts. Their results indicate that the addition of H2O along with P, S and F (not Cl) decreases the 

temperature at which liquid immiscibility occurs and expands the compositional ranges of the 

two-liquid field. On the contrary, the addition of only H2O and Cl resulted in formation of a 

single melt at all conditions except one experiment at 1200 °C. Lester et al. (2013b) reported that 

the addition of only H2O and Cl increases the activity of Si in the melt, hence the temperature of 
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the silicate mineral saturation surface, which disallows unmixing of the silicate liquid. Based on 

their experimental results for a hydrous assemblage and the experimental results of Naslund 

(1983) for anhydrous assemblages, liquid immiscibility is not expected to occur below 

temperatures of ~1075 °C at 𝑓O2 of MH or ~1100 °C at 𝑓O2 NNO and, critically, is not expected 

to occur in systems with H2O + Cl.  

Broman et al. (1999) reported data for fluid inclusions hosted in pyroxene intergrown 

with magnetite at Laco Sur and from a vein cross-cutting ore breccia in a dike-vein system at 

Cristales Grandes that reveal the ore-associated fluids (interpreted by those authors as having 

exsolved from the Fe-magma after emplacement and crystallization) are Na-K chloride rich and 

contain anhydrite daughter crystals. They refer to the inclusions as “hydrous saline melt” and 

report that the inclusions homogenize at > 800 °C. Broman et al. (1999) interpret the presence of 

the Na-K-Cl inclusions as evidence for exsolution of a hydrous saline melt from a decompressing 

magma, consistent with the studies of Cline and Bodnar (1991) and Webster (1997). In light of 

the experimental study of Lester et al. (2013b) described above, the Cl-rich nature of the 

inclusions seems inconsistent with the liquid immiscibility hypothesis. 

Most recently, Hou et al. (2018) used Raman spectroscopy to measure the H2O 

concentration of experimentally produced conjugate Fe-rich and Si-rich melts and reported that 

H2O preferentially partitions into the Si-rich melt, with Si-melt/Fe-melt partition coefficients that 

vary from 1.4 - 2.5. This finding demonstrates that even if liquid immiscibility did occur in a Cl-

rich system, which is the opposite of what Lester et al. (2013b) determined experimentally, the 

addition of H2O to the Si-rich melt will lower its bulk density relative to its conjugate Fe-rich 

melt. The liquid immiscibility hypothesis invoked to explain the eruption of Fe-rich magma at El 

Laco requires H2O to partition preferentially into the Fe-rich melt during liquid-liquid unmixing, 
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such that the Fe-rich melt is less dense than its conjugate Si-rich melt and it can ascend 

buoyantly from the source magma. The results from Hou et al. (2018) falsify that hypothesis. 

In summary, the experimental data that constrain the partitioning of O isotopes between 

conjugate Fe-rich and Si-rich melts and that demonstrate liquid immiscibility does not occur in 

H2O + Cl-bearing silicate melts appear to disallow liquid immiscibility as a plausible explanation 

for mineralization at El Laco.  

 

The origin of the El Laco magnetite-rich ore bodies      

The triple O, H, and Fe isotope data presented in this paper are consistent with the 

magmatic/magmatic-hydrothermal model proposed by Ovalle et al. (2018) to explain 

mineralization at El Laco. Those authors studied surface and drill core samples to depths of 188 

m and found systematic lithological, textural, and geochemical zonation of magnetite from 

surface to depth where predominantly hydrothermal magnetite features exist at the surface and 

transition to purely igneous textures (not observed on the surface) at depth. The concentrations of 

Ti, V, Al, and Mn in magnetite systematically increase from the surface to depth (from ~0.0 to 

~0.76 wt% Ti). Titanomagnetite crystals at 188 m exhibit triple-junctions and trellis texture 

ilmenite exsolution lamellae (~0.76 wt.% average, up to 1.66 wt.% Ti), which is a hallmark 

characteristic of orthomagmatic magnetite and has been reported in the Proterozoic Pea Ridge 

IOA deposit (Korfeh et al., 2016). Ovalle et al. (2018) concluded that in order to explain the 

occurrence of both orthomagmatic and hydrothermal magnetite in the orebodies, magnetite must 

have formed by a combination of igneous and hydrothermal processes. Those authors invoke the 

magnetite-flotation model originally proposed by Knipping et al. (2015a), wherein early 

magnetite crystals within a magma reservoir are remobilized by exsolving magnetite-wetting Fe-
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rich hydrothermal fluids, creating a low-density magnetite-fluid suspension (i.e., froth) that rises 

within the magma and erupts to the surface along previously formed collapse-related structures 

at the El Laco volcano. The systematic change in trace element concentrations records a cooling 

trend wherein magnetite grew from a cooling magmatic-hydrothermal fluid as the fluid evolved 

from magmatic temperatures to hydrothermal temperatures. Growth of magnetite from a cooling 

magmatic-hydrothermal fluid explains the hydrothermal textures observed in the near-surface 

environment at El Laco, whereas the igneous textures are consistent with emplacement to 

shallow levels of a magnetite-bearing magmatic-hydrothermal fluid wherein the magnetite 

crystallized from silicate melt in the parent magma chamber that evolved the ore fluid. Their 

model predicts that magnetite should have δ18O and δ56Fe values consistent with growth from 

silicate melt and magmatic-hydrothermal fluid, which agree with the values reported here and in 

published studies.  

 

CONCLUSIONS 

Triple O, H, and Fe stable isotope abundances in magnetite from the El Laco IOA deposit 

in northern Chile fingerprint a silicate magma as the source of these elements. Hydrogen and 

triple O isotopes in magnetite in some samples from the Laco Norte and San Vicente Alto ore 

bodies reveal alteration by meteoric water, consistent with increasing abundances of hematite 

and goethite in samples with lighter δ18O and δ2H values. The δ18O values in samples from Laco 

Sur, Cristales Grandes, and Rodados Negros overlap magmatic values. In the case of Rodados 

Negros, which lacks hematite and goethite, Δ17O values show the same trend of an originally 

magmatic signature being altered to meteoric values. The δ56Fe values of magnetite from all five 

ore bodies sampled in this study overlap with purely igneous magnetite δ56Fe values and 
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magnetite from other IOA deposits, such as Los Colorados, Mariela Ignacia, Pea Ridge and Pilot 

Knob, Kiruna, and Grängesberg. Importantly, even in bulk iron oxide samples that contain 

hematite and goethite and have δ18O and δ2H values that fingerprint alteration by meteoric water, 

the δ56Fe values preserve original magmatic values. The δ18O values reported in this and 

previous studies from the El Laco orebodies are consistent with having been derived from the 

same source as the relatively isotopically heavy andesites at El Laco at temperatures between 

700 and 900 °C. The stable isotope data presented here are consistent with the model proposed 

by Ovalle et al. (2018) to explain the magmatic and hydrothermal chemistry and textures of 

magnetite at El Laco. Isotopic data presented here, coupled with reported trace element and fluid 

inclusion information for El Laco, preclude the possibility that the ore fluids responsible for 

mineralization at El Laco were derived from a non-magmatic source. The stable O isotope data 

also precludes formation of the Fe ore bodies via liquid immiscibility. Future isotopic studies 

should focus on in situ studies of statistically significant populations of individual magnetite 

grains in order to assess isotopic fractionation between magmatic and hydrothermal magnetite 

and or fractionation related to the thermal gradient from depth to surface. 
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Table 4.1: Theoretical yields of O2 for magnetite, hematite, and goethite are 7.8, 10.4, and 31.2 µmol/gram respectively. Blank 
spaces indicate samples that were not analyzed for Fe, O, or H. δ2H and δ18O values are reported relative to VSMOW. Individual 
δ18O typically have 2σ < 0.1 ‰. δ56Fe is reported relative to IRMM-14. *Sample RN-2 value reported from Δ17O analysis in Table 2. 

Sample δ18O (‰) µmol/gram δ2H (‰) H2O wt% δ56Fe (‰) 2σ 

Laco Norte             

LN-2 -10.2 9.4 -192.8 2.2 0.31 0.04 
LN-3a 3.9 8.3 -126.8 0.4    
LN-3b 4.4 7.4 -116.9 0.0    
LN-5 3.7 8.6 -134.9 0.4    

LN-6a 4.1 7.3 -79.9 0.1    
LN-6b 4.5 8.7 -61.1 0.0    
LN-7 2.3 8.5      
LN-8 1.7 8.5      
LN-9 1.1 9.3 -152.4 0.6 0.45 0.04 

LN-10a 2.4 8.5 -156.4 0.8 0.24 0.05 
LN-10b 3.9 8.8 -181.1 0.5 0.33 0.09 
LN-11a -1.2 8.2      
LN-11b 4.2 6.9      
LN-12 -4.1 9.0 -166.3 0.4    

LN-14a 2.1 8.3 -162.7 0.9 0.04 0.05 
LN-14b -4.3 8.9 -189.4 1.2 0.26 0.07 
LN-15 4.1 7.7      
LN-B -8.2 9.7         

Laco Sur             
LS-1 4.5 8.5 -127.4 0.1 0.35 0.04 

LS-2a 4.4 7.9 -127.9 0.2 0.28 0.09 
LS-2b   -139.1 0.0    
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LS-3 4.3 7.0 -111.9 0.2 0.28 0.07 
LS-t2 4.4 7.6 -120.2 0.1 0.34 0.07 
LS-t5 4.4 7.4 -119.7 0.1 0.51 0.11 

San Vicente Alto             
SVA-1 -1.0 8.5 -131.4 0.6 0.50 0.04 
SVA-2 -8.5 7.7 -145.0 1.4 0.70 0.04 
SVA-3 -0.6 9.4 -128.8 1.3 0.44 0.08 
SVA-4 -0.5 9.0 -137.2 0.6 0.36 0.07 
SVA-t1 -8.2 9.4 -126.7 1.5 0.33 0.07 

Cristales Grandes             
CG-1 3.7 8.0 -114.9 0.0 0.26 0.05 
CG-2 3.9 7.7 -110.9 0.0 0.30 0.02 
CG-3 3.0 8.7 -132.4 0.2 0.29 0.06 
CG-4 3.9 8.3 -140.3 0.1 0.07 0.08 
CG-5 3.7 8.0 -116.8 0.1 0.11 0.03 

Rodados Negros        
RN-1 3.8 8.3 -116.9 0.1 0.18 0.04 
RN-2   3.6* - -94.6 0.2 0.18 0.02 
RN-3 3.8 8.1 -100.5 0.1 0.14 0.07 
RN-4 3.7 8.1 -78.2 0.0 0.16 0.05 
RN-5 3.5 7.9 -88.0 0.0 0.20 0.05 
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Table 4.2: Samples from Rodados Negros analyzed for δ17O 
and δ18O with calculated Δ17O (Eq. 3). Each sample was 
analyzed three times and averaged with 2σ of ≤ 0.06 ‰ for 
both δ17O and δ18O analyses. 

Sample δ17O (‰) δ18O (‰) Δ17O (‰) 

RD-1 1.5 3.0 -0.13 

RD-2 1.8 3.6 -0.09 

RD-3 2.0 3.7 0.10 

RD-4 1.8 3.5 -0.11 

RD-7 1.4 2.6 0.03 
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CHAPTER V 

CONCLUSIONS 

 

The previous three chapters have demonstrated the capability of traditional and non-

traditional stable isotopes when applied to the iron oxide ore-forming minerals in IOA and IOCG 

deposits to test current genetic models. The simple application of the Fe–O isotope pair allows 

researchers to determine mineralizing fluid sources and subsequent degree of alteration of the 

iron oxide minerals, particularly magnetite. Measuring 17O in iron oxides and H stable isotopes 

of fluid inclusions in primary magnetite and secondary hydrous iron oxides may be used as an 

effective redundant indicator of primary and secondary fluid sources. When used in conjunction 

with more traditional techniques such as reflected light microscopy, electron microscopy, and 

trace element analyses, stable isotopes become a powerful tool for understanding metal and fluid 

provenance of the most modally abundant minerals of IOAs and IOCGs, magnetite and hematite, 

allowing for efficient testing of current ore deposit formation models. 

Due to conflicting textural observations, the iron oxide deposits at Pea Ridge and Pilot 

Knob have been the center of much debate concerning their origin. Porphyritic magnetite 

phenocrysts supported by fine grained magnetite matrix have been argued to support a purely 

magmatic emplacement hypothesis, while replacement textures in the magnetite orebodies have 

led some researchers to claim Fe-rich fluids metasomatized local volcanic rocks, entirely 
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replacing them with magnetite. By applying Fe and O stable isotopes to these deposits, Chapter 

II determined that magnetite from these deposits are undoubtedly magmatic in origin, whether 

they were precipitated directly from a magma or a magmatic-hydrothermal fluid. The addition of 

trace element analyses allowed for further interpretation of the multiple generations of magnetite 

observed at Pea Ridge, and a clear contrast was observed between low-Ti magnetite (<0.36 wt % 

TiO2) and high-Ti (>10 wt % TiO2) magnetite. This observation, in conjunction with Fe and O 

stable isotopes, allows for the interpretation that both orthomagmatic and magmatic-

hydrothermal magnetite exist within the Pea Ridge orebody. The simultaneous occurrence of 

both types of magnetite (magmatic and hydrothermal) is not adequately explained by previous 

models applied to Pea Ridge and Pilot Knob, and the new data presented in Chapter II are more 

consistent with the newer magnetite flotation model (Knipping et al., 2015) in which magmatic 

and magmatic-hydrothermal magnetite may precipitate from the same evolving fluid. 

Many IOCG deposits within the Chilean Iron Belt are spatially and temporally associated 

with Kiruna-type IOA deposits. Iron oxide–apatite deposits have been suggested to be the high-

T, S- (Cu-, Au-) poor endmembers of an IOA–IOCG continuum. The Mantoverde mining district 

is primarily host to IOCG-type magnetite-hematite deposits with spatially associated IOA 

deposits forming along the same fault system. Chapter III presents the first Fe–O paired 

isotopic dataset for an IOCG deposit, along with extensive trace element analyses of the iron 

oxides. Previous studies agreed that the initial stages of mineralizing fluids at Mantoverde were 

of moderate temperature (~600℃) magmatic-hydrothermal fluids, but disagreed on the role (if 

any) of non-magmatic fluids at later stages of mineralization (i.e. during sulfide and hematite 

formation). Both the iron and the oxygen stable isotopes are in agreement that early-stage 

magnetite and late-stage hematite formed from cooling magmatic fluids that were much cooler 
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(<300℃) at later stages. Trace element contents of Ti, V, Al, and Mn show a cooling trend with 

decreasing trace element contents, from approximately 500-200℃, similar to the cooling trend 

discovered at the nearby Los Colorados IOA based on the same trace element observations. The 

isotopic and trace element data are nearly identical to the Los Colorados IOA, and record lower 

mineralization temperatures. These observations support the IOA–IOCG hypothesis, where 

hotter, sulfur poor magnetite, apatite, and actinolite are deposited at depth, releasing Fe- and S-

rich fluids that may migrate to the surface to form the cooler, more oxidized and S-rich IOCG 

deposits. 

The El Laco IOA deposits located in the northern Atacama of Chile are among the most 

enigmatic and geologically inspiring deposits on Earth. Since the first description of the surficial 

magnetite deposits as magnetite “flows” by Park (1961), competing hypotheses have attempted 

to explain the occurrence of what visually appear to be iron oxide lava flows, including the 

eruption and emplacement of immiscible Fe-rich melts and the metasomatic replacement of 

andesitic lava flows by Fe-rich hydrothermal fluids. Decades of research have gone into 

attempting to replicate hypothesized Fe-rich melts in the laboratory. More recent observations of 

magnetite in drill core that extend to 188m depth reveal a continuum of magmatic and 

hydrothermal textures and trace element chemistry from depth to surface, prompting a new 

model by Ovalle et al. (2018) based on the magnetite flotation model by Knipping et al. (2015). 

In Chapter IV, we apply triple O, H, and Fe stable isotopes to magnetite and bulk iron oxide 

samples from five of the six major deposits at El Laco, where only 16O and 18O had been 

analyzed previously. The application of these isotopic systems unequivocally prove that the 

magnetite deposits were derived from a silicate magma (with magnetite δ18O values consistent 

with equilibrium with local andesite), with minor alteration by meteoric fluids post-deposition. 
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The O isotope ratios in these magnetites could only have been derived from typical magmas and 

magmatic-hydrothermal fluids and preclude magnetite precipitating from an immiscible Fe-melt. 

Additionally, the paired Fe–O isotopes are nearly identical to the nearby Los Colorados IOA. 

When interpreted in combination with drill core data, this new all-encompassing isotopic dataset 

is most in agreement with the magnetite flotation model, where orthomagmatic magnetite was 

deposited at depth and magmatic-hydrothermal magnetite precipitated from a cooling magmatic-

hydrothermal fluid that erupted onto the surface. 

The summary of the isotopic and trace element datasets from these three studies supports 

the conclusion that the fluids responsible for these IOA and IOCG deposits were unequivocally 

magmatic in origin and rule out the necessity of non-magmatic hydrothermal fluids as a major 

contributor to deposit formation. Oxygen isotopic ratios also disallow for magnetite to have 

formed via immiscible Fe-rich melts. The similarity of paired Fe–O isotopes among all deposits 

imply geochemically similar sources and processes for both IOA and IOCG deposits and, when 

applied in combination with textural and geochemical analyses of the iron oxides, support the 

magnetite flotation and IOA–IOCG continuum hypotheses. Further application of the paired Fe–

O isotopic systems to in situ analysis of individual generations of magnetite may reveal high-T 

fractionation of the isotopes between orthomagmatic and magmatic-hydrothermal magnetite 

within individual iron oxide systems to further test the magnetite flotation hypothesis. 

With growing global resource demand comes a necessity of improving the ways in which 

we explore for high quality ore deposits. As the largest and highest quality ore deposits become 

more scarce and difficult to find, we must improve our overall understanding of exactly how 

these ore deposits form by testing and improving upon models while both in the laboratory and 

in the field. Methods that are currently considered unconventional (like those presented in this 
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study) in the sense of traditional exploration techniques may eventually become standard practice 

when attempting to delineate specific deposits to maximize the throughput of exploration and 

mining. The days of stumbling upon significant ore deposits while mapping in the field are 

nearing an end, and more in-depth techniques that encompass a much broader range of 

geoscience will become necessary if geologists are to keep up with increasing industrialization. 

As we venture off-planet in search of new resources in the coming decades and the cost of failed 

exploration attempts becomes prohibitive to the process, scientific inquiry and understanding 

will be at the forefront of exploration. The research presented in this thesis is a small 

contribution to the overall understanding of the geologic processes that form quality ore deposits, 

and of a rapidly growing and much needed unification of science and the mining industry. It is 

this unification of conventional experience and unconventional research that will highlight new 

avenues for productive and responsible mining for the foreseeable future. 

REFERENCES 

Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman 

I, Munizaga R (2015a) Giant Kiruna-type deposits form by efficient flotation of 

magmatic magnetite suspensions. Geology, 43:491–594 

Ovalle JT, La Cruz NL, Reich M, Barra F, Simon AC, Konecke, BA, Rodriguez-Mustafa MA, 

Deditius AP, Childress TM, Morata D (2018) Formation of massive iron deposits linked 

to explosive volcanic eruptions. Nature Scientific Reports, 8 no. 14855 

Park CF Jr. (1961) A magnetite “flow” in northern Chile. Economic Geology, 56:431-436 

  



150 

APPENDIX 

TABLES 



151 

 

Table A.1: Oxygen isotopic data from Pea Ridge and 
Pilot Knob and additional data and locations of 
magnetite samples from previous studies. 

Location Sample 
δ18O 
(‰) 

Pea Ridge, USA PR-18 2.12 

  PR-37 4.50 

  PR-64A 4.87 

  PR-65 5.10 

  PR-73 1.24 

  PR-77A 5.11 

  PR-82A 5.90 

  PR-82B 7.03 

  PR-144 5.04 

  PR-148 4.56 

  PR-153 3.18 

  PR-163 1.02 

     

Pilot Knob, USA PK-1145-830.1 3.26 

  PK-1145-965.8 6.68 

  PK-1145-979.5 6.21 

     

Kiruna, Sweden Nyström et al. 2008 2.2 

  Nyström et al. 2008 1.7 

  Nyström et al. 2008 1.1 

  Nyström et al. 2008 1.8 

  Nyström et al. 2008 0.9 

  Nyström et al. 2008 2.1 

  Nyström et al. 2008 0.7 

  Nyström et al. 2008 1.3 

  Nyström et al. 2008 1.1 

  Nyström et al. 2008 -0.2 

  Nyström et al. 2008 -0.7 

  Nyström et al. 2008 1 

  Nyström et al. 2008 1.1 

  Nyström et al. 2008 0.3 

  Nyström et al. 2008 1.2 

  Bilenker 2015 1.76 

     
Grangensberg, 

Sweden 
   

Jonnson et al, 2014 1.9 

  Jonnson et al, 2014 2.2 
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  Jonnson et al, 2014 2.8 

  Jonnson et al, 2014 1.2 

  Jonnson et al, 2014 1.1 

  Jonnson et al, 2014 1 

  Jonnson et al, 2014 1.2 

  Jonnson et al, 2014 1.8 

  Jonnson et al, 2014 1.4 

  Jonnson et al, 2014 3.7 

  Jonnson et al, 2014 -0.4 

  Jonnson et al, 2014 1.3 

  Jonnson et al, 2014 1.2 

  Jonnson et al, 2014 3 

  Jonnson et al, 2014 1.8 

  Jonnson et al, 2014 1.9 

  Jonnson et al, 2014 0.9 

  Jonnson et al, 2014 0.2 

  Jonnson et al, 2014 1.1 

  Jonnson et al, 2014 1.5 

  Jonnson et al, 2014 2.8 

  Jonnson et al, 2014 1.7 

  Jonnson et al, 2014 3.4 

  Jonnson et al, 2014 1.8 

  Jonnson et al, 2014 1.5 

     

     

Chilean Iron Belt    

Carmen This study 2.6 

  Nyström et al. 2008 2.4 

  Nyström et al. 2008 3.3 

     

El Dorado Nyström et al. 2008 3 

     

Romeral Nyström et al. 2008 1.6 

  Nyström et al. 2008 0.8 

  Nyström et al. 2008 1.3 

  Nyström et al. 2008 1.7 

  Nyström et al. 2008 -1.3 

  Nyström et al. 2008 0.4 

  Nyström et al. 2008 2 

  Nyström et al. 2008 0.3 

Algarrobo Nyström et al. 2008 1.9 

  Nyström et al. 2008 2.3 

  Nyström et al. 2008 2.5 

  Nyström et al. 2008 0.6 
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El Tofo Nyström et al. 2008 4.5 

     

Cerro Iman Nyström et al. 2008 1.7 

  Nyström et al. 2008 1.6 

     

Los Colorados Bilenker 2015 2.41 

  Bilenker 2015 3.04 

  Bilenker 2015 2.75 

  Bilenker 2015 3.17 

  Bilenker 2015 2.36 

  Bilenker 2015 2.04 

  Bilenker 2015 2.76 

  Bilenker 2015 2.99 

  Bilenker 2015 2.78 

  Bilenker 2015 2.48 

  Bilenker 2015 1.92 

  Bilenker 2015 2.62 

  Bilenker 2015 2.43 

     

Mariela Ignacia Bilenker 2015 1.50 

     

El Laco, Chile Nyström et al. 2008 3.2 

  Nyström et al. 2008 4.2 

  Nyström et al. 2008 2.7 

  Nyström et al. 2008 3.4 

  Nyström et al. 2008 3.4 

  Nyström et al. 2008 2.3 

  Nyström et al. 2008 3.7 

  Nyström et al. 2008 3 

  Nyström et al. 2008 3.1 

  Nyström et al. 2008 3.5 

  Nyström et al. 2008 2.3 

  Nyström et al. 2008 2.6 

  Nyström et al. 2008 2.4 

  Nyström et al. 2008 2.4 

  Bilenker 2015 4.00 

  Bilenker 2015 4.34 
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Table A.2: Iron isotopic data from Pea Ridge and Pilot Knob and additional data and 
locations of magnetite samples from previous studies. 

Location Sample 
δ56Fe 
(‰) 

2σ 
(‰) Source 

Pea Ridge, USA PR-18 0.35 0.05 This study 

  PR-37 0.07 0.05   

  PR-64a 0.20 0.05   

  PR-73 0.28    

  PR-77a 0.22 0.02   

  PR-82a 0.10 0.02   

  PR-82b 0.03 0.02   

  PR-144 0.26 0.09   

   0.10 0.04   

  PR-158 0.26 0.08   

       

       

Pilot Knob, USA PK-1145-965.8 0.19 0.04 This study 

  PK-1145-979.5 0.14 0.10   

  PK-1098-715 0.18 0.03   

  PK-1086-918 0.14 0.05   

  PK-2079-1160 0.27 0.06   

  PK-1174-1348 0.06 0.05   

       

Mineville, NY  -0.92 0.03 Bilenker, 2015 

       

Chilean Iron Belt      

Los Colorados      

Core LC-05  0.22 0.03 Bilenker, 2015 

Core LC-05 05-20.7 0.09 0.06 Bilenker, 2015 

Core LC-05 05-32 0.22 0.03 Bilenker, 2015 

Core LC-05 05-52.2 0.14 0.08 Bilenker, 2015 

Core LC-05 05-72.9 0.13 0.05 Bilenker, 2015 

  05-82.6 0.08 0.03 Bilenker, 2015 

  05-90 0.21 0.07 Bilenker, 2015 

  05-106 0.12 0.03 Bilenker, 2015 

  05-126.15 0.10 0.06 Bilenker, 2015 

  05-129.3a 0.22 0.05 Bilenker, 2015 

  05-129.3b 0.14 0.02 Bilenker, 2015 

Core LC-04 04-38.8 0.18 0.03 Bilenker, 2015 

  04-66.7 0.18 0.07 Bilenker, 2015 

  04-104.4 0.24 0.08 Bilenker, 2015 

  04-129.3 0.22 0.03 Bilenker, 2015 
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LC East Dike pitE1 0.18 0.03   

       

El Laco LCO-39 0.39 0.09 Bilenker, 2015 

  LCO 0.29 0.03 Bilenker, 2015 

  LCO vein 0.30 0.03 Bilenker, 2015 

  LCO-76 0.32 0.09 Bilenker, 2015 

  LCO-78 0.53 0.03 Bilenker, 2015 

  LCO-104 0.27 0.03 Bilenker, 2015 

  LCO-111 0.20 0.03 Bilenker, 2015 

  EJ-LS-11-1 0.28 0.04 Weis, 2013 

  EJ-LS-11-2 0.24 0.03 Weis, 2013 

  EJ-LS-11-3 0.36 0.03 Weis, 2013 

  EJ-LS-11-4 0.34 0.03 Weis, 2013 

  LS-2 0.27 0.04 Weis, 2013 

  LS-52 0.28 0.03 Weis, 2013 

       

Mariela Ignacia M-8 0.13 0.03 Bilenker, 2015 

       

Dannemora DM-1 -0.36 0.03 Weis, 2013 

  DM-2 0.01 0.03 Weis, 2013 

  DM-3 -0.43 0.03 Weis, 2013 

  DM-4 -0.35 0.03 Weis, 2013 

       
       
Grängesberg 
Mining District 

 
0.40 0.03 Weis, 2013  
0.24 0.03 Weis, 2013 

   0.33 0.03 Weis, 2013 

DC 690  0.31 0.03 Weis, 2013 

   0.31 0.04 Weis, 2013 

   0.30 0.04 Weis, 2013 

   0.26 0.04 Weis, 2013 

   0.29 0.03 Weis, 2013 

   0.39 0.04 Weis, 2013 

   0.27 0.04 Weis, 2013 

DC 575  1.00 0.03 Weis, 2013 

   0.31 0.03 Weis, 2013 

   0.27 0.04 Weis, 2013 

Additional waste pile 0.33 0.03 Weis, 2013 

  waste pile -0.02 0.03 Weis, 2013 

  disseminated mgt 0.24 0.03 Weis, 2013 

  mgt vein 0.11 0.03 Weis, 2013 

Striberg BIF -0.57 0.03 Weis, 2013 

       

Volcanic Reference      
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 Basalt Basalt bomb 0.46 0.03 Weis, 2013 

Ankaramite TEF-NER-57 0.16 0.02 Weis, 2013 

Ankaramite TEF-NER-70 0.10 0.02 Weis, 2013 

Ankaramite TEF-NER-18 0.07 0.05 Weis, 2013 

Dacite MG-07 0.32 0.03 Weis, 2013 

Dacite MG-09 0.29 0.03 Weis, 2013 

Basaltic andesite M-BA06-KA-3 0.17 0.03 Weis, 2013 

Basaltic andesite Kelut 0.10 0.04 Weis, 2013 

Basaltic andesite  0.12 0.03 Weis, 2013 

Basaltic andesite  0.06 0.03 Weis, 2013 

Basaltic andesite  0.16 0.03 Weis, 2013 

Basaltic andesite  0.18 0.05 Weis, 2013 

Dolerite 83/CRS/6 0.34 0.03 Weis, 2013 
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Table A.3: EMPA results for magnetite and hematite from individual depths in elemental weight percent. Blank spaces indicate an 
analysis that was below detection limit. Statistical summary for magnetite and hematite is located in the main text. 

Depth Mg Al Si Ca Ti V Cr Mn Fe O Total 

262m 0.04 0.16 0.72 0.14 0.05 0.01     70.41 21.26 92.80 

   0.10 0.18 0.06 0.03 0.01   71.68 20.88 92.94 

   0.04 0.16 0.03 0.02 0.02   71.92 20.85 93.03 

  0.02 0.06 0.20 0.04 0.01 0.02   71.74 20.88 92.97 

  0.01 0.03 0.15   0.01   71.48 20.70 92.41 

  0.03 1.16 0.17 0.02  0.02   68.01 20.75 90.18 

   0.05 0.34   0.02   71.25 20.87 92.54 

    0.38 0.20 0.01 0.04 0.02     70.88 20.91 92.44 

276m   0.03 0.11   0.01 0.11     71.35 20.66 92.28 

  0.01 0.27 0.70 0.14 0.10 0.11   70.29 21.36 92.99 

   0.03 0.03   0.11   71.72 20.66 92.57 

   0.05 0.26 0.04 0.03 0.11   70.93 20.74 92.14 

  0.05 0.36 1.33 0.24 0.09 0.12   68.97 21.85 93.03 

  0.04 0.29 0.55 0.11 0.06 0.10   70.22 21.16 92.53 

  0.01 0.03 0.20 0.02 0.01 0.10   71.17 20.72 92.27 

  0.09 0.33 0.78 0.22 0.09 0.13  0.01 69.63 21.40 92.68 

  0.12 0.37 0.43 0.15 0.15 0.12   69.65 21.07 92.06 

   0.02 0.09  0.02 0.11   71.59 20.69 92.51 

  0.01 0.09 0.33 0.06 0.04 0.11   70.89 20.87 92.41 

   0.02 0.01   0.09   69.56 20.01 89.70 

   0.03 0.02   0.09   69.69 20.06 89.88 

   0.02 0.01   0.08   71.94 20.68 92.74 

   0.06 0.28 0.08 0.02 0.10   71.09 20.83 92.44 

   0.02 0.02   0.10 0.03  71.77 20.67 92.62 

   0.04 0.02   0.09   69.43 20.00 89.59 

   0.01 0.02   0.08 0.01  71.62 20.59 92.33 
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   0.06 0.10   0.06   71.48 20.69 92.40 

   0.03 0.07   0.08   71.94 20.76 92.90 

   0.03 0.07   0.08   72.24 20.85 93.29 

   0.02 0.06   0.08   71.87 20.72 92.77 

  0.02 0.06 0.23 0.02  0.09   71.30 20.81 92.53 

   0.01 0.01   0.10   72.00 20.71 92.85 

   0.08 0.03   0.10   70.49 20.35 91.06 

   0.02 0.02   0.09   69.37 19.96 89.47 

   0.02 0.01   0.09   69.41 19.96 89.49 

   0.02 0.02   0.11   69.64 20.04 89.83 

   0.03 0.02  0.04 0.11 0.01  69.81 20.13 90.15 

   0.01 0.03  0.01 0.10 0.01  71.85 20.68 92.68 

   0.01 0.08   0.08   71.22 20.55 91.94 

   0.05 0.17 0.03 0.01 0.10   71.50 20.79 92.67 

    0.02   0.10   71.86 20.67 92.66 

   0.29 0.07   0.09   70.90 20.70 92.06 

  0.03 0.13 0.48 0.08 0.03 0.10     70.55 21.00 92.40 

284m   0.03 0.02   1.09 0.08     68.59 20.46 90.28 

   0.03 0.02  0.64 0.09 0.02  68.46 20.14 89.39 

   0.02 0.01  1.25 0.03 0.01  67.79 20.31 89.42 

   0.03 0.08   0.06   70.77 20.42 91.37 

  0.17 0.23 0.36 0.03 0.01 0.04 0.04  69.46 20.67 91.00 

   0.20 0.31 0.55  0.04 0.05 0.02 67.63 20.18 88.97 

  0.04 0.16 0.63 0.35 0.03 0.07 0.04  67.90 20.55 89.76 

   0.60 0.63 0.12 0.02 0.03 0.01  67.63 20.72 89.79 

   0.13 0.32 0.19 0.01 0.07 0.02  68.60 20.28 89.64 

   0.03 0.11 0.71  0.04 0.01 0.02 70.41 20.63 91.96 

   0.50 1.59 0.48  0.04 0.02 0.01 68.56 22.11 93.31 

   1.64 0.19 0.64  0.04 0.02 0.01 68.05 21.47 92.08 

   0.11 0.19 0.35  0.04 0.01  70.58 20.71 92.01 

   0.10 0.21 0.17 0.01 0.04   71.17 20.82 92.52 

  0.03 0.03 0.07  0.01 0.09 0.04  69.08 19.99 89.34 
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   0.08 0.38 0.03 0.02 0.08 0.05  70.43 20.78 91.86 

   0.01 0.02   0.08 0.04 0.01 71.70 20.64 92.52 

   0.01 0.04   0.09 0.03  71.48 20.59 92.23 

   0.08 0.53 0.04 0.03 0.08 0.14  70.28 20.95 92.13 

   0.03 0.03   0.08 0.04  71.27 20.54 92.00 

    0.10 0.31 0.10 0.02 0.07 1.40 0.01 69.44 21.07 92.51 

291m   0.01 0.07     0.06     71.57 20.63 92.34 

   0.02 0.07   0.06   71.85 20.72 92.72 

   0.02 0.05  0.04 0.06   71.56 20.63 92.34 

   0.02 0.04  0.01 0.06   71.48 20.58 92.18 

   0.05 0.21  0.02 0.06   71.69 20.86 92.90 

   0.03 0.07  0.01 0.07   71.84 20.71 92.70 

  0.02 0.09 0.26 0.05 0.02 0.07   71.07 20.81 92.37 

   0.02 0.04  0.02 0.07   72.00 20.73 92.86 

   0.02 0.12 0.01  0.07   71.17 20.58 91.96 

  0.04 0.11 0.57 0.08 0.03 0.07   70.34 21.01 92.25 

   0.02 0.07   0.07   71.66 20.66 92.47 

   0.02 0.07   0.07   71.66 20.66 92.48 

   0.02 0.15   0.07   71.62 20.75 92.62 

  0.09 0.32 0.90 0.25 0.08 0.07   69.34 21.43 92.50 

  0.55 0.07 1.00 0.30 0.01 0.06   69.58 21.65 93.21 

   0.07 0.35 0.02 0.01 0.06   71.01 20.85 92.38 

    0.04   0.05  0.01 71.70 20.63 92.46 

  0.02 0.15 0.33 0.06 0.04 0.03   70.60 20.81 92.05 

  0.05 0.24 0.61 0.14 0.12 0.02   69.73 21.06 91.97 

  0.06 0.22 0.55 0.15 0.06 0.03   69.66 20.94 91.67 

  0.02 0.10 0.21 0.07 0.24 0.03   70.72 20.80 92.19 

  0.05 0.29 0.62 0.17 0.07 0.04  0.01 69.85 21.14 92.23 

  0.04 0.06 0.23 0.08 0.05 0.03  0.01 70.46 20.61 91.58 

  0.02 0.16 0.41 0.05 0.12 0.03  0.01 69.14 20.56 90.52 

  0.03 0.23 0.59 0.14 0.12 0.04  0.01 69.21 20.88 91.24 

   0.04 0.13 0.01 0.05 0.05   71.19 20.64 92.12 
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  0.06 0.35 0.80 0.19 0.09 0.05   69.41 21.31 92.27 

   0.03 0.01   0.02   71.95 20.66 92.68 

  0.10 0.57 1.11 0.33 0.02 0.02  0.02 68.68 21.68 92.53 

   0.19 0.31 0.07 0.01 0.02   71.05 20.92 92.57 

  0.05 0.14 0.42 0.13  0.02   70.75 20.97 92.48 

  0.10 0.28 0.80 0.26 0.01 0.02   69.54 21.27 92.28 

   0.02 0.01 0.04  0.02   72.03 20.69 92.82 

   0.02 0.01 0.02  0.03   69.50 19.96 89.52 

   0.01 0.01 0.02  0.03   69.64 20.00 89.72 

  0.08 0.31 0.89 0.29 0.02 0.02  0.01 69.78 21.47 92.87 

    0.03 0.08 0.03   0.02     71.72 20.70 92.60 

299m   0.02 0.01     0.06 0.01   71.66 20.60 92.37 

   0.03 0.01   0.07 0.01  71.76 20.64 92.52 

   0.02 0.01   0.06   71.40 20.52 92.04 

    0.01   0.06   71.71 20.60 92.38 

   0.02 0.08   0.06 0.01  71.40 20.62 92.21 

   0.03 0.05   0.07   71.51 20.61 92.29 

    0.01   0.06  0.01 71.80 20.63 92.53 

   0.02 0.01   0.06   71.53 20.55 92.17 

   0.02 0.01   0.07   71.69 20.59 92.37 

   0.03 0.12   0.06  0.01 71.68 20.74 92.65 

   0.02 0.03   0.07   71.82 20.67 92.62 

   0.04 0.06   0.06 0.01 0.01 71.48 20.62 92.28 

   0.02 0.01   0.06   71.87 20.65 92.62 

   0.02 0.08   0.07   71.40 20.60 92.19 

   0.02 0.03   0.06   70.41 20.27 90.82 

   0.28 0.11  0.02 0.01   68.76 20.10 89.28 

   0.19 0.42 0.12 0.06 0.02  0.02 70.64 21.01 92.50 

   0.02 0.07   0.06 0.01  71.81 20.71 92.69 

   0.02 0.03  0.02 0.06   71.44 20.57 92.16 

   0.06 0.26 0.02 0.02 0.07   71.23 20.81 92.48 

   0.04 0.09  0.02 0.07   71.41 20.64 92.26 
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   0.05 0.09   0.06   71.49 20.66 92.35 

   0.04 0.13  0.02 0.07   71.71 20.77 92.74 

  0.02 0.20 0.35 0.07 0.04 0.07  0.01 70.70 20.94 92.39 

  0.01 0.03 0.05  0.01 0.07  0.01 71.68 20.67 92.53 

   0.03 0.06  0.01 0.06  0.01 71.79 20.70 92.66 

  0.02 0.26 0.39 0.08 0.02 0.05  0.01 70.87 21.06 92.76 

   0.18 0.28 0.01 0.07 0.06 0.02  70.64 20.80 92.04 

   0.04 0.13 0.02 0.01 0.06 0.10 0.01 71.43 20.74 92.54 

   0.12 0.25 0.06 0.05 0.03  0.01 71.26 20.88 92.67 

   0.02 0.05  0.03 0.05   71.60 20.64 92.40 

   0.04 0.06  0.03 0.06 0.01  71.73 20.72 92.66 

   0.02 0.09  0.05 0.06   71.68 20.71 92.59 

   0.02 0.01  0.01 0.07   71.73 20.63 92.48 

   0.02 0.01  0.01 0.07   71.82 20.65 92.58 

   0.05 0.19 0.04 0.03 0.04   71.55 20.82 92.74 

    0.01  0.03 0.07   71.97 20.69 92.78 

   0.04 0.04  0.03 0.07   71.63 20.65 92.45 

    0.03 0.02   0.02 0.07   0.02 71.71 20.64 92.50 

299m hmt   0.16     0.07 0.01     69.09 19.99 89.32 

   0.02 0.01  1.78 0.07   67.07 20.47 89.42 

   0.06 0.01  0.89 0.04   68.50 20.30 89.80 

   0.03   0.29 0.09   68.75 19.96 89.11 

   0.04   0.08 0.08   69.44 20.02 89.65 

   0.04 0.01  0.07 0.08   69.36 20.00 89.55 

   0.03   0.19 0.09   69.02 19.98 89.31 

   0.04   0.15 0.09  0.01 69.01 19.95 89.25 

   0.03 0.01  2.43 0.11 0.01  66.29 20.70 89.58 

   0.17 0.04  0.15 0.06   68.92 20.07 89.40 

   0.10 0.02  0.79 0.08   68.15 20.20 89.35 

   0.04 0.01  1.74 0.08   67.32 20.53 89.71 

   0.04   2.25 0.07  0.01 66.43 20.62 89.43 

   0.21 0.04  0.03    69.24 20.09 89.61 
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   0.04 0.01  0.25 0.09   68.98 20.02 89.40 

   0.02   2.97 0.06   66.35 21.05 90.45 

   0.21 0.04  0.58 0.15   68.46 20.31 89.75 

   0.21 0.03  0.35 0.02   68.89 20.19 89.67 

    0.28 0.11   0.02 0.01     68.76 20.10 89.28 

305m 0.02 0.15 0.37 0.08 0.04 0.08 0.03   70.70 20.94 92.42 

  0.03 0.12 0.35 0.07 0.11 0.07 0.03  71.00 21.01 92.79 

   0.02 0.06  0.01 0.07 0.02  71.78 20.70 92.67 

  0.02 0.08 0.20 0.04 0.02 0.08 0.02 0.01 71.19 20.78 92.44 

   0.02 0.02  0.01 0.08  0.01 71.79 20.66 92.60 

  0.03 0.06 0.23 0.07 0.02 0.08 0.03  71.19 20.82 92.52 

   0.03 0.19 0.01 0.03 0.08 0.03  71.45 20.78 92.59 

  0.03 0.18 0.32 0.08 0.05 0.08 0.02  70.73 20.93 92.43 

  0.01 0.02 0.13 0.03 0.02 0.08 0.02  71.62 20.77 92.70 

  0.03 0.11 0.29 0.06 0.03 0.08 0.02  70.96 20.87 92.45 

  0.07 0.14 0.37 0.08 0.04 0.08 0.01  70.74 20.97 92.53 

   0.05 0.19 0.05 0.02 0.08 0.01  71.52 20.83 92.76 

   0.02 0.03  0.02 0.08 0.02  71.86 20.70 92.74 

  0.04 0.07 0.32 0.07 0.01 0.07 0.02  71.09 20.91 92.61 

   0.03 0.12 0.01 0.02 0.08 0.02  71.52 20.71 92.50 

   0.05 0.17 0.01 0.04 0.08 0.02  71.44 20.78 92.59 

   0.03 0.15 0.03 0.01 0.09 0.02  71.47 20.76 92.57 

   0.07 0.23 0.04 0.04 0.08 0.02  71.66 20.95 93.10 

  0.03 0.08 0.26 0.08 0.08 0.13   71.21 20.94 92.83 

  0.01 0.09 0.30 0.05 0.02 0.12   70.80 20.80 92.20 

   0.03 0.13 0.01 0.03 0.10   71.26 20.67 92.24 

  0.01 0.02 0.13 0.03  0.11   70.81 20.53 91.66 

   0.04 0.23 0.04  0.11  0.01 71.05 20.73 92.22 

  0.01 0.04 0.08   0.11   71.48 20.68 92.43 

  0.05 0.22 0.49 0.14 0.07 0.12  0.01 70.47 21.14 92.72 

  0.07 0.22 0.58 0.16 0.09 0.13  0.01 70.05 21.17 92.49 

  0.07 0.21 0.56 0.16 0.07 0.12  0.01 70.14 21.14 92.50 
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  0.11 0.21 0.67 0.23 0.09 0.12  0.01 69.56 21.17 92.18 

  0.03 0.11 0.44 0.09 0.06 0.11  0.01 70.75 21.02 92.62 

  0.03 0.12 0.29 0.10 0.06 0.12   70.90 20.90 92.51 

  0.10 0.23 0.62 0.19 0.06 0.12 0.01 0.02 70.16 21.25 92.75 

  0.11 0.21 0.59 0.15 0.09 0.12  0.01 70.36 21.27 92.92 

  0.09 0.10 0.44 0.13 0.06 0.12  0.01 70.83 21.10 92.90 

  0.08 0.12 0.42 0.12 0.05 0.11  0.02 70.79 21.06 92.77 

  0.07 0.19 0.61 0.18 0.08 0.12   70.13 21.20 92.60 

  0.04 0.15 0.36 0.09 0.05 0.12   70.84 21.00 92.68 

  0.08 0.13 0.41 0.16 0.07 0.12  0.01 70.85 21.10 92.93 

  0.04 0.10 0.29 0.08 0.09 0.12  0.01 70.88 20.91 92.52 

  0.04 0.15 0.37 0.11 0.05 0.12  0.01 70.60 20.95 92.41 

  0.09 0.20 0.62 0.20 0.06 0.12 0.01 0.02 69.96 21.18 92.46 

  0.07 0.27 0.65 0.19 0.09 0.13  0.02 69.88 21.25 92.56 

  0.06 0.22 0.59 0.15 0.08 0.12  0.01 70.04 21.15 92.44 

  0.08 0.25 0.66 0.20 0.07 0.12  0.01 69.58 21.16 92.14 

  0.10 0.36 0.79 0.24 0.13 0.13  0.01 69.07 21.32 92.16 

  0.12 0.30 0.77 0.28 0.14 0.13  0.01 69.13 21.30 92.18 

  0.03 0.09 0.22 0.05 0.05 0.11   71.06 20.81 92.42 

  0.02 0.13 0.27 0.05 0.04 0.11   70.92 20.86 92.41 

  0.03 0.08 0.22 0.06 0.12 0.11  0.01 70.93 20.83 92.40 

  0.03 0.21 0.36 0.08 0.16 0.12  0.01 70.59 21.05 92.62 

  0.04 0.11 0.28 0.10 0.11 0.11  0.01 70.49 20.81 92.06 

  0.05 0.15 0.32 0.08 0.10 0.11  0.01 70.57 20.90 92.29 

  0.06 0.17 0.39 0.13 0.13 0.12  0.01 70.48 21.03 92.53 

  0.07 0.21 0.44 0.16 0.12 0.11  0.01 70.20 21.05 92.37 

  0.03 0.12 0.36 0.08 0.05 0.11   70.75 20.93 92.44 

  0.05 0.29 0.70 0.16 0.08 0.11  0.01 69.80 21.26 92.47 

  0.11 0.28 0.69 0.25 0.15 0.12  0.01 69.57 21.30 92.49 

  0.06 0.19 0.43 0.12 0.10 0.12  0.01 70.34 21.02 92.39 

   0.03 0.10 0.02 0.04 0.07 0.03  71.96 20.84 93.09 

  0.10 0.13 0.61 0.19 0.05 0.07  0.01 70.62 21.26 93.06 
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  0.08 0.19 0.38 0.16 0.05 0.13   70.25 20.94 92.19 

  0.05 0.12 0.24 0.09 0.09 0.12   71.02 20.91 92.65 

   0.07 0.10 0.02 0.02 0.13   72.05 20.90 93.30 

  0.10 0.29 0.73 0.22 0.12 0.10 0.01 0.02 69.97 21.43 92.99 

  0.03 0.66 0.56 0.11 0.04 0.09   0.01 69.96 21.40 92.85 

305m hmt 0.02 0.04 0.03   2.21 0.09   0.02 66.13 20.56 89.11 

   0.33 0.07  0.30 0.04  0.01 67.91 20.05 88.72 

   0.02 0.01  3.01 0.10  0.08 65.16 20.79 89.17 

   0.19 0.05  0.70 0.05   68.23 20.27 89.49 

  0.01 0.26 0.18  0.55 0.05  0.03 67.48 20.19 88.76 

   0.05 0.03  1.07 0.08  0.02 67.82 20.27 89.33 

   0.46 0.14  0.39 0.03   66.98 20.03 88.04 

   0.17 0.03  0.43 0.07   68.50 20.14 89.35 

   0.18 0.11  0.92 0.07   67.57 20.31 89.18 

   0.02 0.03  0.93 0.10   67.96 20.19 89.23 

    0.04 0.04   0.92 0.09     67.73 20.15 88.99 

314m   0.01 0.03 0.10 0.01 0.02     71.34 20.54 92.06 

   0.02 0.11 0.16 0.03 0.02  0.01 71.22 20.65 92.23 

   0.03 0.22 0.15 0.06 0.03   70.95 20.72 92.15 

  0.08 0.18 0.52 0.31 0.04 0.03   69.89 21.00 92.06 

   0.03 0.07 0.13  0.02   70.62 20.42 91.32 

  0.04 0.05 0.21 0.33 0.09 0.02   70.55 20.72 92.01 

   0.04 0.25 0.28 0.02 0.02   70.58 20.68 91.88 

  0.02 0.02 0.14 0.11 0.02 0.02   71.18 20.66 92.19 

  0.02 0.07 0.43 0.22 0.02 0.02   70.25 20.81 91.84 

   0.02 0.07 0.15 0.02 0.02   71.31 20.62 92.23 

   0.02 0.14 0.32 0.03 0.02   71.26 20.75 92.55 

   0.02 0.07 0.24 0.06 0.02   71.03 20.59 92.02 

   0.03 0.18 0.26 0.01 0.02   70.73 20.63 91.88 

   0.06 0.14 0.23 0.06 0.02   69.02 20.13 89.66 

   0.01 0.02 0.51 0.03 0.02   70.57 20.49 91.66 

  0.11 0.16 0.56 0.21 0.05 0.02  0.01 69.86 21.01 92.00 
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   0.02 0.18 0.07 0.01 0.02   71.08 20.64 92.03 

   0.03 0.03 0.07 0.05 0.02   71.39 20.59 92.18 

  0.02 0.05 0.27 0.22 0.03 0.02  0.01 70.85 20.79 92.26 

   0.02 0.26 0.14 0.01 0.03  0.01 71.10 20.76 92.33 

   0.01 0.13 0.09  0.02   71.08 20.56 91.89 

   0.01 0.13 0.05  0.02  0.01 71.24 20.61 92.09 

   0.01 0.16 0.04 0.01 0.02   71.26 20.64 92.15 

   0.01 0.11 0.02  0.03   71.37 20.61 92.15 

   0.02 0.14 0.02  0.02   70.99 20.53 91.73 

   0.03 0.16 0.03 0.02 0.02   71.14 20.63 92.03 

   0.02 0.06 0.08 0.04 0.03   71.23 20.57 92.03 

   0.12 0.20 0.11 0.04 0.02   70.85 20.72 92.08 

  0.02 0.02 0.16 0.28 0.02 0.02   71.14 20.73 92.40 

   0.04 0.21 0.20 0.01 0.02   71.51 20.86 92.86 

   0.02 0.01 0.04 0.04 0.02   71.69 20.62 92.44 

   0.03 0.10 0.04 0.03 0.02   71.53 20.67 92.42 

  0.01 0.04 0.29 0.08 0.05 0.02   71.11 20.83 92.45 

   0.08 0.05 0.07 0.01 0.02   71.26 20.59 92.08 

  0.02 0.03 0.11 0.04 0.06 0.02  0.01 71.11 20.62 92.03 

   0.03 0.16 0.07 0.02 0.02   71.51 20.74 92.55 

  0.01 0.04 0.19 0.06 0.02 0.02   71.08 20.68 92.11 

   0.04 0.19 0.03 0.03 0.02   71.40 20.74 92.44 

  0.02 0.02 0.17 0.03 0.03 0.02   71.36 20.71 92.35 

   0.02 0.17 0.06 0.01 0.03   71.33 20.69 92.29 

   0.02 0.11 0.01 0.04 0.02  0.01 71.67 20.73 92.63 

  0.04 0.14 0.40 0.07 0.04 0.02   70.96 21.00 92.67 

   0.03 0.08 0.01 0.03 0.02   71.77 20.71 92.66 

   0.04 0.18  0.04 0.02   71.56 20.78 92.63 

  0.02 0.17 0.42 0.08 0.04 0.03   70.39 20.87 92.00 

  0.03 0.08 0.21 0.06 0.12 0.02   70.70 20.71 91.94 

  0.05 0.12 0.34 0.10 0.16 0.02  0.01 70.22 20.81 91.84 

  0.01 0.03 0.11 0.03 0.02 0.02   71.38 20.65 92.25 
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   0.02 0.09 0.01 0.07 0.02   70.34 20.34 90.90 

   0.09 0.26 0.05 0.07 0.02   70.88 20.77 92.15 

  0.13 0.23 0.75 0.23 0.07 0.02  0.01 69.79 21.29 92.51 

  0.11 0.19 0.69 0.18 0.05 0.03   69.88 21.17 92.31 

   0.07 0.26 0.04 0.02 0.02   70.79 20.68 91.88 

   0.03 0.01   0.02   71.56 20.56 92.19 

   0.03 0.01   0.02   71.64 20.58 92.29 

   0.02 0.06   0.02   71.63 20.61 92.34 

   0.05 0.08 0.01 0.03 0.02   71.75 20.73 92.68 

   0.01 0.01   0.02   71.66 20.56 92.25 

   0.01 0.01   0.02  0.01 71.69 20.57 92.31 

   0.03 0.03   0.02   71.40 20.53 92.01 

   0.04 0.07   0.02  0.01 71.61 20.65 92.41 

   0.20 0.54 0.05  0.02   69.48 20.74 91.06 

   0.03 0.01   0.02   71.82 20.63 92.51 

    0.02 0.03   0.01 0.02     71.74 20.62 92.45 

324m hmt   0.10 0.02 0.04   0.05     70.35 20.30 90.86 

   0.09 0.02 0.03  0.04   70.10 20.21 90.49 

   0.07 0.01 0.01 0.02 0.05   70.46 20.29 90.91 

   0.06   0.04 0.06   70.16 20.20 90.53 

  0.02 0.05 0.01  0.05 0.07   70.39 20.28 90.86 

   0.05 0.01 0.04  0.05   70.31 20.23 90.68 

   0.18 0.03  0.38    70.06 20.50 91.14 

   0.01 0.01  0.89 0.01   69.42 20.49 90.82 

   0.20 0.03  0.17 0.05   70.34 20.47 91.22 

    0.17 0.04 0.01 1.54 0.06     68.37 20.82 90.99 

331m 0.01 0.03 0.17 0.02   0.14 0.01   70.32 20.45 91.16 

   0.03 0.06  0.01 0.14 0.01  71.01 20.51 91.77 

   0.02 0.03   0.12   70.85 20.41 91.43 

   0.02 0.03   0.13 0.01  68.80 19.83 88.83 

   0.10 0.52 0.04 0.02 0.14 0.01 0.01 70.27 20.94 92.08 

   0.02 0.02   0.14 0.01  71.31 20.54 92.03 
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   0.02 0.03   0.12   71.12 20.49 91.80 

   0.02 0.02   0.13   71.31 20.53 92.02 

   0.02 0.04   0.14 0.01  71.28 20.57 92.07 

   0.02 0.02   0.14 0.01  71.39 20.57 92.16 

   0.02 0.03   0.14 0.01  71.11 20.49 91.80 

  0.05 0.31 0.62 0.20 0.09 0.16 0.01  69.74 21.22 92.40 

  0.04 0.34 0.64 0.19 0.07 0.15   69.29 21.11 91.86 

  0.02 0.13 0.32 0.10 0.03 0.15  0.01 69.90 20.66 91.32 

   0.02 0.04  0.01 0.15   71.16 20.53 91.92 

  0.05 0.32 0.66 0.20 0.09 0.16   69.47 21.20 92.17 

  0.02 0.15 0.35 0.10 0.05 0.16   70.38 20.86 92.07 

  0.01 0.12 0.21 0.05 0.03 0.15   70.84 20.76 92.18 

   0.02 0.07   0.12   71.34 20.60 92.17 

   0.04 0.15 0.02 0.03 0.14   70.70 20.57 91.66 

   0.06 0.21 0.05 0.02 0.16  0.02 70.64 20.65 91.83 

   0.02 0.03  0.01 0.12 0.01  71.02 20.47 91.68 

  0.05 0.21 0.47 0.15 0.05 0.15   69.59 20.86 91.53 

  0.04 0.21 0.48 0.10 0.03 0.11   68.75 20.56 90.29 

   0.03 0.02  3.62 0.08  0.02 64.43 20.97 89.18 

   0.03 0.06   0.15 0.01  71.13 20.56 91.96 

  0.02 0.06 0.17 0.04 0.01 0.15   70.91 20.67 92.03 

   0.11 0.27 0.04 0.02 0.15 0.01  70.73 20.77 92.11 

   0.03 0.07  0.01 0.16   71.16 20.58 92.02 

  0.01 0.13 0.25 0.07 0.02 0.15 0.01  70.78 20.81 92.23 

   0.06 0.13 0.02 0.01 0.14   70.81 20.58 91.76 

   0.03 0.05   0.13   70.77 20.43 91.42 

   0.03 0.05   0.13   71.36 20.59 92.18 

    0.02 0.02     0.12 0.01   70.77 20.38 91.33 

331m hmt   0.02 0.01   2.33 0.04     66.23 20.57 89.19 

   0.06 0.01  1.74 0.05   66.84 20.40 89.10 

   0.05 0.01  2.48 0.04  0.01 66.25 20.71 89.54 

   0.13 0.04  1.36 0.03   67.29 20.36 89.22 
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   0.02 0.01  2.68 0.02   66.07 20.75 89.54 

   0.02 0.01  2.70 0.03   66.11 20.77 89.63 

   0.02 0.01  2.55 0.03   66.34 20.75 89.70 

   0.07   0.91 0.09   68.21 20.26 89.55 

   0.02   2.05 0.07   66.82 20.57 89.54 

   0.21   0.37 0.09   68.54 20.11 89.32 

   0.01   1.91 0.07   67.13 20.55 89.67 

   0.25 0.01  0.10 0.01   68.89 20.04 89.29 

   0.09 0.01  0.10 0.03   68.99 19.94 89.17 

   0.19 0.01  0.69 0.13   68.25 20.26 89.54 

   0.01 0.01  2.47 0.10 0.01  66.11 20.66 89.36 

   0.05 0.01  2.18 0.07   66.02 20.47 88.81 

   0.08 0.02  2.06 0.04  0.02 66.78 20.63 89.63 

   0.12 0.01  0.81 0.53 0.02  67.49 20.25 89.23 

   0.11 0.01  0.05 0.03   69.21 19.97 89.36 

   0.15 0.01  0.03 0.02   69.14 19.97 89.30 

   0.01   1.29 0.09   67.72 20.32 89.43 

   0.17 0.02  0.04 0.01   69.06 19.99 89.30 

   0.16 0.06  1.93 0.04   66.75 20.64 89.56 

   0.14 0.01  0.04 0.03   69.25 20.02 89.50 

   0.25 0.05  0.80 0.19 0.01  68.02 20.39 89.71 

   0.12 0.01  0.04 0.03   69.16 19.97 89.32 

   0.15   0.15 0.06   68.90 20.00 89.27 

   0.16   0.06 0.04   69.21 20.03 89.49 

   0.45 0.07  0.04 0.11   68.50 20.17 89.33 

   0.32 0.01  0.05 0.12   68.27 19.93 88.68 

   0.20 0.03  0.62 0.04   68.19 20.18 89.26 

   0.15   0.04 0.13   68.72 19.91 88.96 

   0.12 0.01  0.05 0.11   68.69 19.87 88.84 

    0.11 0.01   0.01 0.03     69.02 19.91 89.10 

340m 0.43 0.46 0.43 0.01   0.04     70.35 21.36 93.10 

   0.02 0.07   0.06   72.29 20.84 93.29 



169 

   0.11 0.17 0.01 0.04 0.06   71.04 20.71 92.16 

   0.14 0.36 0.03 0.02 0.05   71.38 21.04 93.02 

   0.03 0.05   0.05   72.05 20.75 92.94 

  0.09 1.06 0.42   0.12 0.05     69.95 21.63 93.33 

356m hmt   0.29 0.05 0.14 0.08 0.08   0.04 68.89 20.21 89.79 

   0.36 0.14 0.10 0.15 0.06  0.01 67.85 20.09 88.76 

   0.28 0.11 0.10 0.29 0.06  0.02 68.74 20.34 89.95 

   0.27 0.20 0.10 0.54 0.08  0.02 68.27 20.48 89.96 

   0.24 0.08 0.10 0.48 0.09  0.01 68.86 20.44 90.29 

   0.28 0.06 0.10 0.18 0.07  0.01 69.12 20.33 90.17 

   0.23 0.06 0.10 0.06 0.05  0.02 69.30 20.24 90.06 

   0.16 0.04 0.10 0.68 0.19  0.01 68.39 20.38 89.96 

   0.36 0.05 0.10 0.06 0.09  0.01 69.12 20.31 90.11 

   0.34 0.07 0.10 0.04 0.10  0.01 68.52 20.15 89.34 

   0.38 0.13 0.10 0.11 0.10  0.01 68.77 20.36 89.96 

    0.15 0.05 0.10 0.09 0.17   0.01 68.99 20.15 89.71 

411m   0.09 0.04     0.17 0.03   71.54 20.72 92.61 

  0.45 0.60 0.48   0.09 0.02  69.06 21.22 91.93 

   0.02 0.05 0.03  0.15 0.02  71.87 20.76 92.92 

    0.16 0.22 0.05 0.03 0.13 0.01   72.51 21.28 94.40 

416m   0.12 0.22     0.10 0.01   71.89 21.00 93.34 

    0.02 0.10     0.20 0.01   72.15 20.90 93.38 

416m hmt   0.08 0.02 0.05 0.08 0.24 0.01   69.59 20.23 90.31 

   0.10 0.02 0.04 0.07 0.08   69.36 20.07 89.74 

   0.02 0.04 0.04 0.03 0.04   69.73 20.08 89.97 

   0.02 0.04 0.07 0.65 0.14   68.58 20.24 89.74 

   0.02 0.03 0.08 1.31 0.08   68.37 20.57 90.46 

   0.05 0.02 0.09 0.04 0.13   69.58 20.13 90.05 

   0.08 0.02 0.04 0.14 0.07   69.24 20.07 89.66 

    0.03 0.04   1.04 0.20 0.01   68.15 20.37 89.82 

423m hmt   0.02 0.02 0.21 0.03 0.05   0.02 69.18 20.01 89.55 

   0.02 0.02 0.30 0.01 0.05  0.02 69.28 20.05 89.76 
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   0.05 0.03 0.15 0.42 0.05  0.02 68.43 20.06 89.22 

   0.10 0.01 0.09 0.19 0.05  0.02 69.01 20.05 89.51 

   0.10 0.06 0.09 0.14 0.04  0.01 68.72 19.98 89.14 

  0.01 0.09  0.09 0.18 0.05   68.95 19.99 89.34 

  0.02 0.09 0.01 0.09 0.20 0.05  0.01 68.94 20.03 89.42 

   0.02 0.02 0.10 0.13 0.06  0.02 69.40 20.08 89.84 

   0.03 0.05 0.09 1.73 0.06  0.01 67.34 20.60 89.91 

   0.03 0.03 0.10 1.33 0.05  0.01 67.98 20.49 90.02 

   0.04 0.02 0.10 0.92 0.05  0.01 68.01 20.23 89.38 

   0.01 0.03 0.10 0.82 0.06  0.01 68.97 20.43 90.44 

   0.01 0.01 0.09 0.62 0.04  0.01 69.05 20.26 90.07 

   0.01 0.02 0.10 0.55 0.06  0.02 68.76 20.18 89.70 

   0.03 0.02 0.09 0.29 0.05  0.01 68.92 20.04 89.44 

   0.02 0.02 0.10 0.12 0.03  0.01 69.30 20.04 89.64 

   0.03 0.02 0.10 0.12 0.04  0.01 69.03 19.97 89.32 

    0.02 0.03 0.10 0.90 0.08   0.01 68.42 20.33 89.89 

438m 0.02 0.07 1.06   0.04 0.11 0.01   68.85 21.07 91.22 

  0.13 0.29 0.79 0.02 0.05 0.11 0.02  69.35 21.20 91.95 

   0.07 0.11   0.09 0.01  72.51 21.00 93.79 

   0.01 0.06   0.12 0.01  72.64 20.94 93.77 

   0.02 0.06 0.03  0.12 0.01 0.01 72.36 20.87 93.46 

   0.02 0.07 0.01  0.09   72.61 20.92 93.71 

  0.11 0.08 0.58 0.07 0.02 0.11 0.01  70.74 21.16 92.88 

  0.02 0.05 0.23 0.03 0.01 0.11 0.02  70.62 20.63 91.72 

  0.32 0.38 0.97 0.05 0.05 0.12 0.02   69.11 21.57 92.58 

438m hmt   0.06 0.01   0.01 0.04     70.33 20.22 90.66 

   0.03 0.02  0.01 0.06   70.25 20.19 90.55 

   0.06 0.02  0.02 0.08   70.19 20.20 90.53 

    0.03 0.01   0.08 0.07     70.44 20.29 90.92 

449m hmt   0.04 0.01   0.15 0.03     70.93 20.46 91.60 

   0.28 0.05  0.14    70.73 20.65 91.86 

   0.23 0.05  0.22 0.01   70.70 20.64 91.82 
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   0.21 0.06 0.04 0.10 0.01  0.01 70.42 20.50 91.34 

   0.27 0.06  0.19 0.01   70.33 20.58 91.43 

   0.10    0.02   70.61 20.32 91.04 

   0.23 0.05  0.31 0.05   70.23 20.60 91.46 

   0.21 0.04  0.21 0.02   70.44 20.55 91.45 

   0.09 0.01  0.22 0.04   70.52 20.45 91.32 

   0.03 0.01  1.04 0.03 0.01  69.93 20.76 91.79 

    0.02 0.01   1.99 0.01     68.86 21.07 91.94 

455m hmt   0.10 0.01   0.46 0.01     70.02 20.46 91.05 

   0.12 0.01  0.53 0.01   69.76 20.44 90.85 

   0.15 0.02  0.53    69.67 20.45 90.81 

   0.26 0.03  0.21    69.77 20.38 90.63 

   0.10 0.01  0.36    70.08 20.39 90.91 

   0.13 0.06  0.29    69.86 20.36 90.67 

   0.07 0.02  0.26 0.01   70.22 20.37 90.93 

   0.07 0.01 0.01 0.27 0.02   70.33 20.40 91.10 

   0.06 0.01  0.29 0.02   70.09 20.32 90.76 

    0.06 0.01   0.23 0.02     70.52 20.41 91.23 

471m    0.18 0.30 0.02   0.06     71.18 20.93 92.68 

   0.06 0.27   0.10   71.64 20.92 92.99 

   0.47 0.50 0.03  0.11   70.15 21.15 92.41 

   0.02 0.07   0.14   72.03 20.78 93.03 

   0.06 0.25 0.02  0.05   71.25 20.77 92.40 

   0.03 0.16   0.11   72.10 20.91 93.31 

   0.02 0.08   0.11   72.40 20.88 93.47 

   0.18 0.08 0.01  0.07   69.67 20.24 90.25 

   0.07 0.10   0.12   71.88 20.82 92.98 

  0.02 0.11 0.25   0.09   71.53 20.92 92.92 

  0.02 0.04 0.25 0.02  0.10   71.65 20.89 92.95 

    0.11 0.31     0.12     71.67 21.02 93.22 

489m hmt   0.11 0.02 0.09 0.16 0.08   0.01 69.42 20.20 90.11 

  0.03 0.04 0.02 0.10 0.42 0.05   68.50 20.03 89.18 
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   0.01 0.02 0.10 1.65 0.05  0.01 67.77 20.63 90.26 

   0.09 0.02 0.10 0.18 0.13  0.01 68.63 19.99 89.16 

   0.06 0.03 0.10 0.16 0.07  0.01 68.89 20.02 89.34 

   0.02 0.02 0.10 0.23 0.04  0.02 69.58 20.20 90.21 

   0.03 0.03 0.10 1.35 0.07  0.02 67.71 20.44 89.75 

   0.08 0.03 0.10 0.36 0.09 0.01 0.01 68.33 20.02 89.03 

   0.10 0.03 0.10 0.02 0.06   69.22 20.05 89.60 

   0.12 0.05 0.10 0.04 0.04   68.81 19.98 89.17 

   0.11 0.03 0.10 0.01 0.03  0.01 69.71 20.17 90.17 

   0.11 0.02 0.10 0.06 0.05  0.01 69.19 20.05 89.60 

   0.02 0.02 0.10 1.64 0.07  0.01 67.82 20.65 90.33 

   0.11 0.04 0.10 0.05 0.11  0.02 69.06 20.06 89.56 

   0.05 0.02 0.10 0.47 0.09  0.01 68.95 20.22 89.90 

   0.02 0.02 0.09 0.82 0.06  0.01 68.56 20.31 89.91 

   0.40 0.03 0.09 0.19 0.09  0.02 69.01 20.37 90.19 

   0.01 0.03 0.12 0.03 0.03  0.01 69.30 19.99 89.52 

   0.02 0.02 0.11 0.03 0.05  0.01 69.36 20.02 89.63 

   0.01 0.02 0.10 0.62 0.06  0.01 68.66 20.20 89.68 

   0.03 0.02 0.11 0.02 0.02  0.01 69.46 20.03 89.71 

   0.02 0.02 0.10 0.01 0.04   69.46 20.01 89.65 

   0.05 0.02 0.10 0.31 0.05  0.01 69.30 20.20 90.04 

   0.02 0.03 0.11 0.04 0.03  0.01 69.39 20.03 89.66 

   0.04 0.03 0.16 0.76 0.06  0.01 68.27 20.24 89.58 

   0.02 0.03 0.15 0.38 0.05  0.01 69.04 20.18 89.86 

   0.02 0.03 0.14 0.02 0.05  0.01 69.59 20.09 89.96 

   0.02 0.02 0.12 0.06 0.05  0.01 69.23 20.00 89.52 

   0.02 0.02 0.10 0.04 0.06  0.02 69.50 20.05 89.80 

   0.02 0.02 0.10 0.04 0.05  0.01 69.28 19.99 89.51 

   0.03 0.02 0.09 0.19 0.05  0.01 68.74 19.93 89.05 

   0.03 0.02 0.10 0.14 0.05  0.01 69.37 20.09 89.81 

   0.02 0.02 0.10 0.18 0.05  0.02 69.32 20.10 89.82 

   0.03 0.03 0.10  0.05  0.02 69.37 20.00 89.59 
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   0.08 0.02 0.11 0.10 0.05  0.02 69.14 20.05 89.57 

   0.02 0.02 0.10 0.05 0.05  0.02 69.42 20.03 89.70 

   0.06 0.02 0.10 0.21 0.09  0.01 69.49 20.22 90.22 

   0.01 0.02 0.19 0.01 0.03  0.01 69.54 20.06 89.88 

   0.01 0.02 0.18 0.92 0.06  0.01 68.39 20.36 89.97 

   0.02 0.02 0.15 0.02 0.05  0.01 69.19 19.97 89.45 

   0.31 0.10 0.10 0.28 0.14  0.01 68.67 20.37 89.99 

  1.26 0.37 0.97 0.12 0.11 0.11  0.01 67.38 21.74 92.06 

   0.20 0.08 0.12 1.44 0.24 0.01 0.02 67.29 20.69 90.08 

   0.02 0.02 0.10 0.60 0.07  0.01 68.63 20.19 89.66 

   0.14 0.20 0.09 0.59 0.09  0.02 68.25 20.38 89.77 

   0.13 0.03 0.10 3.02 0.08  0.02 65.75 21.09 90.24 

   0.32 0.09 0.10 0.72 0.09  0.02 67.81 20.38 89.53 

   0.50 0.04 0.09 0.14 0.05  0.01 68.89 20.38 90.11 

   0.21 0.03 0.11 0.24 0.12  0.02 68.99 20.26 89.97 

    0.43 0.08 0.10 0.30 0.08   0.02 68.46 20.37 89.84 

492m hmt   0.28 0.01   0.16 0.04     69.14 20.19 89.81 

   0.19 0.03  0.50 0.04   68.59 20.20 89.53 

   0.02 0.01  0.20 0.04   69.83 20.19 90.29 

   0.03 0.01  0.04 0.02   69.96 20.11 90.15 

   0.16 0.01  0.15 0.02   69.68 20.23 90.25 

   0.03  0.01 0.07 0.05   69.93 20.14 90.23 

   0.03 0.02 0.01 0.03 0.02   69.78 20.07 89.95 

    0.06 0.01   0.37 0.04     69.54 20.26 90.29 
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Table A.4: Oxygen isotope values for Mantoverde and additional data and locations of magnetite samples 
from previous studies. 

Location Sample δ18O (‰) O2 yield (µmol/gram) 

Mantoverde 262m mt* 1.57 8.5 

  276m mt* 0.69 7.9 

  284m mt 4.01 6.8 

  291m mt 4.58 10.4 

  298m mt 2.34 8.5 

  305m mt* 3.62 8.6 

  314m mt* 2.50 8.9 

  340m mt* 4.61 6.0 

  411m mt* 3.02 4.9 

  276m hmt -1.16 8.0 

  314m hmt -0.67 8.6 

  449m hmt* -1.36 5.8 

  455m hmt* -0.96 9.2 

  489m hmt* -0.84 9.1 

  492m hmt 5.57 9.3 

  Benavides et al., 2007 1.4   

  Benavides et al., 2007 1.4   

  Benavides et al., 2007 3.4   

  Benavides et al., 2007 3.1   

  Benavides et al., 2007 2.5   

  Benavides et al., 2007 4.1   

  Benavides et al., 2007 2.2   

  Benavides et al., 2007 3.5   

  Benavides et al., 2007 2.5   

  Benavides et al., 2007 3.1   

  Benavides et al., 2007 1.7 (hmt)   

  Benavides et al., 2007 -1.7 (hmt)   

  Benavides et al., 2007 1.0  (hmt)   

  Benavides et al., 2007 -1.7  (hmt)   

  Benavides et al., 2007 -1.9  (hmt)   

  Benavides et al., 2007 -1.0  (hmt)   

  Benavides et al., 2007 -1.0  (hmt)   

  Benavides et al., 2007 0.5  (hmt)   

  Benavides et al., 2007 0.0  (hmt)   

  Benavides et al., 2007 -1.9  (hmt)   

      

Mt Isa, Australia Marshall & Oliver, 2006 3.4   

  Marshall & Oliver, 2006 6.9   

  Marshall & Oliver, 2006 5.4   
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  Marshall & Oliver, 2006 5.3   

  Marshall & Oliver, 2006 4.1   

  Marshall & Oliver, 2006 4.9   

  Marshall & Oliver, 2006 10   

  Marshall & Oliver, 2006 0.7   

  Marshall & Oliver, 2006 3.7   

  Marshall & Oliver, 2006 3.4   

  Marshall & Oliver, 2006 0.6 (hmt)   

  Marshall & Oliver, 2006 -0.1 (hmt)   

  Marshall & Oliver, 2006 -0.6 (hmt)   

  Marshall & Oliver, 2006 1.1 (hmt)   

  Marshall & Oliver, 2006 -5.3 (hmt)   

      

Pea Ridge, USA Childress et al., 2016 2.12   

  Childress et al., 2016 4.50   

  Childress et al., 2016 4.87   

  Childress et al., 2016 5.10   

  Childress et al., 2016 1.24   

  Childress et al., 2016 5.11   

  Childress et al., 2016 5.90   

  Childress et al., 2016 7.03   

  Childress et al., 2016 5.04   

  Childress et al., 2016 4.56   

  Childress et al., 2016 3.18   

  Childress et al., 2016 1.02   

  Childress et al., 2016 5.50   

      

Pilot Knob, USA Childress et al., 2016 3.26   

  Childress et al., 2016 6.68   

  Childress et al., 2016 6.21   

      

Chilean Iron Belt     

Carmen Childress et al., 2016 3.3   

  Nyström et al., 2008 2.4   

  Nyström et al., 2008 2.6   

  Nyström et al., 2008 0.9   

      

El Dorado Nyström et al., 2008 3   

      

Romeral Nyström et al., 2008 1.6   

  Nyström et al., 2008 0.8   

  Nyström et al., 2008 1.3   

  Nyström et al., 2008 1.7   

  Nyström et al., 2008 -1.3   



176 

  Nyström et al., 2008 0.4   

  Nyström et al., 2008 2   

  Nyström et al., 2008 0.3   

      

Algarrobo Nyström et al., 2008 1.9   

  Nyström et al., 2008 2.3   

  Nyström et al., 2008 2.5   

  Nyström et al., 2008 0.6   

      

El Tofo Nyström et al., 2008 4.5   

      

Cerro Iman Nyström et al., 2008 1.7   

  Nyström et al., 2008 1.6   

      

Los Colorados Bilenker et al., 2016 2.41   

  Bilenker et al., 2016 3.04   

  Bilenker et al., 2016 2.75   

  Bilenker et al., 2016 3.17   

  Bilenker et al., 2016 2.36   

  Bilenker et al., 2016 2.04   

  Bilenker et al., 2016 2.76   

  Bilenker et al., 2016 2.99   

  Bilenker et al., 2016 2.78   

  Bilenker et al., 2016 2.48   

  Bilenker et al., 2016 1.92   

  Bilenker et al., 2016 2.62   

  Bilenker et al., 2016 2.43   

      

Mariela Ignacia Bilenker et al., 2016 1.50   

      

El Laco, Chile Nyström et al. 2008 3.2   

  Nyström et al. 2008 4.2   

  Nyström et al. 2008 2.7   

  Nyström et al. 2008 3.4   

  Nyström et al. 2008 3.4   

  Nyström et al. 2008 2.3   

  Nyström et al. 2008 3.7   

  Nyström et al. 2008 3   

  Nyström et al. 2008 3.1   

  Nyström et al. 2008 3.5   

  Nyström et al. 2008 2.3   

  Nyström et al. 2008 2.6   

  Nyström et al. 2008 2.4   

  Nyström et al. 2008 2.4   



177 

  Bilenker et al., 2016 4.00   

  Bilenker et al., 2016 4.34   

      

Kiruna, Sweden Nyström et al., 2008 2.2   

  Nyström et al., 2008 1.7   

  Nyström et al., 2008 1.1   

  Nyström et al., 2008 1.8   

  Nyström et al., 2008 0.9   

  Nyström et al., 2008 2.1   

  Nyström et al., 2008 0.7   

  Nyström et al., 2008 1.3   

  Nyström et al., 2008 1.1   

  Nyström et al., 2008 -0.2   

  Nyström et al., 2008 -0.7   

  Nyström et al., 2008 1   

  Nyström et al., 2008 1.1   

  Nyström et al., 2008 0.3   

  Nyström et al., 2008 1.2   

      
Grängesberg, Sweden     

Jonnson et al., 2014 1.9   

  Jonnson et al., 2014 2.2   

  Jonnson et al., 2014 2.8   

  Jonnson et al., 2014 1.2   

  Jonnson et al., 2014 1.1   

  Jonnson et al., 2014 1   

  Jonnson et al., 2014 1.2   

  Jonnson et al., 2014 1.8   

  Jonnson et al., 2014 1.4   

  Jonnson et al., 2014 3.7   

  Jonnson et al., 2014 -0.4   

  Jonnson et al., 2014 1.3   

  Jonnson et al., 2014 1.2   

  Jonnson et al., 2014 3   

  Jonnson et al., 2014 1.8   

  Jonnson et al., 2014 1.9   

  Jonnson et al., 2014 0.9   

  Jonnson et al., 2014 0.2   

  Jonnson et al., 2014 1.1   

  Jonnson et al., 2014 1.5   

  Jonnson et al., 2014 2.8   

  Jonnson et al., 2014 1.7   

  Jonnson et al., 2014 3.4   

  Jonnson et al., 2014 1.8   
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  Jonnson et al., 2014 1.5   

  Weis, 2013 1.2   

  Weis, 2013 1.8   

  Weis, 2013 0.9   

  Weis, 2013 2.8   

  Weis, 2013 1.2   

  Weis, 2013 1.1   

  Weis, 2013 1.0   

  Weis, 2013 1.2   

  Weis, 2013 1.8   

  Weis, 2013 0.5   

  Weis, 2013 8.7   

  Weis, 2013 0.2   

  Weis, 2013 7.6   

  Weis, 2013 1.8   

  Weis, 2013 1.5   

  Weis, 2013 7.9   

  Weis, 2013 0.1   

  Weis, 2013 -0.8   

  Weis, 2013 -1.0   

  Weis, 2013 -1.1   

Samples taken for this study are from drill core DDH-14-DS91, located at 
368875m E 7063667m N and approximately 1008m (AMSL) elevation core is 
oriented west at an unknown angle. Asterisks indicate samples analyzed for 
both O and Fe isotopes. Full references of works cited here are located in the 
reference section of the main text. 
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Table A.5: Iron isotope values for magnetite and hematite from Mantoverde and additional 
data and locations of magnetite samples from previous studies. 

Location Sample 
δ56Fe 
(‰) 2σ Source 

Mantoverde, Chile 262m mt* 0.54 0.05 This study 

  276m mt* 0.55 0.02 This study 

  298m mt* 0.61 0.04 This study 

  305m mt* 0.50 0.04 This study 

  314m mt* 0.58 0.01 This study 

  331m mt 0.37 0.06 This study 

  340m mt* 0.46 0.04 This study 

  411m mt* 0.53 0.04 This study 

  438m mt 0.55 0.06 This study 

  471m mt 0.38 0.02 This study 

  449m hmt* 0.34 0.10 This study 

  455m hmt* 0.42 0.09 This study 

  489m hmt* 0.46 0.06 This study 

       

       

Pea Ridge, USA PR-18 0.35 0.05 Childress et al. 2016 

  PR-37 0.07 0.05 Childress et al. 2016 

  PR-64A 0.20 0.05 Childress et al. 2016 

  PR-77A 0.22 0.02 Childress et al. 2016 

  PR-82A 0.10 0.02 Childress et al. 2016 

  PR-82B 0.03 0.02 Childress et al. 2016 

   0.07 0.05 Childress et al. 2016 

  PR-144 0.26 0.09 Childress et al. 2016 

   0.10 0.02 Childress et al. 2016 

  PR-158 0.26 0.08 Childress et al. 2016 

       

Pilot Knob, USA PK-1086-918 0.14 0.05 Childress et al. 2016 

  PK-1098-715 0.18 0.03 Childress et al. 2016 

  PK-1145-965.8 0.19 0.04 Childress et al. 2016 

  PK-1145-979.5 0.14 0.10 Childress et al. 2016 

  PK-1174-1348 0.06 0.05 Childress et al. 2016 

  PK-2079-1160 0.27 0.06 Childress et al. 2016 

       

Mineville, NY  -0.92 0.03 Bilenker et al., 2016 

       

Chilean Iron Belt      

Los Colorados      

Core LC-05  0.22 0.03 Bilenker et al., 2016 
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Core LC-05 05-20.7 0.09 0.06 Bilenker et al., 2016 

Core LC-05 05-32 0.22 0.03 Bilenker et al., 2016 

Core LC-05 05-52.2 0.14 0.08 Bilenker et al., 2016 

Core LC-05 05-72.9 0.13 0.05 Bilenker et al., 2016 

  05-82.6 0.08 0.03 Bilenker et al., 2016 

  05-90 0.21 0.07 Bilenker et al., 2016 

  05-106 0.12 0.03 Bilenker et al., 2016 

  05-126.15 0.10 0.06 Bilenker et al., 2016 

  05-129.3a 0.22 0.05 Bilenker et al., 2016 

  05-129.3b 0.14 0.02 Bilenker et al., 2016 

Core LC-04 04-38.8 0.18 0.03 Bilenker et al., 2016 

  04-66.7 0.18 0.07 Bilenker et al., 2016 

  04-104.4 0.24 0.08 Bilenker et al., 2016 

  04-129.3 0.22 0.03 Bilenker et al., 2016 

LC East Dike pitE1 0.18 0.03   

       

El Laco LCO-39 0.39 0.09 Bilenker et al., 2016 

  LCO 0.29 0.03 Bilenker et al., 2016 

  LCO vein 0.30 0.03 Bilenker et al., 2016 

  LCO-76 0.32 0.09 Bilenker et al., 2016 

  LCO-78 0.53 0.03 Bilenker et al., 2016 

  LCO-104 0.27 0.03 Bilenker et al., 2016 

  LCO-111 0.20 0.03 Bilenker et al., 2016 

  EJ-LS-11-1 0.28 0.04 Weis, 2013 

  EJ-LS-11-2 0.24 0.03 Weis, 2013 

  EJ-LS-11-3 0.36 0.03 Weis, 2013 

  EJ-LS-11-4 0.34 0.03 Weis, 2013 

  LS-2 0.27 0.04 Weis, 2013 

  LS-52 0.28 0.03 Weis, 2013 

       

Mariela Ignacia M-8 0.13 0.03 Bilenker et al., 2016 

       

Dannemora DM-1 -0.36 0.03 Weis, 2013 

  DM-2 0.01 0.03 Weis, 2013 

  DM-3 -0.43 0.03 Weis, 2013 

  DM-4 -0.35 0.03 Weis, 2013 

       
       
Grangensberg 
Mining District 

 

0.40 0.03 Weis, 2013 
  

 
0.24 0.03 Weis, 2013 

   0.33 0.03 Weis, 2013 

DC 690  0.31 0.03 Weis, 2013 

   0.31 0.04 Weis, 2013 
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   0.30 0.04 Weis, 2013 

   0.26 0.04 Weis, 2013 

   0.29 0.03 Weis, 2013 

   0.39 0.04 Weis, 2013 

   0.27 0.04 Weis, 2013 

DC 575  1.00 0.03 Weis, 2013 

   0.31 0.03 Weis, 2013 

   0.27 0.04 Weis, 2013 

Additional waste pile 0.33 0.03 Weis, 2013 

  waste pile -0.02 0.03 Weis, 2013 

  disseminated mgt 0.24 0.03 Weis, 2013 

  mgt vein 0.11 0.03 Weis, 2013 

Striberg BIF -0.57 0.03 Weis, 2013 

       

Volcanic Reference      

Basalt Basalt bomb 0.46 0.03 Weis, 2013 

Ankaramite TEF-NER-57 0.16 0.02 Weis, 2013 

Ankaramite TEF-NER-70 0.10 0.02 Weis, 2013 

Ankaramite TEF-NER-18 0.07 0.05 Weis, 2013 

Dacite MG-07 0.32 0.03 Weis, 2013 

Dacite MG-09 0.29 0.03 Weis, 2013 

Basaltic andesite M-BA06-KA-3 0.17 0.03 Weis, 2013 

Basaltic andesite Kelut 0.10 0.04 Weis, 2013 

Basaltic andesite  0.12 0.03 Weis, 2013 

Basaltic andesite  0.06 0.03 Weis, 2013 

Basaltic andesite  0.16 0.03 Weis, 2013 

Basaltic andesite  0.18 0.05 Weis, 2013 

Dolerite 83/CRS/6 0.34 0.03 Weis, 2013 

Samples taken for this study are from drill core DDH-14-DS91, located at 368875m E 7063667m 
N and approximately 1008m (AMSL) elevation core is oriented west at an unknown angle. 
Asterisks indicate samples analyzed for both O and Fe isotopes. Full references of works cited 
here are located in the reference section of the main text. 

 


