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Abstract 
 

In order to afford the production of conjugated polymers with uniform and desirable optical 

and electrical properties on a large scale, much effort have been devoted to light-induced 

polymerization. Various well-defined conducting polymers are potentially achievable by devising 

efficient photo-polymerization strategies. Solid-state photo-polymerization of conjugated 

conducting polymer films not only allows fast thin film fabrication but also is applicable to roll-

to-roll process for cost-effective mass production. In spite of these and other invaluable benefits 

of photo-mediated polymerization, few research papers have reported outstanding optoelectronic 

values through the photopolymerization.  

In this dissertation, a new one-pot photo-mediated polymerization for conjugated polymers 

with a high molecular weight and narrow polydispersity was devised and its polymerization 

mechanism was mechanistically investigated. The overall polymerization is composed of two 

sequential photochemical reactions; 1) photo-arylation between ProDOT molecules and 2,5-

diiodo-ProDOT derivatives by 365nm LED irradiation to afford conjugated oligomers, 2) chain 

extension of diiodinated ProDOT oligomers by addition of iodine source followed by q-switched 

532nm pulsed laser to make large molecular weight conjugated polymers. The adoption of the 

pulsed laser having the longer wavelength not only facilitates photochemical couplings of the 

diiodinated oligomeric precursors by matching their absorption wavelength but also prevents the 
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photodegradation of the extended chains by the pulsed illumination. All the photochemical 

reactions were manipulated by carbon-iodine bonds of growing chain ends that reversibly produce 

corresponding radical species in the presence of a hydrogen-free solvent, CBrCl3 

(bromotrichloromethane), preventing radical consumption by hydrogen-containing solvent 

molecules. This polymerization process was also successfully employed in the copolymerization 

of ProDOT monomers with different side chains where the copolymer composition is determined 

by the feed ratio of the monomers. The characterization of the polymerized products was 

performed through UV-vis absorption, 1H-NMR, mass spectroscopy, and GPC to analyze the 

photo-mediated polymerization mechanism for conjugated polymers.  

The developed photoarylation-based polymerization for conjugated polymers in solution 

was adopted in devising solid-state photopolymerization of ProDOT and EDOT derivatives to 

fabricate conducting and transparent thin polymer films. The composition of the copolymerized 

thin films from the thiophene derivatives with different side chains was analyzed by XPS and FT-

IR. The photochemical coupling between 2,5-diiodo ProDOT or EDOT and a series of heterocyclic 

molecules in solid states rendered solvent-resistant polymer thin films on glass substrates. A 

subsequent chemical doping of the polymer thin films with protonic acids provided electric 

conductivity and optical transparency. Great electrical conductivity (~2,200 S/cm) and high 

transparency (>80%) were achieved from ProDOT and EDOT derivatives by photo-arylation 

based UV polymerization. Experimental parameters affecting the polymerization efficiency such 

as reaction temperature, light source intensity, and side chains of precursors were systematically 

investigated to enhance the optical and electrical properties of the conducting polymer thin films. 

In the absence of solvent, mobility of the monomers and growing polymer chains turned out to be 

critically important to realize large molecular weight polymers and consequential high 

conductivity. The best optical and electrical properties of the resulting polymer thin films was 
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achieved from the copolymers of 2,5-diiodo EDOT incorporating a diethylene glycol side chain 

(DIEDOT-DEG) and EDOT. While the flexible side chain of the former imparts good mobility to 

the growing polymer chains, the latter without having any side chain contributes to high electrical 

conductivity by allowing close molecular packing owing to the minimized insulating and steric 

volume inevitably imposed by side chains. 
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Chapter 1 Introduction 
 

1.1 Overview of Conjugated Polymers 

Since the outstanding electric conductivity from doped polyacetylenes was reported by 

Heeger, MacDiarmid, and Shirakawa in 1976,10 conjugated polymers have been extensively 

studied as a novel class of organic semiconductor showing readily tunable optoelectronic 

properties with outstanding stability under chemical, thermal, and mechanical stresses. Their 

nature of plastic, lightweight, easy processability, and flexible semiconducting properties offer 

new opportunities to replace traditional metallic and inorganic electronic materials for various 

optoelectronic devices, such as field effect transistors11,12, light-emitting diodes13–15, organic solar 

cells16,17, and sensors18–20.  

The unique conductivity of the conjugated polymers is originated from the p-conjugation 

formed by alternating single and double carbon-carbon bonds along the linear polymer backbone 

and doping mechanism. The conjugation system by the overlapping of π bonds allows the 

delocalization of unpaired electrons and facilitates charge transfer along the main chains upon 

doping. When some of the π electrons are removed from conjugated polymers by oxidation, the 

produced holes are mobile within the conjugated π-orbitals along the polymer backbone through 

resonance (Figure 1.1 (c)) and between the p-conjugated polymer backbones via hopping. The so-

called polaron or bipolaron states of p-doped conjugated polymers afford a several orders increase 
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in electrical conductivity, resulting in the transition of the conjugated polymers from insulators to 

semiconductors. Despite of the metallic conductivity of p-doped polyacetylenes (~105 S/cm), their 

inherent insolubility and easy oxidation cause degradation of the p-conjugation, limiting the 

applicability and practical value of polyacetylenes. 

 

Figure 1.1. Chemical and electronic structure of conjugated polymers. (a) chemical structure of 

polyacetylene, (b) electron delocalization by π orbital conjugation of polyacetylene, and (c) the 

formation of cation and dication by electron extraction from neutral polyacetylenes. 

 

Heteroaromatic arylenes such as pyrrole, aniline, and thiophene displayed in Figure 1.2(a) 

are regarded as a promising monomer to form processable and air-stable conducting polymers 

having a great potential to demonstrate outstanding optical and electrical properties in doped states. 

In particular, polythiophene and its derivatives have been extensively investigated due to their easy 

structural modification to tune the physicochemical and optoelectronic properties through 

incorporating various functional groups such as alkyl, electron donating, and electron withdrawing 

groups. While alkyl side chains present solubility to the rigid polymers and prevent the aggregation 

of polymeric chains, incorporation of electron donating/withdrawing substituents on the thiophene 

backbone affects the energy levels and bandgap of the polymers so as to manipulate the optical 

and electrical properties of the polythiophene derivatives. Whereas electron rich side chains reduce 
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the oxidation potential (or energy bandgap) of conjugated polymers by donating electrons to the 

conjugated backbones, electron deficient ones withdraw electrons from the main chains, increasing 

the bandgap of the polymers. A few polythiophene derivatives are shown in Figure 1.2. In 

particular, 3,4-ethylenedioxythiophene (EDOT) monomer is of great interest for the synthesis of 

conjugated polymers since the electron donating ethylenedioxy substituent on the thiophene ring 

not only lower the oxidation potential but also promotes coplanar packing of the resulting polymers 

in solid state, allowing considerable improvement in optoelectronic property.  

 

Figure 1.2. Chemical structures of (a) conjugated polyheterocycles and (b) polythiophene 

derivatives. 

 

1.2 Conventional polymerization for conjugated polymers 

 

1.2.1 Oxidative polymerization 

1.2.1.1 Chemical oxidative polymerization 

Since PEDOT, poly(3,4-ethylenedioxythiophene), has proven its outstanding electrical 

properties, there have been numerous efforts to polymerize EDOT and its derivatives. Chemical 
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oxidative polymerization is one of the most popular PEDOT synthetic routes. It is commonly taken 

place through the oxidation of EDOT monomer or oligomer in the presence of strong oxidants 

such as iron(III) chloride (FeCl3)21, manganese dioxide (MnO2)22, copper chloride (CuCl2)23, or 

iron tosylate24. Heywang et al reported that several thiophene derivatives were oxidatively 

polymerized by iron(III) chloride as the oxidant in boiling acetonitrile, resulting in the formation 

of insoluble powders with high conductivity.21 As depicted in Figure 1.3, the redox reaction 

between EDOT and FeCl3 manages the polymerization, eventually producing p-doped PEDOT in 

the presence of FeCl4-.  

 

 

 

Figure 1.3. The chemical oxidative polymerization for PEDOT based on the coupling of radical 

cationic species in the presence of iron(III) chloride (FeCl3). 

 

Interestingly, oxidatively polymerized PEDOT powders exhibited excellent conductivity 

enhancement up to 3000 folds compared to the polypyrrole synthesized in the same manner, while 
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no polymerized product of polythiophene was observed by the chemical oxidative polymerization. 

It implies that the electron donating ethylenedioxy substituent on thiophene of EDOT plays a 

significant role in the efficient polymerization by facilitating the formation of radical cationic 

EDOT molecules. Despite the unique optical and electrical performances of PEDOT synthesized 

through the solution based chemical oxidation, the resulting polymers is readily precipitated in 

solvents during the polymerization due to the intermolecular coulombic interaction between doped 

polymer chains so that significant loss of the products is inevitable under a dialysis to get rid of 

small molecular weight species or ion exchanging resins from the dispersed solution25. Hence, the 

chemical oxidative polymerization by the small molecular oxidants is not desirable to the 

applications of multilayer coating or microelectronic devices26 

PEDOT can also be polymerized on pre-formed oxidant platforms. The oxidative 

polymerization of EDOT on a polymeric salt, polystyrene sulfonate (PSS), in the presence of 

sodium persulfate (Na2S2O8) brings about the formation of water soluble PEDOT:PSS which is 

one of the well-known and commercialized conducting polymers.27,28 Owing to the good solubility 

of PSS chains, wet coating process of PEDOT:PSS is possible to fabricate homogeneous 

conducting polymer thin films. Its electrical properties can be tuned by post-treatment with polar 

solvents or small molecules such as DMSO or ethylene glycol, which controls charge 

concentration of the conjugated backbones by screening coulombic interaction between PEDOT 

and PSS chains.29–31 A PEDOT film can be formed on pre-deposited ferric chloride (FeCl3) layer 

by vapor phase polymerization(VPP) or oxidative chemical vapor deposition (o-CVD) of EDOT 

monomers.32,33 EDOT monomers deposited on the oxidant layer prepared via spin casting are 

polymerized to produce a p-doped PEDOT films with conductivity of 25~100 S/cm.  
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1.2.1.2 Electrochemical polymerization 

Electrochemical polymerization is a promising synthetic route to achieve conducting 

polymer thin films having uniform optical and electrical properties.34–37 It is carried out in highly 

acidic electrolytes of water, organic solvents, or ionic liquids with the insertion of counter anions 

in the presence of monomeric molecules. Under the applied electric fields, EDOT monomers are 

oxidized by electron transfer to counter anions in electrolytes and polymerized on a conductive 

electrode. The doping levels of the polymerized film are easily controlled by current density, and 

the doping/de-doping by external electric field is highly reversible. In addition, the conductivity 

values of PEDOT films are dependent on the type of counterions used in the in-situ polymerization. 

While the incorporation of small molecular weight counter anions such as ClO4-, BF4-, and PF6- 

increases the conductivity of electrochemically polymerized PEDOT films up to 780 S/cm,34,38 the 

PEDOT films using polyelectrolytes such as PSS or poly(b-hydroxyethers) in the same manner 

didn’t exhibit compelling conductivity values but showed enhanced mechanical stability of the 

films.39,40 However, it is challenging in the electropolymerization to control the physical and 

chemical properties such as thickness, morphology, and film compositions. Moreover, only 

conducting electrodes such as ITO coated glasses are eligible for the electropolymerization. 

 

1.2.2 Halogen assisted self-polymerization in solid state 

The halogen assisted self-polymerization of EDOT or ProDOT (3,4-

propylenedioxythiophene) was suggested as another synthetic strategy to achieve transparent and 

conducting polymer thin films.1,41 Wudl group incidentally found 2,5-dibromo EDOT (DBrEDOT) 

molecules underwent a solid-state polymerization to yield insoluble but conducting product in a 

prolonged storage at room temperature for 2 years. They found out that the product is bromine 

doped PEDOT thin films through the characterization of 13C-NMR, FT-IR, and XRD. Based on 
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ESR monitoring, DSC spectra, and the kinetic study from carbon-halogen bonds, they suggested 

an autocatalytic solid-state polymerization mechanism initiated by radical cations of DBrEDOT 

(or DBrProDOT) as described in Figure 1.4, resulting in the formation of higher molecular weight 

species. Accordingly, the self-doping of DBrEDOT and DBrProDOT precursors gives rise to the 

formation of a transparent and conducting thin film (0.05~20 S/cm).  

It is interesting that any decent self-polymerization of 2,5-diiodo EDOT (DIEDOT) was 

not observed in the same condition for the DBrEDOT polymerization in spite of the lower 

dissociation energy of C-I bonds than that of C-Br ones. The difference in the polymerization 

efficiency was attributed to the distinct molecular packing structure of DBEDOT and DIEDOT in 

solid state. Owing to the reduced intermolecular distance of the coplanar packing of DBrEDOT, 

the close π-π stacking of DBrEDOT is expected to be more advantageous to the polymerization 

than the in-plane molecular arrangement of DIEDOT. 

 

 

 

Figure 1.4. The scheme of self-oxidative dimerization of 2,5-dibromo-EDOTs.1 (Reedited with 

permission from American Chemical Society publisher (Ref. 32). Copyright 2003) 

 

The bromine assisted solid-state polymerization is also valid for the pristine EDOT 

monomers deposited via chemical vapor deposition (o-CVD) in a vacuum chamber.2 They 

proposed a free radical mediated polymerization mechanism (Figure 1.5), different from the vapor 

phase polymerization of EDOT on FeCl3 or solid-state self-polymerization of DBrEDOT whose 
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polymerization is managed by radical cationic precursors. The polymerization was initiated by 

bromine radicals that are produced from co-deposited Br2 with EDOT monomers. A bromine 

radical reacts with EDOT monomer to produce brominated EDOT radical, followed by free radical 

polymerization to yield PEDOT products. Extra bromine molecules produced by the 

polymerization are used to dope PEDOT main chains to form a conducting polymer thin film. The 

doping level of the PEDOT film by bromine was confirmed by the coordination of Br/EDOT from 

XPS survey scan.  

 

 

Figure 1.5. Bromine radical assisted polymerization of EDOT. (a) The polymerization scheme 

and (b) XPS survey scan for bromine doped PEDOT film2 (Reprinted with permission from 

Royal Society of Chemistry publishers (Ref. 34). Copyright 2017) 

 

1.2.3 Organo-metallic synthesis 

The oxidative or solid-state polymerization commonly give rise to the formation of p-doped 

conjugated polymers in the presence of counter anions or dopants. Because of the electrically 
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charged structure and the absence of solubilizing functional groups, the resulting polymers rarely 

dissolve in organic solvents such as chloroform (CHCl3). Therefore, it is challenging to 

characterize the resulting polymers by H-NMR, mass analysis (MALDI), and GPC, which are 

critical to elucidate the polymerization mechanism and the molecular structures of the resulting 

conjugated polymers.  

The synthesis of undoped and soluble conjugated polymers is desirable to engineer and 

characterize the molecular structures as designed. The synthesis of electrically neutral conjugated 

polymers can be generally achieved by means of Grignard metathesis (GRIM) polymerization.42–

44 Since McCullough developed this metal catalyst mediated cross-coupling polymerization to 

synthesize a regioselective poly(3-alkylthiophenes) in 1992,45,46 it has paved the way for the 

synthesis of conducting polymers with well-defined molecular structures along with the precise 

control of molecular weight and polydispersity. 2,5-halogeno-3-alkyl thiophene with an 

asymmetric molecular structure is employed for the organometallic polymerization owing to its 

high reactivity in organometallic reactions. The Grignard metathesis was performed using a 

consecutive two-steps procedure as described in Figure 1.6: (1) iodine-magnesium exchange with 

alkyl-metallic compound to produce 2-bromo-3-alkyl-5-thienyl magnesium chloride, (2) Nickel-

catalyzed reductive polycondensation upon the addition of Ni(dppp)Cl2. It is intriguing that the 

polymerization revealed a chain-growth behavior in living fashion with a linear increase in 

molecular weight with excellent thiophene monomer conversion while maintaining low 

polydispersity. After eliminating extra nickel catalyst and byproducts, the resulting polymer 

showed its main absorption at 400~500nm corresponding to the π-π* transition in neutral state. In 

addition, the regioselective coupling of the asymmetric monomers led to the regioregular poly(3-

hexylthiophene) (rr-P3HT) as shown in Figure 1.2(b), demonstrating excellent conductivity of 

1000 S/cm by iodine doping.45 
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Figure 1.6. Synthetic scheme of a regioregular poly(3-hexylthiophene) by Grignard metathesis.47 

 

The nickel-mediated Grignard metathesis is also widely used for the synthesis of PProDOT 

derivatives having various functional groups. Reynolds group employed Grignard metathesis to 

synthesize PProDOT incorporating regiosymmetric alkyl side chains for electrochromic device 

applications.43,48,49 Although the results indicated a less efficient polymerization efficiency with 

broader polydispersity over 1.50 compared to the P3HT synthesized in the same manner, they 

showed excellent solubility in organic solvent due to the long alkyl side chains. The organometallic 

synthetic route is also available to synthesize dedoped PEDOT.50–53 The polymerization is 

managed by dehalogenation of 2,5-dihalogeno-EDOT derivatives by NiBr2-bipyridine complex. 

However, its inherent insolubility due to the absence of solubilizing side chains is disadvantageous 

to characterize the molecular structures of the resulting polymers and polymerization mechanism.  

 

1.3 Photopolymerization for conjugated polymers 

1.3.1 Photo-induced polymerization for non-conjugated polymers 

Besides the conventional synthetic routes to achieve conducting polymers, photo-mediated 

polymerization to synthesize conjugated polymers has been of great interests in both academia and 

industries due to its great commercial and practical values. It is not only instantaneous but also 

less influenced by other environmental factors such as temperature, pH, and type of used solvents. 

A number of electronic and chemical companies adopt industrial UV curing system for the mass 
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production of printing, coating, adhesive substances and its market size keeps increasing because 

of outstanding producibility in a restricted space with small energy consumption. Particularly, 

solid-state photopolymerization to fabricate conducting polymer thin films is valuable for cost-

effective mass production of electronic devices. In addition, it would find very many applications 

to achieve a conducting layer with sophisticated patterns through area-selective photo-

polymerization as such photolithography for semiconducting transistor manufacturing processes. 

The photo-mediated polymerization is well established in traditional polymer synthesis; 

radical polymerization for (meth)acrylates or vinyl ethers, cationic epoxides, thiol-ene reaction, 

etc.54 The photopolymerization is usually initiated a photoinitiator molecule. A photoinitiator 

having π bonds in its molecular structure can be photo-excited by the absorption of proper radiant 

energy and corresponding electron transfer from ground states (S0) to excited states (S1), and/or 

converted into its triplet state (T1) via fast inter-system crossing26,55. When the excited molecules 

relax back to the ground states, the molecule generates initiating reactive species by photoscission, 

dissociation, or hydrogen abstraction.55–57 Depending on the type of the produced intermediates, 

photoinitiators are categorized into free radical and cationic photoinitiators. A free radical 

photoinitiator produces reactive radical species from its triplet state directly or through an 

encounter interaction with another molecule called co-initiator.56,57 In contrast, a cationic 

photoinitiator yields reactive cationic and/or anionic species from its singlet excited state with both 

hemolytic and heterolytic cleavage of carbon-halogen bonds.58 Once radical or cationic species are 

generated by the light irradiation, they readily undergo chain propagation by reacting with 

neighboring monomers through radical or charge transfer. However, the conventional 

photopolymerization is disadvantageous to manipulate the molecular structure and size of resulting 

polymers in a precise manner because of its fast chain propagation, termination, and/or chain 

transfer reaction.59 
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In contrast, photo controlled radical polymerization (photo-CRP) is allowed to achieve 

polymers with well-defined structures and controlled molecular weights. By means of ATRP 

(Atom Transfer Radical Polymerization) and RAFT (Reversible Addition Fragmentation chain 

Transfer polymerization), vinyl monomers undergo successful controlled radical polymerization 

in the presence of photoreactive redox agents.60–62 Hawker group established an ATRP system 

whose chain propagation is managed by photoredox reaction of an iridium complex, fac-

[Ir(ppy)3].60 Upon visible light irradiation, an excited iridium complex reduces a brominated 

polymer chain to generate a chain radical and an oxidized Ir(IV)-Br compound. The chain radical 

is able to extend the chain length by reacting with neighboring monomers until the propagating 

chain end recaps with bromide by the reduction of the iridium-bromine intermediate. The polymer 

chain growth is not only switchable between light “on” and “off” states but also manageable the 

molecular weight and polydispersity of resulting polymers in a precise manner. Johnson group 

demonstrated a UV mediated controlled radical polymerization of NiPAAm by using bis-

norbornene trithiocarbonate as a thiocarbonate base iniferter (initiator-transfer-agent-

terminator).63,64 Its chain growth behavior is similar to that of photomediated-ATRP of vinyl 

monomers with linear increase in molecular weight with the monomer conversion. 

 

1.3.2 Photo-induced polymerization for conjugated polymers 

1.3.2.1 Photo-induced oxidative polymerization of thiophene and pyrrole 

In the strong motivation to accomplish efficient and practical polymerization methods for 

conducting polymers, photo-induced polymerization for conducting polymer has been extensively 

explored for pyrrole and thiophene derivatives. The researches in the early stage focused on how 

to efficiently produce radical cation species from thiophene or pyrrole monomers, resulting in the 

coupling of the charged species.26 The charged molecules are generated in a ternary system of 
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electroactive monomers, electron acceptor molecule65–67, and photocatalyst. When an electron in 

a ground state of photocatalyst is transferred to its excited states by photo-irradiation and moves 

to electron acceptor molecules, the photo-generated hole oxidizes an electroactive monomer by 

electron transfer from the monomer to the catalyst, leading to the polymerization. A variety of 

photocatalysts ranging from inorganic semiconductors68–70 to organometallic compounds71–73 have 

been widely employed to demonstrate efficient photopolymerization.  

Transition metal-coordination complexes such as ruthenium(II) trisbipyridyl chloride, 

[Ru(bpy)3]Cl2, could serve as a good photosensitizer to demonstrate photopolymerization of 

conducting polymers.68,74–76 The ruthenium complex has not only broad absorption from UV to 

the visible ranges but also long lifetime in excited states due to the forbidden transition from the 

triplet excited state to its singlet ground state and its characteristic metal-to-ligand-charge-transfer 

(MLCT).73 Polypyrrole was successfully produced in a ternary system of pyrrole, [Ru(bpy)3]Cl2, 

and [Co(NH3)5Cl]Cl2 under photo-irradiation.76  According to the proposed mechanism, the triplet 

excited state of the ruthenium ion, Ru(bpy)32+* generated by the photoexcitation of the ruthenium 

complex is quickly quenched by the cobalt compound, to form oxidized Ru(bpy)33+  ion. In 

consequence, monomeric or oligomeric pyrroles in the system are oxidized by electron transfer to 

the oxidized ruthenium ions to form corresponding radical cationic pyrrole species, followed by 

the polymerization. In the same manner, the photosensitization of ferrocene, Fe(C5H5)2, leads to 

the UV-mediated polymerization of pyrrole in chlorinated solvents such as CCl4 or CHCl3.77 They 

argued that the polymerization was promoted by the formation of FeCl3 as a result of the photolysis 

of ferrocene in the chlorinated solvents. 

The polymerization of conducting polymers could be initiated from the photoexcitation of 

onium salts such as diphenyliodonium salt (Ph2I+X-, X-: SbF6-, PF6-, AsF6-).78 A phenyliodo radical 

cation (PhI+l) species generated from a photoexcited iodonium salt leads to the formation of 
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thiophene radical cation, followed by the coupling of the radical cation species to yield 

polythiophenes. Meanwhile, thiophene derivatives having extended conjugation as shown in 

Figure 1.7 serve as an electron transfer photosensitizer in the near UV and visible region and 

undergo self-polymerization to produce conducting polymers in the presence of an onium salt, 

Ph2I+PF6-.79 According to the proposed mechanism, the electron transfer from a photoexcited 

precursors to the onium salt is responsible to the formation of radical cation species. The coupling 

of radical cation intermediates and proton elimination by PF6- lead to the self-polymerization of 

the thiophene derivatives.  

 

 

Figure 1.7. Chemical Structures of Conjugated Thiophene Derivatives with extended conjugation: 

3,5-Diphenyldithieno[3,2-b:2,3-d]thiophene (DDT), 4,7-Di(2,3-dihydrothieno[3,4-b][1,4]dioxin-

5-yl)benzo[1,2,5]thiadiazole (DTDT), and 5,8-Bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2,3-

di(thiophen-2-yl)quinoxaline (DTDQ).79 

 

Although the photo-mediated polymerization is initiated from the photoexcitation of a 

photocatalyst or monomers or a photocatalyst and the generation of radical cationic species, the 

chain propagation mechanism is identical to the traditional oxidative polymerization in that the 

polymerization is derived by the coupling of radical cationic species. Unfortunately, the 

photocatalyst assisted polymerization for conjugated polymers has not demonstrated any decent 

polymerization efficiency, resulting in the formation of low molecular weight species and poor 
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electric conductivity of the fabricated thin films. In addition, UV-vis absorption spectrum is 

presented as the only evidence of the formation of conjugated polymers, which is incomplete to 

comprehend the overall polymerization mechanism mechanistically. 

 

1.3.2.2 UV-induced radical polymerization of diiodo-thiophenes 

UV-mediated radical polymerization is a promising synthetic strategy to achieve 

conducting polymers owing to the fast response of radical species by photo-irradiation. The UV 

induced radical polymerization of 2-iodo- or 2,5-diiodo-thiophene was explored to achieve 

polythiophene based conducting polymer thin films.80–83 The polymerization is initiated by a 

thienyl and an iodine radical generation caused from a carbon-iodine bond dissociation of the 

iodinated thiophenes by light-irradiation. A photoelectronic excitation of the iodo-thiophene and 

intramolecular energy transfer from the ππ* state of thiophene ring to the ns* state of the C-I bond 

leads to the homolytic cleavage of a carbon-iodine bond, followed by the generation of a thienyl 

and an iodine radical.84 The generated thienyl radicals are readily reacted with neighboring radicals 

or other thiophene molecules to produce higher molecular weight species. The reaction can be 

categorized into two different schemes: i) photomediated cross-coupling reaction 

(photocondensation) between (di)iodothiophene species80,81 or ii) photoarylation between an 

(di)iodothiophene and thiophene.82,83 Although both reactions commonly yield oligomeric or 

polymeric thiophene products, there are big differences in polymerization mechanism, efficiency, 

and resulting products. 

 

1.3.2.2.1 Photo-condensation of diiodo-thiophenes 

Polythiophene thin films have been fabricated from 2,5-diiodothiophene through UV light 

induced in-situ polymerization and their optical and electrical properties were characterized and 
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compared to those of chemically synthesized polythiophenes.80,81 The coupling of 

photodissociated thiophene radicals leads to the polymerization for oligomeric or polymeric 

thiophene (Figure 1.8(a)). The molecular weight distribution of the resulting oligomeric species 

follows the Flory model for linear step growth polymerization in that smaller molecular weight 

species are favored over longer ones.80 Despite of its simple and instant process, low degree of 

polymerization and the presence of cross-linked chains produced from a- b’ coupling between 

precursors (Figure 1.8(b)) are not desirable to enhance electrical properties for the application of 

transparent electrodes. In addition, since iodine species originated from the photodissociation of 

carbon-iodine bonds of thiophene precursors is not sufficient to fully dope the oligomeric species, 

additional efforts for post-doping are required to demonstrate compelling optoelectronic properties 

of conducting polymer thin films. 

 

Figure 1.8. The scheme for UV-mediated cross coupling of 2,5-diiodothiophene, resulting in (a) 

a linear polymerization of polythiophene and (b) a- b’ coupling of thienyl radicals.80 

 

1.3.2.2.2 Photo-arylation of iodo-thiophene and thiophene 

Photo-arylation is another promising photochemical reaction to produce conjugated 

oligomers or polymers in high yields. It is an aryl group substitution to the halogenated aromatic 
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molecules by light irradiation. A phenyl radical produced from an iodobenzene reacts with a 

benzene to yield a conjugated biphenyl molecule with a hydrogen iodide byproduct.3 In the same 

manner, 2-iodothiophene in acetonitrile was photoarylated with a pristine thiophene by UV-

irradiation to produce a dimeric thiophene molecule in good yields, demonstrating the extension 

of conjugation.4 Moreover, the bis-arylation of 2,5-diiodothiophene with two thiophenes was 

successfully demonstrated in acetonitrile to produce trimeric thiophene with more than 90% 

yields.85 Although a number of dimeric or trimeric conjugated molecules have been successfully 

synthesized through the photoarylation, any noticeable higher molecular weight species have not 

been reported by the photochemical reaction.82 It is noteworthy that most of photoarylated products 

are terminated with C-H bonds at the conjugated chain ends. It is believed that the depletion of 

carbon-iodine bond of the product prevents sufficient further photochemical reaction leading to 

the chain extension.  

 

 

 

Figure 1.9. Photoarylation scheme of (a) 1-iodobenzene3 and (b) 2-iodo-5-nitro-thiophene4 and 

2,5-diiodothiophene.85 

 

Iodine radicals (I×) produced by the photoarylation couple together to produce I2 or react 

with other molecules three different pathways. 1) Iodine can be abstracted by organic solvents 

containing carbon-hydrogen bonds. The halogen radical abstraction by saturated aliphatic 
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compounds is widely known and the degree of abstraction was evaluated for various type of 

organic solvents.86–88 In particular, organic solvents containing electron withdrawing groups 

(fluorocarbon solvent, CHCl3, or CH3CN) are highly reactive with halogen radicals. 2) The iodine 

radicals can be protonated to produce hydrogen iodide (HI) as a result of photochemical reaction, 

which can serve as dopants for the photoarylated products, 3) Lastly, the photoarylated products 

or neighboring precursors can be iodinated, which is able to continue the photochemical reaction. 

Given that most photoarylated products is rarely terminated with carbon-iodine bonds in the 

references, it is believed that the iodine abstraction by solvents or the formation of hydrogen iodide 

is dominant in the photoarylation. 

 

1.4 Photodegradation of conjugated polymers 

The UV-mediated polymerization for conjugated polymers has not been well-established 

compared to other synthetic routes such as oxidative polymerization and organometallic synthesis. 

This is due to the fact that the conjugated molecules are vulnerable to photo-oxidation induced 

chain degradation in both solution and solid state.89 In particular, the polymers in solution are 

susceptible to the fragmentation of conjugated backbones in the exposure to oxygen and light, 

presented in the reduction in main absorption in the visible range and the decrease in molecular 

weights.90 In the same manner, the propagating chains in solution-based photo-induced 

polymerization could be highly affected by a long term light irradiation, resulting in the 

photodissociation of the polymer chains and the decrease in their molecular weights. 

Most photodegradation of π-conjugated system have to do with the photo-oxidation of 

conjugated polymers,89–92 which is attributed to the photoexcitation of conjugated polymers as 

depicted in Figure 1.10(a). Upon absorbing photon energy, a conjugated polymer is photoexcited 

and generates a singlet exciton. The excited molecule either returns to a ground state by radiative 
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(photoluminescence) or non-radiative decay, or transits to a triplet state by intersystem crossing 

(ISC).93,94 In the presence of oxygen in the system, the triplet exciton moves to a triplet oxygen by 

energy transfer, resulting in the formation of an excited singlet oxygen. The singlet oxygen affects 

the dissociation of the conjugated main chains directly and indirectly.91 Holdcroft proposed a direct 

photodegradation mechanism of P3HT in oxygen saturated organic solution that a conjugated 

polymer chain undergoes 1,4-Diels-Alder addition of singlet oxygen to a thiophene ring to 

generate a sulfine or a trans-diketone, followed by the loss of conjugation (Scheme 1.10(b)).95 

Manceau suggested a hydroxyl radical mediated photoscission mechanism of P3HT as shown in 

Scheme 1.10(c).96 The reaction between a singlet oxygen and a hexyl side chain yields a peroxide 

on the side chain, followed by the generation of a hydroxyl radical. The radical rapidly reacts with 

sulfur atom in a thiophene ring, resulting in the formation of a thienyl-oxide (or -dioxide). Finally, 

the sulfone intermediates undergo the ring opening of the thiophene moiety, leading to the 

photobleaching of conjugation by the formation of a thienyl dioxide. In order to prevent the 

photodegradation of conjugated polymers, it is critical to exclude oxygen from the system by inert 

gas purging with N2 or Ar or under glovebox condition.  
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Figure 1.10. Schematic illustration of photooxidation and photodegradation of conjugated 

polymers. (a) Scheme of photo-oxidation pathway for photoexcited P3HT93 (Reprinted with 

permission from American Chemical Society publishers (Ref. 90). Copyright 2011), (b) singlet 

oxygen mediated direct photodissociation of π-conjugated system90, and (c) hydroxyl radical 

induced photodissociation and ring opening reaction.91 

 

Light irradiation condition to conjugated polymers also play a significant role in 

photodegradation of conjugated polymers.89 Hintz monitored the photodegradation of P3HT thin 

film irradiated with a high pressure xenon lamp in oxygen rich condition. The degradation rate of 

P3HT, determined by the decay in its main absorption bands, linearly increases as a function of 

the light intensity (Figure 1.11(a)). In addition, the photo-oxidation effectiveness is stronger for 

the polymer films irradiated at the shorter wavelength so that the UV irradiated P3HT film at 

320nm exhibited 50 times higher photodegradation than the polymer film irradiated at 550nm 

(Figure 1.11(b)). It is noteworthy that a photoirradiated P3HT film with a visible 532nm pulsed 

laser undergoes no degradation both in solution and solid state.97  
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Figure 1.11. Light irradiation condition for the photodegradation of conjugated polymers. (a) 

Degradation rate depending on light intensity of xenon lamp and (b) Photodegradation 

effectiveness depending on the irradiation wavelength of the light source and the absorption bands 

of poly(3-hexylthiophene)89 (Reprinted with permission from American Chemical Society 

publishers (Ref. 85). Copyright 2011) 

 

1.5 EDOT and ProDOT as monomers 

3,4-ethylenedioxythiophene (EDOT) is widely used to achieve highly conductive polymers 

with outstanding electrical property and stability in doped state by its unique molecular structure. 

The electron donating ethylenedioxy moiety on top of the thiophene unit lowers the oxidation 

potential so that EDOT readily forms a highly reactive radical cation. Its polaron state is stable 

owing to the resonance of the radical cation encouraged by the alkoxide moiety of EDOT as seen 

in Figure 1.7. In addition, different from a pristine thiophene containing 4 different accessible 

reactive sites in the molecular structure, EDOT is susceptible to react with other molecules at 2, 5 

position of thiophen moiety so that a linear chain growth is only allowed for the polymerization. 

This linear chain growth of poly(3,4-ethylenedioxythiophene) (PEDOT) affords excellent 

optoelectronic property with its longer effective conjugation length and high charge concentration 

within the 2D structure. Despite of its outstanding conductivity, the intrinsic poor solubility of 
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PEDOT is not favorable to mass production of conducting polymer thin films through wet coating 

process. 

 

Figure 1.12. Molecular structure of (a) 3,4-ethylenedioxythiophene (EDOT) and (b) 3,4-

propylenedioxythiophene (ProDOT), and (c) Resonance of radical cations in EDOT98. 

 

In contrast, poly(3,4-propylenedioxythiophene) (PProDOT) is highly processable owing to 

the incorporated two alkyl side chains that also have analogous electron donating character to 

EDOT. At the same time, since the propylenedioxy ring serves as a spacer to separate the side 

chains from the conjugated backbone, the intramolecular charge transfer along the polymer 

backbone is less affected by the insulating side chains. ProDOT-alkyl derivatives are widely used 

in solution-based polymerization such as Grignard metathesis because of the outstanding solubility 

of the polymerized precursors during the reaction. It is also advantageous for the characterization 

of the resulting polymers through GPC, H-NMR, and MALDI to comprehend the polymerization 

mechanism.  
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1.6   Doping of conjugated polymer 

As an inorganic semiconductor reveals metallic character by introducing small amount of 

impurity, dopants, p-doped conducting polymers are achieved by removing electrons from the 

valence bands of the conjugated polymers in the presence of counter anions. The removal of 

electrons from a polymer chain creates new energy levels within the intrinsic energy gap between 

HOMO (the highest occupied molecular orbital) and LUMO (the lowest unoccupied molecular 

orbital) of the neutral states.99 Depending on the number of electrons taken from the chain or the 

doping level, it leads to not only the formation of a polaron (radical cation) or bipolaron but also 

the change in molecular structure of the polymer chain from benzoidal to quinoidal geometry as 

depicted in Figure 1.13. The evolution of the polaronic states creates holes on top of the valence 

bands, followed by the delocalization of the positive charge along the polymer chains to exhibit a 

semiconducting character. The conductivity of doped conjugated polymers increases up to several 

orders of magnitude compared to that of corresponding neutral ones. Ouyang reported a 

PEDOT:PSS thin film with excellent conductivity of 3,300 S/cm after methanesulfonic acid 

(CH3SO3H) doping that is comparable to that of ITO films.100 

In addition, the reduced bandgap by the doping process leads to a red-shift of absorption 

bands of conjugated polymers. For example, while the main absorption bands between 400~600nm 

are mostly observed in the neutral states of PEDOT:PSS polymer, they shifted to the long 

wavelength range (700~1100 nm) in a polaron state or to near-infrared (1250nm~) in a bipolaron 

state depending on the doping level of the polymer chains.7 As main absorption bands shift beyond 

the range of visible light wavelength in a high doping level, the PEDOT film becomes transparent 

with a high transmittance value, which is applicable to transparent electrodes for organic 

photovoltaics, flexible display, or smart windows.  In particular, the reversible change in colors or 
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transmittance of the conjugated polymer is of great demands in electrochromic device 

application.48,101,102 

 

Figure 1.13. Energy level diagram of conjugated polymers (left figures) and chemical structures 

of neutral and doped PEDOT polymers (right figures). 

 

1.6.1 In-situ doping in oxidative polymerization 

Since polyacetylenes exhibited a remarkable metallic conduction in thin films where alkali 

metals or halides serve as promising dopants for the polymers,103–105 great efforts have been 

devoted to developing of efficient doping methods to maximize electric conductivity and obtain 

its long-term stability in p-doped states. Metallic compounds such as FeCl3, CuCl2, or iron(III) 

tosylate(FeTos3)21,23,106 are widely adopted in chemical oxidative polymerization for conjugated 

polymers owing to their outstanding ability to oxidize conjugated molecules. In addition, they 

serve as strong dopants to make the polymerized products in p-doped state, affording excellent 

conductivity values. The doped states of conjugated polymer chains are also achieved by 

electrochemical polymerization in the presence of counter anions such as ClO4-, BF4-, PF6-.34 The 

doping anions are embedded on oxidized conjugated polymer chains during the polymerization to 

acquire electroneutrality of the ion pairs, resulting in the formation of conducting salts on the 
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substrates. The doping level of conjugated polymers and the conductivity of the polymer films are 

dependent on the nature of counter anions, electrolyte composition (the concentration of monomers 

and counter-anions, solvent), and electrode materials.107 The self-polymerization of brominated 

EDOT in solid state is reported as a synthetic approach for a conducting polymer (PEDOT) thin 

film fabrication.1 The bromine molecules (Br2) produced by the coupling of dibromo EDOT serve 

as dopants for the polymerized PEDOT molecules, demonstrating comparable conductivity to 

PEDOT thin films prepared through oxidative polymerization. 

 

1.6.2 Post-doping by electron withdrawing molecules 

Besides oxidative polymerization that doping of growing chains is performed during the 

polymerization, post-treatment of conjugated polymer films with dopant molecules are proposed 

as a simple method to enhance electrical conductivity and optical transmittance of non-doped 

conjugated polymers synthesized through organometallic pathways. A variety of conjugated 

molecules are efficiently doped by the addition of doping agents to the conjugated polymer system. 

A suitable dopant molecule for the efficient post-doping of a conjugated polymer is chosen by its 

electron affinity, the energy offset between the dopant (LUMO) and the polymer (HOMO), and 

the miscibility in the polymer system.108–110 Depending on the nature of dopant materials, different 

doping methods are applied to conducting polymers to enhance their optical and electrical 

properties.  

 

1.6.2.1 Post-doping by tetrafluorotetracyanoquinodimethane (F4TCNQ) 

Recently, a molecular electron acceptor, tetrafluorotetracyanoquinodimethane (F4TCNQ) 

has been widely investigated as a strong organic dopant to oxidize a number of conducting 

polymers. The LUMO level (-5.2eV) of this dopant is deep enough to take electrons from the 
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HOMO level of its host organic semiconductor, resulting in the formation of polaron or 

bipolaron.109,111,112 Researchers proposed a charge transfer mechanism of the electron acceptor 

with conducting polymers having various HOMO levels and figured out that the chemical doping 

by F4TCNQ is efficient for the conjugated polymers with higher HOMO levels than the LUMO 

level of the dopant.110 This chemical doping is available for both the solution mixture of conjugated 

molecules/dopant and a dopant infiltration into a pre-deposited conjugated polymer thin film. They 

evaluated electrical conductivity and optical properties for the thin films of p-doped conjugated 

polymers deposited through the two different pathways. 

 

Figure 1.14. F4TCNQ (a) chemical structure of F4TCNQ (b) schematic energy level diagram 

showing the relative HOMO and LUMO levels of conjugated polymers and F4TCNQ with an 

electron transfer. 

 

A mixed organic semiconductor:dopant solution is straightforward to prepare p-doped 

polymer solution to fabricate conductive thin films. While it provides a facile process that F4TCNQ 

diluent is added to conjugated polymer solution, the polymer chains readily aggregate and form a 

gels or large particles by doping induced inter-charge interaction so that the electric conductivity 

in solid state is underestimated because of its discrete and pre-formed crystalline phase.109,112,113 

The co-deposition of dopant molecules with conjugated polymers results in the formation of 
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disordered polymer packing structure so that it is challenging to maximize electrical 

conductivity.111 In addition, since F4TCNQ shows a limited solubility in organic solvents, the 

mixture of polymer/dopant undergoes only small fractional charge transfer so that the doping level 

of conjugated polymers by the dopant is not uniform to enhance conductivity.  

In order to overcome the limitation of polymer/dopant mixture, sequential doping to pre-

deposited films is favored to achieve high quality conducting polymer thin films. F4TCNQ 

molecule layer is formed on top of a conjugated polymer thin film through wet or dry deposition 

process, followed by the infiltration of dopants into the polymer film layer. The enhanced electrical 

conductivity and highly ordered packing structure in solid state were mainly demonstrated in a 

sequential addition of F4TCNQ molecules to regioregular poly(3-hexylthiophene) [rr-P3HT]112,114 

or poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno-[3,2-b] thiophene) [PBTTT]111,115.  The diffusion 

of the dopant into the polymer film matrix did not cause significant change in the film morphology 

and the packing structure. As a result of sequential doping, the doped film exhibited 4~5 orders of 

increase in conductivity compared to the pristine conjugated polymer film. At the same time, the 

doped film undergoes the decrease in the absorption bands at 400 ~ 600nm and simultaneous 

increase in the long wavelength range, which is identical to the redshift in absorption bands of p-

doped conjugated polymers except for the absorption band originated from radical anion of 

F4TCNQ.111,112 As the concentration of the dopant increase in the film, the broad polaron 

absorption band decreases in the long wavelength range and red-shifted to NIR range, but the 

spectral features of F4TCNQ both at 350~450nm (neutral) and 750~850nm (radical anion) are 

apparent so that unfortunately it is technically hard to fabricate transparent and colorless 

conducting polymer thin films with F4TCNQ.111,114,115 
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1.6.2.2 Post-doping by fluoroalkyltrichlorosilanes (FTSs) 

Calhoun and Kao reported organic semiconductor devices in that a self-assembled 

monolayer (SAM) of fluoroalkylsilanes is placed on top of a conjugated polymer thin film showing 

remarkable electrical conductivity and transparency.116,117 The conductivity values of PBTTT and 

P3HT are enhanced up to six orders magnitude by the interaction of the hydrolyzed fluoroalkyl 

trichlorosilane (FTS) with the conjugated polymers (PBTTT/FTS: 1100 S/cm, P3HT/FTS: 30 

S/cm). FTS treated conducting polymer films also show excellent transparency with a drastic 

decrease in absorption bands in the visible range. The FTS induced doping of conjugated polymers 

is ascribed to an electron transfer from conjugated polymer chains to the self-assembled monolayer 

of FTS having the strong electron withdrawing ability. However, the FTS induced organic 

semiconductors underwent the decrease in conductivity by the exposure to polar molecules or 

humidity, showing unstable electric properties sensitive to the environment. Additionally, the 

charge transfer in the film is only allowed in-plane direction because of the presence of the 

insulating SAM layer, which is not applicable to multilayer electronic device requiring interlayer 

charge transfer. 

 

1.6.2.3 Post-doping by protonic acids 

Protonic organic or inorganic acids are also regarded as promising dopants for conjugated 

polymers to fabricate transparent conductive thin films. PEDOT:PSS thin films treated with 

sulfuric acid (H2SO4) or methanesulfonic acid (CH3SO3H) exhibit excellent conductivity of 

2000~3000 S/cm which is comparable to that of ITO thin films.100,118 The conductivity 

enhancement is originated from the proton transfer from acids to PSS- of the polymer chains, 

resulting in the formation of PSSH. The neutral PSSH chains lose the coulombic attraction with 

PEDOT chains, followed by the phase segregation of hydrophilic PSSH from hydrophobic PEDOT. 
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The phase separation allows the replacement of PSS- to acid anions (HSO4- or CH3SO3-) and 

conformational change in PEDOT chains from coil to extended structure, resulting in the 

enhancement in conductivity and optical transparency.118  

Direct doping of organic semiconductors by protonic acids is also available to enhance 

electric conductivity.119 The doping level is determined by acid dissociation constant (pKa) of acid 

dopants. A protonic acid with a smaller pKa value (H2SO4:-6.4, CH3SO3H: -2.0) is more beneficial 

to enhancing doping efficiency of conjugated polymers. However, pristine conjugated polymer 

thin films should be carefully doped via protonic acid treatment to avoid any shrinkage or 

breakdown of the film caused from mechanical stresses by sudden change in electric states. For 

this reason, protonic acids are generally diluted with nitromethane to provide a milder doping 

condition. 

 

1.7 Characterization of conjugated polymers 

1.7.1 UV-vis absorption spectrum 

Examining the UV-visible absorption behavior of conjugated polymers in solution or solid 

states gives deep insights about the nature of the conjugated molecules such as chemical and 

electronic structures, intermolecular interaction, and physical conformation of the polymers. The 

absorption bands of conjugated polymers have to do with the energy band gap of conjugated 

molecules corresponding to the energy level difference between the HOMO and LUMO.120,121 Lin 

examined the relationship between the energy band gap and the effective conjugation length of 

ProDOT oligomers.5 The empirical plot about the energy bandgap (Eg) and the reciprocal value of 

the number of repeating units (1/n) revealed a linear correlation with a saturated minimum energy 

bandgap for its infinite conjugation length. This relationship is critical in monitoring the increase 

in molecular weight of the polymerization for conjugated polymers. In particular, the slope of the 
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plot reflects the effective conjugation. This value of oligomeric EDOTs or ProDOTs (3.21~3.25) 

is higher than that of regiorelular thiophene oligomers6. They suggested that oligomeric 

alkylenedioxy thiophenes (EDOT or ProDOT oligomers) afford better coplanarity than oligomeric 

alkylthiophenes due to a sulfur and oxygen interaction between adjacent EDOT/ProDOT units. 

The greater coplanar structure of EDOT/ProDOT unit is also supported by the absorption bands 

with vibrational fine structures in contrast to the single and broad absorption bands of 

oligothiophenes. In addition, the y-intercept value differences between oligothiophenes (2.54 eV)6 

and EDOT/ProDOT oligomers (2.04~2.05 eV)5 exhibits the lower energy bandgap of 

PEDOT/PProDOT than that of polythiophenes. The reduced bandgap is attributed to two oxygen 

substituents on top of the thiophene moiety that make the HOMO move upwards in energy level 

more than the LUMO. 

 

Figure 1.15. UV-vis absorption spectra and the plots of absorption energy vs the reciprocal values 

of the repeating units of (a), (b) ProDOT5 (Reprinted with permission from American Chemical 

Society publishers (Ref. 119). Copyright 2011) and (c), (d) 3-octylthiophene oligomers6 

(Reprinted with permission from ACS publishers (Ref. 120). Copyright 1998). 
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The decrease in energy bandgap is further encouraged by the oxidation of conjugated 

polymers in neutral state. The energy transition from a neutral chain to a radical cation or dication 

by the oxidation of conjugated polymers leads to the reduction in bandgap, resulting in the 

diminishment of absorption bands in the visible range and the onset polaron and bipolaron bands 

in the long wavelength and near IR range. Accordingly, it causes to the increase in transmittance 

of the conjugated polymer complex both in solution and solid state. The UV-vis-NIR absorption 

bands and electronic structures of PEDOT:PSS is well described in Figure 1.16.  

 

 

Figure 1.16. Chemical and electronic structures of PEDOT:PSS and UV-vis-NIR absorption 

spectra in neutral, radical cation, and dication states.7 (Reprinted with permission from Royal 

Society of Chemistry publishers (Ref. 97). Copyright 2014) 

 

1.7.2 Gel Permeation Chromatography (GPC) 

The molecular weight and polydispersity of conjugated polymers are generally 

characterized by chloroform GPC. They are generally determined by a retention time that is 

calibrated with a series of polystyrene standards with discrete molecular weights. However, 



 32 

flexible polystyrene and rigid conjugated polymers show different behaviors in solution so that the 

molecular size output of conjugated polymers tends to be overestimated compared to polystyrene 

standards. Hence, it is required to take into account the nature of rigid conjugated polymers when 

estimating the molecular weights.  

In general, GPC characterization is allowed for the conjugated polymers soluble in organic 

solvents such as chloroform, THF, chlorobenzene. For conjugated polymers with a high molecular 

weight or polyaniline not containing any soluble side chains, N-methyl-2-pyrrolidinone (NMP) or 

dichlorobenzene are employed as eluent solvents. Poly(3,4-ethylenedithiathiophene) (PEDTT) 

synthesized through chemical and electrochemical oxidative polymerization was characterized 

with eluents containing LiCl in NMP.122 Li+ ion is believed to help to separate the polymer 

aggregates into single chains via Lewis acid-base interactions and reveal the correct molecular 

weight in GPC. The effect of Li+ ion is also proved for the GPC characterization of polyaniline.123 

The incorporation of long and bulky side chains into thiophene derivatives is another approach to 

allow GPC characterization by inhibiting the formation of aggregates in chloroform. While 

PEDOT synthesized by chemical or electrochemical oxidative polymerization is not favorable for 

GPC characterization due to the insolubility of the polymer products in the absence of side chain, 

P3HT47 or PProDOT incorporating long alkyl side chains48,124 allow the molecular weight 

estimation of the resulting polymers through chloroform GPC. 

The mechanistic study based on GPC trace of polymerized products offers important clues 

to understand the nature of polymerization. Yokoyama demonstrated a controlled radical 

polymerization chain growth behavior of conducting polymers through GPC.47 The chain growth 

behavior of poly(3-hexylthiophene) synthesized via Grignard metathesis is confirmed by the shift 

of retention time to higher molecular weight while maintaining narrow PDI. The increase in 
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molecular weight of the resulting polymers is accompanied by monomer conversion showing a 

linear relation. 

 

1.7.3 1H-NMR characterization 

1H-NMR offers important clues in identifying the molecular structure of conjugated 

polymers. Polythiophene derivatives exhibit their own unique 1H-NMR spectra in CDCl3 

(Deuterated chloroform). For example, PProDOT derivatives commonly exhibited a single broad 

peak in the range of d 3.4-4.5 assigned to the CH2O protons of the propylenedioxy bridge on top 

of the thiophene unit.43,124 When linear alkyl side chains are symmetrically incorporated at the 

center of the bridge, other broad signals are shown in the range of d 0.7-1.5 attributed to the CH2 

and CH3 protons of the alkyl chains.48 The broad signal of the conjugated polymers is typical for 

the polymers due to the overlapping of a number of protons on the molecules. Because of the 

numerous protons on the thiophene substituents, protons at the conjugated chain ends in d 6.0-6.5 

are negligible.  

The formation of block copolymers consisting of two different blocks is also confirmed by 

1H-NMR. Noonan group demonstrated a polythiophene block copolymer having two different side 

chains of hexyl (C6H13) and hexylester (COOC6H13).8 The addition of 3-hexylesterthiophene 

monomer (3HET) to poly(3-hexylthiophene) (P3HT) leads to the formation of P3HT-b-P3HET 

via Suzuki polycondensation in the presence of nickel catalyst. The production of the block 

copolymer was determined by the coexistence of proton signals originated from P3HT (7.00ppm: 

CH of b position of thiophene, 2.80ppm: CH2 of hexyl side chains closed to thiophene unit) and 

P3HET (7.86ppm: CH of b position of thiophene, 4.30ppm: CH2 of the hexylester side chain closed 

to ester group) blocks. In particular, we can estimate the composition ratio of the two 

polythiophene blocks from the integration of those peaks. 



 34 

 

Figure 1.17. Characterization of P3HT-b-P3HET. (a) GPC and (b) 1H-NMR(500MHz, CDCl3) 

spectra.8 (Reprinted with permission from ACS publishers (Ref. 124). Copyright 2016) 

 

1.7.4 MALDI-TOF 

In order to understand the chain extension mechanism of conjugated polymers synthesized 

via organometallic pathways, the chain end group of the resulting polymers is commonly 

characterized via MALDI-TOF mass analysis.8,9,43,47,48,123,124 As presented in Figure 1.6, the 

formation of undoped polythiophenes is ascribed to the polycondensation of 2-bromothiophene 

derivatives catalyzed by a nickel complex. The MALDI-TOF mass spectrum of the neutral 

polythiophene derivatives revealed the presence of the C-Br bonds as described in Figure 1.18.8,9 

Every main peak is separated with an identical m/z value corresponding to the mass of the 

repeating unit of thiophene derivatives. At the same time, the m/z values of the primary peaks are 

precisely expressed as 𝑛 × (𝑚𝑎𝑠𝑠	𝑜𝑓	𝑟𝑒𝑝𝑒𝑎𝑡	𝑢𝑛𝑖𝑡) + 79.9(𝐵𝑟) + 1.0(𝐻), implying that most of 

the polymers have the same end group (H-Mn-Br). Given the H/Br end groups, the linear 

correlation of molecular weight and monomer conversion, and low polydispersity of resulting 

polymers, it is believed that the polymerization was performed in a living fashion and most of 

polymer products are terminated with C-Br bonds at the chain ends.  
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Figure 1.18. MALDI-TOF mass spectrum of (a) regioregular poly(3-hexylthiophene)9 and (b) 

poly(3-hexylesterthiophene)8 synthesized via nickel catalyzed Grignard metathesis. (Reprinted 

with permissions from American Chemical Society publishers (Ref. 124). Copyright 2016 and 

(Ref. 125). Copyright 2005)  

 

1.8 Dissertation Outline 

Chapter 1 offers a general overview of conventional polymerization for conjugated 

polymers as well as photo-mediated polymerization. The polymerization mechanisms and the 

nature of resulting polymers are analyzed with the characterization results of UV-vis absorption 

spectra, GPC, 1H-NMR, and MALDI-TOF. Depending on the type of reacting intermediates, 

photo-mediated polymerization is categorized into i) oxidative polymerization: managed by the 

coupling of radical cation species and ii) halogen mediated radical polymerization: derived by 

thienyl and halogen radicals. Oxidative polymerization is generally determined by the ability of 

photocatalyst to withdraw electrons from monomers and demonstrates a poor polymerization 

efficiency with a low conversion ratio of the reagents compared to the conventional polymerization. 

In contrast, photo-induced radical polymerization is managed by highly reactive radical species, 

resulting in better polymerization efficiency. Systematic comparison between photocondensation 

and photoarylation of conjugated polymers is given as important background of the dissertation. 
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In particular, photoarylation presents excellent monomer conversion to yield oligomeric 

conjugated molecules.  

Chapter 2 presents an one-pot photopolymerization of ProDOT derivatives in solution to 

achieve conjugated polymers with a high molecular weight and narrow polydispersity. 

Photoarylation is an essential photochemical reaction to achieve conjugated polymers and largely 

influenced by the monomer composition, solvent choice, light source, and irradiation time. The 

main factors affecting the polymerization efficiency are thoroughly discussed based on the 

characterization data of the resulting polymers. We propose a polymerization mechanism in which 

chain growth is controlled by the reversible activation of C-I bonds at the growing chain ends and 

the electronic state of propagating chains under proper illumination conditions.  Electrophilic 

halogenation of the growing chains with newly replenished iodine sources and switching light 

source to promote chain propagation through coupling and to prevent oxidative photodegradation 

are systematically investigated and logically presented.  

Chapter 3 demonstrates an one-pot fabrication strategy to realize transparent conducting 

polymer thin films through UV mediated polymerization. A facile photoarylation with 2,5-diiodo 

thiophene derivatives and other heteroaryl compounds in solid state by UV light irradiation leads 

to the formation of insoluble and robust conjugated polymer thin films. We examined how the 

mobility of monomers in solid state affects the polymerization efficiency and electric conductivity 

by adjusting the reaction temperature and side chain design of ProDOT (or EDOT) monomers. 

Chemical doping of the PEDOT derivative copolymer films with protonic acids affords 

outstanding conductivity and transparency to the polymerized films.   
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Chapter 2. Facile Fabrication of Conjugated Polymers through One-pot Photo-mediated 

Polymerization based on Photoarylation of Thiophene Derivatives 

 

2.1 Introduction 

Since PEDOT [poly(3,4-ethylenedioxythiophene)] and water soluble PEDOT:PSS were 

commercially manufactured by Beyer AG early in the 1990s,1,2 numerous synthetic methods for 

π-conjugated conducting polymers have been extensively investigated including chemical 

oxidative polymerization in solution3–6, in vapor phase7,8, electrochemical9,10, organometallic 

polymerization11–14 for various applications such as antistatic coatings2, electrochromics15, light-

emitting diodes16,17, and sensors18–20 owing to their excellent transparency and conductivity in 

doped states. Although significant development with respect to the polymerization for conjugated 

polymers has been achieved, there still remains a great demand to develop a versatile and efficient 

synthetic route for the synthesis of well-defined conjugated polymers with enhanced optical and 

electrical properties. Given that conjugated molecules are highly reactive to light irradiation and 

the electronic states are photochemically tunable, photo-mediated polymerization has great 

potential to engineer the molecular structures of conjugated polymers. Photo-mediated radical 

polymerization is also significantly advantageous such as facile and instantaneous reaction and 

cost-effective mass production capability through a roll-to-roll process. 
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Light-induced radical polymerization has been widely investigated and well established for 

a variety of vinyl monomers in the last few decades. In particular, photo-controlled radical 

polymerization (photo-CRP) to engineer the polymer structure with a designed molecular weight 

and narrow polydispersity has been of great interests. The polymerization managed by the 

photoredox reaction of metal-ligand catalysts is able to produce aliphatic polymers with well-

defined linear structures. The polymerization mechanism of photo-CRP has been well-established 

by means of various characterization methods such as GPC, 1H-NMR, and MALDI. 

Motivated by the promising results from photo-controlled radical polymerization of vinyl 

monomers, extensive efforts have also been devoted to developing a variety of conjugated 

polymers through photochemical polymerization. Yagci and coworkers established photo-induced 

cationic polymerization for conjugated polymers, which is driven by electron transfer from 

thiophene derivatives or their conjugated molecules to iodonium salts, followed by the coupling 

of corresponding radical cation species.24–26 Polypyrrole or polyaniline were obtained through the 

coupling between photo-oxidized monomeric or oligomeric precursors in the presence of 

photoactivated Ruthenium complexes by light illumination.27–29 Those synthetic approaches took 

advantages of the oxidation of the precursors to achieve conjugated polymers so that the 

polymerization mechanisms are similar to that of the chemical oxidative polymerization. Step 

growth polymerization with iodinated thiophenes is another synthetic approach to synthesize 

conjugated polymers. The coupling of thienyl radical species, which is originated from the 

photodissociation of carbon-iodine bonds of 2,5-diiodothiophenes by UV irradiation, results in the 

formation of oligomeric or polymeric thiophenes.30–32 Although a linear step growth mechanism 

was proposed through optical and physical property analyses, the monomer conversion and 

polymerization efficiency were still unsatisfactory, not suitable for high molecular weight 

polymers. 
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The photoarylation between thiophenes and their iodothienyl derivatives is regarded as a 

promising synthetic strategy to efficiently produce thiophene oligomers in high yields.33–36 UV 

light irradiation to 2,5-diiodothiophenes in the presence of thiophene monomers in acetonitrile 

gives thiophene trimers with a high conversion yield through the photo-arylation mechanism.37 

However, higher molecular weight species have not been achieved by the photochemical reaction. 

It is believed that the resulting oligomers are terminated with carbon-hydrogen bonds and become 

unreactive to light irradiation. If reversible carbon-iodine bonds are manageable at the chain ends 

after the photo-arylation, the trimers are expected to grow further by the photo-arylation in the 

presence of additional monomers, eventually reaching to higher molecular species. Here, we have 

devised a photo-mediated radical polymerization in solution to achieve conducting polymers with 

a high molecular weight and low polydispersity by reviving carbon-iodine bonds at the growing 

chain ends. A series of 3,4-propylenedioxythiophenes (ProDOT) having two symmetrically 

incorporated solubilizing alkyl chains are designed, synthesized, and used to investigate the novel 

photopolymerization. The alkyl side chains not only render good solubility to the growing polymer 

chains during the solution polymerization but also enable the characterization of resulting products 

by GPC, MALDI Mass, UV-vis absorption spectroscopy, and 1H-NMR.38,39 The polymerization 

mechanism was systematically investigated by correlating the molecular weight, absorption 

properties, and the molecular structure of the resulting polymers.  
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2.2 Experimental 

 

 

Figure 2.1. ProDOT derivatives synthesized for the photomediated polymerization. 

 

3,4-propylenedioxythiophene molecules incorporating dibutyl or dimethoxyethylhexyl 

side chains on the center of the propylene bridge (DBuProDOT or DEHProDOT) and the 

diiodinated ProDOT derivatives (DIDBuProDOT or DIDEHProDOT) were prepared as a 

precursor according to the literature procedures (Figure 2.1).39,40 The photo-polymerization was 

initiated by means of the 365nm LED in the 1.0 mM solution of the ProDOT monomers and 

DIProDOT derivatives in argon purged bromotrichloromethane (CBrCl3). After confirming that 

most monomers were consumed by the UV irradiation, 2.0 mmol of iodine (I2) and a few drops of 

perchloric acid (HClO4) were subsequently added and the light source was switched to a 532nm 

q-switched pulsed laser. Aliquots of the photo-reacted samples were taken at a regular interval and 

their UV-vis absorption was measured after dilution with chloroform. The aliquots were also 

rinsed with an aqueous solution of sodium thiosulfate (Na2S2O3) and dedoped with hydrazine 

(N2H4) to remove extra iodine molecules and neutralize the polymer products, followed by 

dissolution in chloroform for UV-vis absorption and Gel Permeation Chromatography (GPC) 

analysis. In addition, after removing residual monomers from the polymerized products, H-NMR 
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(CDCl3) and MALDI-TOF were employed to investigate the molecular structures. All the samples 

for GPC analysis were stirred and annealed in a chloroform solution at 50oC for 3 hours before the 

sample injection to prevent polymer aggregation for accurate molecular weight analysis. 

 

2.3 Results and discussion 

The photoarylation efficiency of the thiophene derivatives is determined by how iodo-

thiophene molecules promptly generate radical species via the selective homolytic cleavage of the 

carbon-iodine bonds without hampering π-conjugation upon UV irradiation31,41 and efficiently 

react with neighboring thiophenes to yield thiophene dimers or trimers in a high yield35. As 

depicted in Figure 2.2, an iodine radical produced by the photoarylation could react with other 

molecules in three different ways; 1) halogen abstraction by organic solvents containing carbon-

hydrogen bonds41–43, 2) coupling with a hydrogen radical to give corresponding hydrogen iodide 

(HI)44, and 3) coupling with thienyl radical or electrophilic iodination.  

 

Figure 2.2. Schematic iodine consumption in three different ways; (a) abstraction by hydrogen 

donating solvents41–43, (b) hydrogen iodide formation44, (c) coupling with thienyl 

radicals/electrophilic iodination. 

 

In order to achieve conjugated molecules having a higher molecular weight, it is required 

to recover carbon-iodine bonds at the growing chain ends to continue photoarylation between the 

iodinated molecules and neighboring thiophene precursors under continuous photoirradiation. 

Organic solvents having hydrogen atoms on their molecular structures, however, will likely 
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consume iodine radical during the reaction by means of halogen abstraction by carbon-hydrogen 

bonds.42,45–47 Therefore, CBrCl3 was chosen as a hydrogen-free organic solvent to avoid the iodine 

abstraction by solvent during the reaction and allow iodine radical exchange between the growing 

chain ends and thiophene precursors. In order to examine the validity of these assumptions, a 

photo-polymerization with DBuProDOT and DIDBuProDOT was carried out. 

 

Figure 2.3. Characterization of 365nm UV-irradiated products from DIDBuProDOT and 

DBuProDOT solution by (a) UV-vis absorption spectra in a diluted chloroform solution and (b) 

GPC traces.  

 

The UV-vis absorption spectra of the photopolymerized product of DIDBuProDOT and 

DBuProDOT by 365nm UV light are presented as solid lines in Figure 2.3(a). The UV irradiated 

solution exhibited the main absorption in the 600~1000nm wavelength range and the absorption 

lmax redshifted as the UV irradiation time increased, suggesting a gradual increase in the 

conjugation length and the doped state of the product. The de-doped products after the I2 washing 

also demonstrate vibronic and redshifted absorption spectra in the 400~600nm range in solution 

with an increasing irradiation time as displayed as the dashed lines. In particular, a shoulder peak 

at around 570nm corresponds to the enhanced intermolecular π-π* transition of the higher 
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molecular weight species. This vibrational fine structure is comparable to the absorption spectrum 

of the poly(DBuProDOT) in solution where the polymer was synthesized through the 

organometallic pathway.48 Although extra iodine species were eliminated by rinsing with sodium 

thiosulfate and de-doping, the appearance of the broad absorption bands across the long 

wavelength region over 700nm was observed when 48 hours of the UV-irradiation time was longer 

than 48 hours, which indicates the polaron formation and delocalization of charge carriers due to 

the interchain interaction of the growing polymer chains49–51. This transition behavior in the long 

wavelength region is similar to the result of the photo-induced P3HT aggregation.52 

The changes in the optical properties of the solution are consistent with the change in the 

molecular weight distributions. GPC traces of the photopolymerized products of DBuProDOT 

showed that the retention time gets smaller with an increasing UV irradiation time as presented in 

Figure 2.3(b). The GPC traces also shows that the increase in the molecular weight of the 

polymerized products is accompanied with the consumption of ProDOT monomers. Hence, the 

photopolymerization trait resembles the typical chain growth polymerization mechanism in that 

the molecular weight increase is attributed to the progressive addition of monomer to the chain 

end. The number average molecular weight (Mn) of the photo-polymerized product for 72 hours 

of reaction is 2,200 g/mol (PDI=1.20) corresponding to the octamer length with monomer 

conversion up to 95%. Further UV irradiation led to the precipitation of the resulting products in 

the solution as shown in the inset of Figure 2.3(b). This observation suggests that the p-doped 

oligomer species undergo significant intermolecular interactions and that the dibutyl side chains 

of the polymer are not bulky enough to effectively prevent the intermolecular aggregation. 
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Figure 2.4. Schematic showing photoarylation based polymerization of Poly(DBuProDOT). 

 

Based on the UV-vis absorption and GPC results, we propose the photoarylation-based 

polymerization mechanism described in Figure 2.4. Upon UV 365nm irradiation, DIDBuProDOT 

undergoes photodissociation of the carbon-iodine bonds to generate the DBuProDOT radical and 

iodine radicals. Then the produced ProDOT radical rapidly reacts with the idodinated monomers 

generated from the iodine radical and two neighboring DBuProDOT monomers to form a ProDOT 

trimer in the same manner a thiophene trimer formation by photoarylation.34,37 In particular, when 

the trimer ProDOT recovers carbon-iodine bonds at the chain ends, the photoarylation by UV 

irradiation would continue between the oligomeric species and DBuProDOT monomers to yield 

higher molecular weight species. Along with the growing conjugated products, photogenerated 

iodine species (Il or I2) transform into iodide complexes (I- or I2-) by electron transfer from the 

oligomeric ProDOT,32 followed by the formation of hydrogen iodide (HI) by the protonation of 

the iodide species. Electron charge transfer from the growing chains and the presence of HI 

promote the produced oligomers to be doped in the solution evidenced by the broad absorption 

spectra in the long wavelength range as shown in Figure 2.3(a). 
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Another photo-polymerization mechanism possible for iodinated thiophene molecules is 

photo-induced polycondensation 30,31. In this scheme, only DIDBuProDOT monomers serve as 

reactants in a hydrogen-free CBrCl3 solution. As suggested in Figure 2.5, photogenerated 2-

iodoProDOT radical by 365nm UV irradiation reacts with another ProDOT radical or neighboring 

2,5-diiodoProDOT to form a diiodo ProDOT dimer with iodine species. Due to the absence of 

hydrogen radical in the system, hydrogen iodide (HI) is not formed by the photo-mediated coupling. 

In the same manner, all the growing chains remain active with carbon-iodine bonds at the chain 

ends along with iodine byproducts.  

 

 

 

Figure 2.5. Schematic showing photocondensation of DIDBuProDOT under 365nm LED 

irradiation. 
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The UV-vis absorption spectra and GPC trace of the photopolymerized products of 

DIDBuProDOT (Figure 2.6) support the proposed photo-induced polycondensation scheme. The 

reaction products were recovered from the CBrCl3 solution and diluted in chloroform for UV-vis 

absorption measurement. Two main absorption bands appear in the 400~700nm wavelength range 

as presented in solid lines in Figure 2.6(a). The absorption bands centered at around 450 and 520nm 

are assigned to π-π* transition of ProDOT oligomers and iodine species, respectively, in the 

chloroform solution. As the reaction time gets longer, the absorption intensity increases, indicating 

the increasing concentration of photopolymerized products and iodine molecules as a result of the 

photo-condensed polymerization. However, absence of any noticeable absorption redshift during 

the long-term UV irradiation suggests that further chain extension through condensation among 

the oligomers is not attainable by the photocondensation. The limited molecular weight of photo-

condensation products is also confirmed by the GPC trace in Figure 2.6(b). The molecular weight 

data show that ProDOT dimers (retention time: ~28min) are dominant regardless of the reaction 

time, shorter oligomers are favored over longer ones, and molecular weight distribution gets 

broaden with increasing reaction time. This result is consistent with the finding in the 

polythiophenes photopolymerized from 2,5-diiodothiophene,30 which is also in good agreement 

with the Flory’s model for linear step growth polymerization assuming that all the species in the 

system have equal chances of reacting with other molecules regardless of their size.  
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Figure 2.6. Characterization of 365nm UV-irradiated products from DIDBuProDOT solution by 

(a) UV-vis absorption spectra and (b) GPC traces. 

 

Judging from the monomer conversion efficiency and the number average molecular 

weights of the photopolymerized products as shown in Figure 2.7, the photo-arylation of 

DIDBuProDOT/DBuProDOT is believed to provide a more efficient photochemical pathway to 

yield higher molecular weight species than the photo-condensation. The polymerization efficiency 

is generally determined by the reactivity of the growing chain ends produced by the reversible 

photo-dissociation of carbon-iodine bonds in this system. The efficient photo-dissociation of 

carbon-iodine bonds is ascribed to the photo-excited species absorbing sufficient photon energy 

exceeding the energy bandgap and subsequent energy transfer to the chain ends.53 Therefore, it is 

reasonable that conjugated molecules with a low oxidation potential is beneficial to produce radical 

species by the C-I fission of chain ends. It is noteworthy that the polymerized ProDOT oligomers 

by the photo-arylation are p-doped by hydrogen iodide (HI) so that the growing chains having a 

reduced HOMO-LUMO band gap are readily photo-excited. In other words, the facile photo-

excitation of growing oligomer chains in p-doped states promotes the photo-dissociation of 
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carbon-iodine bonds at the chain ends and corresponding radical generation so as to extend their 

chain length by further reacting with available monomers. 

 

 

Figure 2.7. The comparison of the photocondensation from DIDBuProDOT (blue) and the 

photoarylation from DIDBuProDOT and DBuProDOT with (a) Monomer conversion and (b) 

number average molecular weights.  

 

ProDOT incorporating the bulky diethylhexylmethoxy side chains (DEHProDOT) was 

designed to prevent the precipitation observed in the prolonged photo-polymerization of 

DBuProDOT. Photo-polymerization of DIDEHProDOT/DEHProDOT demonstrated a chain 

growth behavior with analogous UV-vis absorption spectra and GPC results to those of 

DIDBuProDOT/DBuProDOT as shown in Figure 2.8. No precipitation of polymerized products 

was observed even after a prolonged UV irradiation owing to the longer and bulkier alkyl side 

chains than the dibutyl ones. However, no additional increase in the molecular weight was 

achieved by a long-term irradiation for over 72 hours, rather a slight increase in the retention time 

was observed in the GPC trace, indicating a decrease in the molecular weight. It is suspicious that 

the growing chains undergo photo-degradation by the continuous UV irradiation. We assumed that 

the chain growth would continue as long as the growing chain ends retain carbon-iodine bonds. 
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However, when the growing chain ends fail to retain carbon-iodine bonds and terminate with 

carbon-hydrogen bonds, the oligomeric or polymeric chains not only stop growing but also are 

susceptible to photo-degradation in the photoexcited states by UV irradiation. 

 

 

Figure 2.8. Characterization of 365nm UV-irradiated products from DIDEHProDOT and 

DEHProDOT solution by (a) GPC results and (b) number average molecular weight and PDI 

depending on UV irradiation time. 

 

The chain end group of the photo-polymerized products of DBuProDOT and DEHProDOT 

was identified by MALDI-TOF to investigate that the constraint of chain growth is originated from 

the loss of the iodine as depicted in Figure 2.9. The consistent mass difference shown in the 

MALDI-TOF data corresponds to the molecular weight of the monomer repeat unit of the 

polymers; 266 amu for DBuProDOT and 438 for DEHProDOT, and the mass spectra results are 

consistent with the literature characterizations.39,48,54 It is noteworthy that the minute residual peaks 

of two ion series (438n+127 or 438n+254) are observed in the poly(DEHProDOT) sample 

corresponding to I-Mn-H or I-Mn-I as shown in the inset of Figure 2.9(b). Since most of oligomer 
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chains have carbon-hydrogen end groups, the oligomer chains are expected to lose the ability to 

continue their chain extension and would be prone to photodegradation by UV irradiation.  

 

 

 

Figure 2.9. MALDI-TOF results of the photopolymerization of (a) DBuProDOT and  

(b) DEHProDOT. 

 

Feasible reduction in oxidation potential of conjugated oligomers by hydrogen iodide (HI) 

doping can stimulate the photo-dissociation of carbon-iodine bonds at the chain ends, promoting 

chain extension from the conjugated oligomers. This implies that the radical states of the growing 

chain are preferred to the reversible deactivation by the recovery of living groups (C-I) as the 

conjugation is extended. At the same time, the photogenerated iodine radicals readily transform to 

hydrogen iodide as explained in Figure 2.4, resulting in the depletion of iodine species by the long-

term UV irradiation. Continuous UV irradiation does not lead to additional chain extension of the 

oligomers, rather the growing chains are liable to terminate with carbon-hydrogen bonds by 

protonation. The absence of living groups at the chain ends is responsible for the termination of 

chain growth.  
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Figure 2.10. Schematic showing the recovery of carbon-iodine bonds at the oligomer chain ends 

and the photochemical coupling between the oligomer species to produce PProDOT with a higher 

molecular weight. 

 

Electrophilic halogenation of the growing chains with newly replenished iodine sources is 

a promising strategy to resume the chain propagation. Recovery of living features of carbon-iodine 

bonds at the end of growing chains was pursued by adding iodine (I2) and perchloric acid (HClO4) 

to catalyze iodine substitution of the growing chain ends.55 The achieved iodination of the oligomer 

chain ends was confirmed by MALDI-TOF analysis as one can see in Figure 2.11. While 

DEHProDOT oligomers have mainly carbon-hydrogen bonds at the chain ends, the iodinated 

oligomers having I/H and I/I end groups are observed after the iodine replenishment. Although not 

all oligomer species are iodinated, continuous carbon-iodine bond recovery by the electrophilic 

halogenation is anticipated in the iodine-rich solution. We assumed that if the iodinated oligomers 

successfully resume the photochemical reaction by additional light irradiation, the chain growth 

would continue to yield higher molecular weight species as described in Figure 2.10. The 

additional chain growth was examined by GPC analysis before and after photoirradiation of the 

iodinated oligomers. 
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Figure 2.11. The MALDI-TOF results before and after iodination of DEHProDOT oligomers with 

the addition of iodine/chloroform solution and perchloric acid (HClO4), followed by stirring for 3 

hours and extra iodine washing with sodium thiosulfate. 

 

The iodinated oligomers irradiated with 365nm LED light, however, turned out to undergo 

photodegradation to yield monomer or dimer species as depicted in Figure 2.12(a). 

Photodegradation of conjugated polymers is largely affected by the light intensity and wavelength, 

not to mention the presence of oxygen in the system.56–58 Photodissociation of conjugated 

backbone becomes more significant with increasing light intensity. Even though the oligomers 

recover carbon-iodine bonds at the chain ends, the absorbed photon energy from the 365nm UV 

light likely dissociate not only the C-I bonds to generate radicals but also conjugated backbones 

of growing chains. 

A q-switched 532nm pulsed laser is a promising light source to overcome the 

photodegradation and continue the photopolymerization of the iodinated ProDOT oligomers. The 

high pulsed energy of the laser source with 10~10,000 W/mm2 should be large enough to dissociate 
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carbon-iodine bonds considering that the energy of carbon-iodine bond is comparable to those of 

iodobenzenes (63.7 kcal/mol). In addition, the longer irradiation wavelength not only overlaps well 

with the absorption spectra of the ProDOT oligomers to excite them to promote C-I cleavage, but 

also lessens the photodegradation of the conjugated backbone. A photoexcited polymeric chain 

under continuous light absorption readily forms a peroxide radical intermediate in the presence of 

oxygen molecules, photo-oxidation, resulting in the polymer degradation, the major 

photodegradation of conjugated organic molecules.52,56 In contrast, an excited conjugated 

molecule by a pulsed laser with a short pulse width of a few nanoseconds undergoes an emissive 

decay with a high quantum yield and recovers its ground state when the pulsed laser is in its longer 

incubation time up to 20 µs between every pulses than a typical fluorescence lifetime of conjugated 

polymers in a nanosecond regime.52 It is also expected that a limited short excitation time by pulse 

laser for the growing chains prevents their photodegradation by impeding the production of singlet 

oxygen molecules.59 

A solution of iodinated DEHProDOT oligomers was photopolymerized in the presence of 

I2 and HClO4 by a q-switched 532nm pulsed laser having 2mJ/cm2 of pulsed energy and 10 Hz of 

repetition rates. As shown in Figure 2.12(b), the GPC trace reveals that the molecular weight of 

the iodinated ProDOT oligomers (24~28 minutes, Mn~3,000 g/mol) shifts to a higher molecular 

weight regime, 16~20 minutes, corresponding to Mn~ 29,500 g/mol and a narrow PDI of 1.35. It 

is intriguing that neither the photodegradation nor additional chain growth by the laser irradiation 

was observed after a longer irradiation time than 12 hours.  
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Figure 2.12. GPC trace of the photopolymerized samples from diiodinated DEHProDOT 

oligomers by (a) 365nm LED and (b) q-switched 532nm Laser irradiations. The products were 

prepared with iodine washing, drying, and annealing at 50oC for 3 hours. 

 

We postulate that the limited molecular weight of resulting DEHProDOT polymers at ~ 

30K stems from the depletion of carbon-iodine bonds by hydrogen substitution. The reaction 

mixture was replenished with additional iodine and illuminated further with the pulse laser. 

However, no more polymer growth was observed (Figure 2.13), implying that the recovered 

carbon-iodine chain ends no longer renders any additional chain growth. The end group analysis 

by means of MALDI-TOF before and after the laser irradiation in Figure 2.14 shows that the 

recovered carbon-iodine chain ends after the iodine replenishment are hydrogenated. These results 

suggest that the dissociation of C-I is dominant compared to the recovery of the carbon-iodine 

bonds even in the iodine rich condition and consequently the chain end carbon-iodine bonds are 

replaced by carbon-hydrogen bonds. 
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Figure 2.13. GPC results for poly(DEHProDOT) before and after q-switched 532nm Laser 

irradiations. 

 

Figure 2.14. MALDI-TOF results of the iodine replenished poly(DEHProDOT) before and after 

pulse laser irradiation. 
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The photoarylation-based polymerization of DIDBuProDOT/DEHProDOT at an 1:2 molar 

feed ratio was carried out to investigate the copolymerization feasibility as depicted in Figure 2.15. 

The bulkier DEHProDOT had the GPC retention time at 29 minutes shorter than 30 minutes of 

DIDBuProDOT, which allows quantitative analysis of the monomer conversion ratio (Figure 2.16). 

The GPC traces showed that both DEHProDOT and DIDBuProDOT are consumed together to 

form ProDOT oligomer chains under UV-induced photoarylation. It also exhibited a controlled 

radical polymerization behavior showing a linear increase in molecular weight with monomers 

conversion as well as low polydispersity (<1.30) until most of DIDBuProDOT are depleted. This 

implies that the activation and deactivation of the living groups (C-I) of the growing chains are 

efficient through the oligomer regime. It is noteworthy that the depletion of DIDBuProDOT 

monomers, the radical source, is accompanied by the decrease in the molecular weight of ProDOT 

oligomers (from 72 hours to 96 hours in Figure 2.16(a)). It is believed that low oxidation potential 

of the oligomeric products in solution, when the oligomer chain ends fail to retain C-I bonds by 

shortage of iodine species at the depletion of DIDBuProDOT, is responsible for the 

photodegradation by additional UV irradiation. The same trend was also observed in the 

copolymerization of DIDBuProDOT/DEHProDOT with different monomer feed ratios (Figure 

2.17). 

 

Figure 2.15. Schematic showing photoarylation based copolymerization for poly(DBuProDOT-

co-DEHProDOT). 
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Figure 2.16. Characterization of DBuProDOT/DEHProDOT copolymers by (a) GPC results and 

(b) Mn and PDI as a function of monomer conversion. Retention time of monomers: DEHProDOT 

(29 minutes) and DIDBuProDOT (30 minutes). 

 

 

Figure 2.17. GPC traces of the photopolymerized ProDOT products by 365nm LED irradiation 

with different monomer feed ratios of DIDBuProDOT/DEHProDOT (a) 1:4 and (b) 1:6. 

 

The oligomers produced by the homo- and co-polymerization were characterized by 1H-

NMR (CDCl3) after the purification by Soxhlet extraction with methanol (Figures 2.18 and 2.19). 

The broader spectra of the samples than those of their monomers are comparable to the 1H-NMR 

spectra of poly(DBuProDOT)12 and poly(DEHProDOT)39 prepared by organometallic pathways. 
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The repeating ProDOT units have different chemical shifts depending on the side chains. The CH2 

shifts at 3.94 and 4.11 ppm are assigned to 2,4 positions of the propylenedioxy moiety of 

DBuProDOT and DEHProDOT, respectively. While a butyl side chain has broad chemical shifts 

at CH2 (1.25 ppm) and CH3 (0.88 ppm), a diethylhexylmethoxy side chain has additional CH2 

(3.70~3.15 ppm) and CH (1.48 ppm) shifts originated from the methoxy and branched molecular 

structures, respectively.  

 

Figure 2.18. 1H-NMR spectra of photopolymerized DBuProDOT and DEHProDOT oligomers. 

 

Chemical composition of the copolymers of DBuProDOT and DEHProDOT was analyzed 

by NMR. As depicted in Figure 2.19, the chemical shifts in 2.8~4.4 ppm assigned to the propylene 

dioxy moieties can be deconvoluted into two different signals originated from the repeating units 

of DBuProDOT and DEHProDOT. As shown in Figure 2.20, the composition of the repeating 

units of DBuProDOT and DEHProDOT was determined by the integration ratio among the 

chemical shifts of (1) CH2 in DBuProDOT and DEHProDOT, (2) CH2 of the dimethoxy moiety 

of DEHProDOT, and (3) CH of the branched ethylhexyl side chain of DEHProDOT. The results 

show that the actual composition of the two monomers in the copolymers at the monomer 

conversion larger than 90% is consistent with the monomer feeding ratios of 1:2, 1:4, and 1:6.   
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Figure 2.19. 1H-NMR spectra of the photopolymerized copolymers of DBuProDOT and 

DEHProDOT.  

 

Figure 2.20. 1H-NMR spectra of the copolymerized oligomers from DBuProDOT and 

DEHProDOT with different monomer feed ratios (1:2, 1:4, and 1:6). 
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After adding iodine (I2) and perchloric acid (HClO4) to the copolymer oligomers of 

DBuProDOT and DEHProDOT, we switched the light source to the 532nm pulse laser.  

Photopolymerization of the resulting diiodinated copolymer oligomers showed a gradual 

consumption of the oligomers (Mn=2,800 g/mol, PDI=1.20) and a simultaneously increasing peak 

corresponding to a larger molecular weight polymer (Mn=27,000 g/mol, PDI=1.25) in the GPC 

analysis shown in Figure 2.21. The GPC result is consistent with that of the photopolymerized 

homopolymer, poly(DEHProDOT), in Figure 2.12(b). The appearance and increasing amount of 

the larger molecular polymer having the same elution time rather than gradual increase in the 

molecular weight is apparently different from the conventional chain growth mechanism but is 

commonly observed in coupling reactions60,61 between oligomeric or polymeric species or in the 

click reaction62 of a grafted molecule. While the molecular weight of the coupled products should 

be doubled by each coupling reaction, almost 10 times increase in the molecular weight was 

achieved by the laser assisted photopolymerization. It is believed that the chain extension to both 

ends of ProDOT oligomers renders the higher molecular weight polymers.  

 

Figure 2.21. GPC traces of the photopolymerized samples from iodinated 

DBuProDOT/DEHProDOT by q-switched 532nm laser irradiation. 
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2.4 Conclusion 

In summary, we have successfully developed a novel one-pot photo-mediated 

polymerization of ProDOT derivatives to achieve a conjugated polymer with a high molecular 

weight (Mn=27,000 g/mol) and narrow polydispersity (PDI=1.20). The polymerization initiated by 

photoarylation of diiodo-ProDOT and ProDOT under 365nm LED irradiation yields poly(ProDOT) 

oligomers with an excellent conversion ratio. During the photoarylation, the growing chain ends 

are replaced from C-I to C-H bonds by hydrogen substitution, which limits the molecular weight 

of the produced oligomers. However, further chain growth was achieved through the recovery of 

carbon-iodine bonds by iodine replenishment and adapting a q-switched 532nm pulse laser as a 

light source. The mechanism of the devised photo-polymerization was investigated by employing 

UV-vis absorption, GPC, and MALDI-TOF analysis on the polymerization products. Copolymers 

having the same monomer composition to the monomer feeding ratio were also successfully 

achieved, demonstrating feasible molecular structure engineering. To the best of our knowledge, 

this is the first systematic investigation on photo-polymerization of conjugated polymers in 

solution. 
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2.5 Synthesis 

2.5.1 Synthetic schemes 

The following thiophene derivatives were synthesized through the experimental procedures as 

presented below. 

 

compound 1 and 2 

 

Figure 2.22. Synthetic scheme for DBuProDOT and DIDBuProDOT. 

 

i) compound 1. 3,4-(3,3’-dibutylpropylenedioxy)thiophene (DBuProDOT) 

6g of 3,4-dimethoxythiophene (41.61mmol, 1eq) and 10.187g of 2,2-dibutyl-1,3-

propanediol (54.10mmol, 1.3eq) was dissolved in 200ml of toluene with 500mg of p-

toluenesulfonic acid. The solution was refluxed at 120oC and the methanol produced by a 

transetherification of the reactants was removed by type 4A molecular sieves filled in a soxhlet 

extractor. The mixture was quenched by water after 24 hours reflux, extracted in ethyl acetate, 

then washed with brine and dried over MgSO4. After evaporating the solvent with a rotary 

evaporator, the residue was purified by column chromatography with the elution of methylene 

chloride/hexane (1:4) to give 3,4-(3,3’-dibutylpropylenedioxy) thiophene (DBuProDOT) (69%, 

7.70g). 1H-NMR (300MHz, CDCl3); 6.42(s, 2H), 3.85 (s, 4H), 1.46-1.15 (m, 12H), 0.98-0.86 (t, 

6H) 
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ii) compound 2. 2,5-diiodo-[3,4-(3,3’-dibutylpropylenedioxy)]thiophene (DIDBuProDOT) 

5g of 3,4-(3,3’-dibutylpropylenedioxy)thiophene (DBuProDOT) (18.63mmol, 1eq) was 

dissolved in chloroform and stirred with 9.22g of n-iodosuccinimide (40.98mmol, 2.2eq) with a 

few drops of acetic acid. The mixture was quenched with DI water, washed with sodium thiosulfate 

to remove excess iodine, and dried over MgSO4, followed by the evaporation in vacuo. The residue 

was purified with the elution of methylene chloride and hexane (1:8) to yield DIDBuProDOT (85%, 

12.68g), 1H-NMR (300MHz, CDCl3); 3.92 (s, 4H), 1.46-1.15 (m, 12H), 0.98-0.86 (t, 6H) 

 

compound 3 and 4 

 

Figure 2.23. Synthetic scheme for DEHProDOT and DIDEHProDOT. 

 

Compound 3 was synthesized through the experimental procedures as presented in the literature.63  

i) 3,4-[2,2’-bis(bromomethyl)propylenedioxy]thiophene (DBrProDOT) 

5g of 3,4-dimethoxythiophene (34.68mmol, 1eq) and 10.9g of 2,2-Bis(bromomethyl)-1,3-

propanediol (41.61mmol, 1.2eq) was dissolved in 200ml of toluene with 500mg of p-

toluenesulfonic acid. The solution was refluxed at 120oC and the methanol produced by a 

transetherification of the reactants was removed by type 4A molecular sieves filled in a soxhlet 

extractor. The mixture was quenched by water after 24 hours reflux, extracted in ethyl acetate, 

then washed with brine and dried over MgSO4. After evaporating the solvent with a rotary 

evaporator, the residue was purified by column chromatography with the elution of methylene 
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chloride/hexane (1:2) to give 3,4-(2,2’-bis(bromomethyl)propylenedioxy)thiophene (DBrProDOT) 

(45%, 5.34g), 1H-NMR (300MHz, CDCl3); 6.50(s, 2H), 4.10 (s, 4H), 3.62 (s, 4H) 

 

ii) 3,4-[(2,2’-dimethoxyethylhexyl)propylenedioxy]thiophene (DEHProDOT) 

2.924g of NaH (60% with oil, 73.09mmol, 5.0eq) were added to 250ml round bottom flask 

and purged by vacuum and filled with argon 3 times. After adding 100ml of anhydrous DMF at 

0oC, the cooled solution was stirred at room temperature for 2 hours. 4.19g of 2-ethylhaxanol 

(32.164mmol, 2.2eq) dissolved in 20ml of DMF and was added to the NaH solution dropwise and 

allowed to stir for 6 hours at room temperature. The solution of DBrProDOT (5g, 14.62mmol, 

1eq)/DMF(20ml) was added to the mixture. The solution was refluxed at 80oC for 24 hours and 

cooled down to room temperature, then quenched with 1N HCl dropwise, followed by the 

extraction with diethyl ether 3 times. The organic layer was washed 1N HCl and brine, then dried 

with MgSO4 and evaporated under vacuo. The residue was purified by column chromatography 

with the elution of methylene chloride/hexane (1:4) to give DEHProDOT. (74%, 5.54g), 1H-NMR 

(300MHz, CDCl3); 6.45(s, 2H), 4.03(s,4H), 3.48(s, 4H), 3.28(s, 4H), 1.48(s, 2H), 1.35-1.15(m, 

16H), 0.95-0.80 (m, 12H) 

 

iii) 2,5-diiodo-[3,4-(2,2’-dimethoxyethylhexyl)propylenedioxy]thiophene (DIDEHProDOT) 

5g of DEHProDOT) (11.35mmol, 1eq) was dissolved in chloroform and stirred with 5.615g 

of n-iodosuccinimide (24.96mmol, 2.2eq) with a few drops of acetic acid. The mixture was 

quenched with DI water, washed with sodium thiosulfate to remove excess iodine, and dried over 

MgSO4, followed by the evaporation in vacuo. The residue was purified with the elution of 

methylene chloride and hexane (1:8) to yield DIDEHProDOT (85%, 6.678g), 1H-NMR (300MHz, 

CDCl3); 4.03(s,4H), 3.48(s, 4H), 3.28(s, 4H), 1.48(s, 2H), 1.35-1.15(m, 16H), 0.95-0.80 (m, 12H) 
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2.5.2 1H-NMR spectra of ProDOT derivatives 

 

Figure 2.24. 1H-NMR spectrum of 3,4-(3,3’-dibutylpropylenedioxy)thiophene (DBuProDOT). 

1H-NMR (300MHz, CDCl3); 6.42(s, 2H), 3.85 (s, 4H), 1.46-1.15 (m, 12H), 0.98-0.86 (t, 6H) 

 

Figure 2.25. 1H-NMR spectrum of 2,5-diiodo-[3,4-(3,3’-dibutylpropylenedioxy)] thiophene 

(DIDBuProDOT). 1H-NMR (300MHz, CDCl3); 3.92 (s, 4H), 1.46-1.15 (m, 12H), 0.98-0.86 (t, 6H) 
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Figure 2.26. 1H-NMR spectrum of 2,5-diiodo-3,4-[(2,2’-dimethoxyethylhexyl) propylenedioxy] 

thiophene (DEHProDOT). 1H-NMR (300MHz, CDCl3); 6.45(s, 2H), 4.03(s,4H), 3.48(s, 4H), 

3.28(d, 4H), 1.48(s, 2H), 1.35-1.15(m, 16H), 0.95-0.80 (m, 12H) 

 

Figure 2.27. 1H-NMR spectrum of 2,5-diiodo-[3,4-(2,2’-dimethoxyethylhexyl) propylenedioxy] 

thiophene (DIDEHProDOT). 1H-NMR (300MHz, CDCl3); 4.03(s,4H), 3.48(s, 4H), 3.28(d, 4H), 

1.48(s, 2H), 1.35-1.15(m, 16H), 0.95-0.80 (m, 12H). 
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Chapter 3. Facile One-pot Fabrication of Transparent Conducting Polymer Thin Films 

through Photo-arylation based UV Polymerization of Thiophene Derivatives 

 

3.1 Introduction 

Conjugated polymers are widely investigated for a number of electronic device 

applications such as organic photovoltaics1–4, OLED3,4, and electrochromic devices5–7 owing to 

their readily tunable optical and electronic properties, large molecular design window, and easy 

and economic processability. In addition, highly durable and flexible properties of the doped 

polymeric semiconductors are desirable to manufacture electronic devices in a roll-to-roll wet 

coating system2. In order to achieve solution processability for the thin film device fabrication, 

researchers have designed and engineered a myriad of conjugated polymers having various side 

chains on their repeating units. Although the side chains, due to their good miscibility with organic 

solvents, render excellent solubility to conjugated molecules, their insulating volumes and steric 

hinderance to molecular packing also give rise to the decrease in electrical properties. Therefore, 

in order to realize desirable electrical performance, minimizing the side chain length and bulkiness 

while maintaining good solubility of the conjugated molecules is required for any wet coating 

process.  
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Poly(3,4-ethylenedioxythiophene) (PEDOT) is one of distinguished conducting polymers 

having excellent optical and electrical properties along with high stability. In parallel, the 

molecular structure of PEDOT without any side chain can allow high intermolecular packing 

density in thin films as a consequence of strong π-π stacking interaction between their conjugated 

backbones. However, PEDOT is not soluble in common organic solvents due to the absence of 

side chains. Therefore, it is desirable to conduct in-situ polymerization to form conducting PEDOT 

thin films from pre-deposited EDOT precursor molecules on a given substrate.  

Electrochemical polymerization is an archetypical method to prepare transparent 

conducting thin films from EDOT-contained electrolytes. It is challenging, however, to control 

physical and chemical properties such as thickness, morphology, and film compositions in electro-

polymerization. Moreover, applicable substrates to be deposited are limited to conducting 

electrodes such as ITO-coated glasses.8 To overcome these drawbacks, halogen radical mediated 

in-situ polymerization of 2,5-dibromo-3,4-ethylenedioxythiophene9 or chemical vapor deposition 

of EDOT source and bromine10 were suggested for the fabrication of doped PEDOT thin films 

affording well-ordered microstructures with competitive conductivity values.  

In-situ photopolymerization is also a very promising strategy to fabricate conducting thin 

films. It is of great commercial and practical value since this polymerization method is not only 

instantaneous but also can be applied to non-conducting substrates different from electrochemical 

polymerization. In addition, it is less restricted by other experimental parameters such as 

temperature, pH, and type of required solvents. Moreover, mass production is achievable at a low 

cost and even in a limited space. Therefore, the preparation of a conducting polymer thin film 

through one-step in-situ UV polymerization from monomer precursors is desirable not only to 

make the fabrication process simpler and more practical, but also to extend applicable monomers 

whose polymers are insoluble in common organic solvents.  



 91 

Polythiophene thin films have been fabricated from 2,5-diiodothiophene through UV-

induced in-situ polymerization and their optical and electrical properties were characterized and 

compared to those of chemically synthesized polythiophenes.11,12 The photodissociation of carbon-

iodine bonds of precursor molecules plays a significant role in coupling between precursors to 

yield higher molecular weight species. The molecular weight distribution of the resulting 

oligomeric species follows the Flory model for linear step growth polymerization.11 Despite of its 

simple and instant process, low degree of polymerization and the presence of cross-linked chains 

produced from a- b’ coupling of the precursors are not favorable to achieve desirable electrical 

properties for the application of transparent electrodes. In addition, since iodine species originated 

from the photodissociation of carbon-iodine bonds of thiophene precursors is not sufficient to fully 

dope the oligomeric species, additional efforts for post-doping are required to demonstrate 

compelling optoelectronic properties of conducting polymer thin films. 

The photoarylation between iodothiophene and other heterocyclic compounds has been 

widely investigated as an efficient synthetic route to give corresponding arylation complexes in 

good yield.13–15 Several oligomeric thiophenes were synthesized in a high yield through photo-

arylation, which is a photochemical coupling of halothienyl derivatives with other heteroaromatic 

compounds.15–17 In particular, a 2,5-diiodothiophene is arylated in a good yield to give a thiophene 

trimer in the presence of thiophene when irradiated by UV light in acetonitrile solution.18 In this 

regard, photo-arylation could be a promising synthetic strategy to fabricate conducting polymer 

thin films with a great conversion efficiency to polymers having a high molecular weight. Even 

though photo-arylation in solution can have good mobility of precursors and consequently good 

reaction yield, we presumed that photo-arylation would be also favorable in solid state where the 

precursors and radicals are sufficiently diffuse in the deposited matrix. 
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In this paper, we report newly developed photoarylation based copolymerization between 

ProDOT or EDOT derivatives and their iodine substituted compounds to realize conducting 

polymer thin films having high electrical conductivity and transparency. 2,5-diiodo-ProDOT or 

EDOT derivatives serve as photoinitiators to generate thienyl radicals by means of efficient 

dissociation of the weak carbon-iodine bond upon UV irradiation. Subsequently, coupling of the 

thienyl radical with neighboring EDOT or ProDOT monomers affords the corresponding larger 

molecular weight species. Alkyl or ethylene glycol side chains were incorporated on to the 

propylenedioxy moiety to afford good solubility of the precursors in organic solvents and to 

facilitate wet coating processability, while promoting homogeneous photochemical reaction.19 The 

copolymerized thin films were post-doped chemically by protonic acids to give electrical 

conductivity and transparency to the resulting polymers. We carried out a systematic study to 

investigate physical and optoelectronic properties of the fabricated conducting thin films by UV 

polymerization followed by a post-doping process. The results provide insights into how to 

engineer conducting polymers for outstanding performances as transparent electrodes.  

 

3.2 Experimental 

EDOT and ProDOT derivatives including 2,5-diiodo-3,4-(3,3’-

dibutylpropylenedioxy)thiophene (DIDBuProDOT) and 2,5-diiodo-[diethylene glycol 

monomethyl ether-5,7-diiodo-2,3-dihydrothieno[3,4-b][1,4]dioxine] (DIEDOT-DEG) (Figure 3.1) 

were synthesized as illustrated in the literatures.19,20  

 



 93 

 

Figure 3.1. ProDOT and EDOT derivatives synthesized for photoarylation based UV 

polymerization. 

 

For the conducting polymer thin film fabrication, DIDBuProDOT or DIEDOT-DEG 

dissolved in chloroform with other thiophene derivatives to prepare a 2wt% solution. Thin films 

were prepared by spin-casting the solutions on glass substrates (1inch x 1inch) that were cleaned 

by ultrasonication in dilute soap, acetone, and isopropanol, followed by ozone surface treatment 

before use. UV irradiation was applied to the spin-coated films with a 254nm UV lamp (4W or 

35W) in a nitrogen purged glovebox. The UV-cured films were soaked in acetone and chloroform 
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and annealed at 80oC to eliminate small molecular weight species and iodine from the polymerized 

films. Then, the thin films were chemically doped by dipping in a 2M solution of sulfuric acid 

(H2SO4) or methanesulfonic acid (CH3SO3H) diluted with nitromethane for 15 minutes, rinsed 

with fresh nitromethane, and dried under vacuum. The detailed procedure is described in Figure 

3.2. 

The absorption spectra of the films were measured with UV-vis-NIR spectrophotometer 

before and after the chemical doping process. Transmittance and electric conductivity of the doped 

film were measured via UV-vis spectrometry and a four-point-probe method, respectively. Optical 

microscopy and AFM were employed to investigate the molecular packing and morphology of the 

films. The composition and polymerization efficiency were evaluated from XPS and FT-IR 

analyses of the photochemically synthesized films from DIEDOT-DEG and EDOT-N3. 

 

 

Figure 3.2. Schematic illustration of the fabrication of transparent conducting polymer thin films 

by means of UV-mediated polymerization, solvent rinsing, and acid doping. 
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3.3 Result and Discussion 

In order to compare polymerization efficiency between photocondensation and 

photoarylation, DIDBuProDOT or 2,5-diiodo-3,4-dihexylthiophene (DIDHTh) were UV 

polymerized in toluene solely or together with DBuProDOT or 3,4-dihexylthiophene, respectively, 

by 6.8W 365nm LED lamp (Thorlab). As depicted in Figure 3.3(a) and (b), the UV polymerization 

of the thiophene derivatives yielded only minute amounts of oligomeric molecules with a low 

conversion rate under the UV light irradiation for 24 hours. In contrast, the UV polymerization of 

dibutyl-ProDOT derivatives exhibited much better reactivity with higher conversion rates under 

the same photo-irradiation condition (Figure 3.3(c) and (d)). This suggests that the propylenedioxy 

moiety on the thiophene plays an important role in the photochemical reaction owing to the 

electron-donating nature of the moiety and consequentially lowered oxidation potential of the 

ProDOT molecules. The molecular weight distribution by the UV-irradiated polymerization of 

DIDBuProDOT followed the Flory model for linear step growth polymerization, which is 

consistent with that of the in-situ UV polymerization of 2,5-diiodothiophene (Figure 3.3(c)).11 In 

contrast, when DIDBuProDOT is copolymerized with DBuProDOT under the same UV irradiation 

condition, most monomers were consumed to produce oligomer species having a higher molecular 

weight as shown in Figure 3.3(d). These results imply that the later (photoarylation) is more 

efficient than the former (photocondensation) to yield oligomeric or polymeric species having a 

high molecular weight and a high conversion ratio. 
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Figure 3.3. GPC data for (a) the photopolymerized sample from diiodo-dihexylthiophene 

(DIDHTh) only, (b) DIDHTh/DHTh, (c) DIDBuProDOT only, and (d) 

DIDBuProDOT/DBuProDOT. 

 

Inspired by the one-pot photopolymerization based on the combination of sequential 

photoarylation and coupling described in the previous chapter and the reported works in 

references15,18,21, we investigated the same one-pot photopolymerization in solid-state for the 

development of flexible and transparent conjugated polymer electrodes. We saw the feasibility if 

we design the system to allow good enough monomers’ mobility in the solid state. Figure 3.4 

shows UV-vis absorption spectrum of the copolymerized film of DIDBuProDOT and dimethyl 

substituted ProDOT (DMPDOT, compound 3) with an 1:2 feed ratio. After 12 hours of UV 

irradiation, the polymerized film exhibited absorption lmax at 300 and 350nm and a broad 

absorption in a longer wavelength region. The first two absorption peaks are corresponding to 
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small oligomer molecules originated from the coupling between DIDBuProDOT precursors. The 

broad absorption band over 700nm, on the other hand, has to do with the doped conjugated 

polymers by iodine. After immersing the UV-cured film in chloroform and subsequent annealing 

at 80oC to eliminate small molecules and iodine, the main absorption band shifted to ~ 500nm, 

while the absorption bands of the small molecules and in the long wavelength region diminished. 

As the film develops charge transfer by chemical doping with sulfuric acid, the neutral states are 

bleached and new absorption bands simultaneously appear over the longer visible wavelength and 

near infrared (NIR) ranges. The doped film showed a high conductivity of 140 S/cm. 

 

 

Figure 3.4. UV-vis absorption spectra for the UV-polymerized film from DIDBuProDOT and 

DMethylProDOT precursors and its post-treatment. 

 

DIDBuProDOT was copolymerized with several thiophene derivatives as presented in 

Figure 3.1 under the same polymerization condition to examine and compare their electrical 

conductivities. As shown in Table 3.1, the 160nm-thick film of EDOT copolymerized with 
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DIDBuProDOT exhibited the best conductivity of 780 S/cm in the doped condition. This result 

indicates that minimizing the volume of insulating side chains appears to enhance the electrical 

properties because of the absence of otherwise insulating side chains of EDOT and consequent as 

well. Meanwhile, the copolymer of 3-hexylthiophene and DIDBuProDOT exhibited lower 

conductivity than any other UV-polymerized thin films. This suggested that the presence of 

ethylenedioxy or propylenedioxy moiety on the thiophene plays a very important role in enhancing 

electrical properties of the p-doped films by reducing the oxidation potential of the conjugated 

polymers. 

 

Table 3.1. Conductivity depending on monomers copolymerized with DI-DBuProDOT 

 

 

Figure 3.5. The absorption spectrum of UV-cured film with DIDBuProDOT and EDOT (a) in 

neutral state, and (b) in doped state. 

 

The optical and electrical properties of copolymer thin films were also examined at 

different DIDBuProDOT/EDOT ratios. The absorption spectra of 50~100nm thick films in neutral 
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and doped states are shown in Figure 3.5. The spectra in Figure 3.5(a) showed main characteristic 

absorption bands at around 500nm corresponding to the π-π* transition of the neutral polymers. 

Increasing EDOT ratio makes the absorption maxima red-shifted while the extinction coefficient 

decreases. This implies that the incorporation of EDOT causes the copolymer thin films to form 

highly packed coplanar conjugated polymer backbones due to the reduction of the side chain 

volume. On the other hand, the reduction of the absorption intensity can be attributed to less 

efficient monomer to polymer conversion because of the reduced amount of iodine radicals that 

are essential for the photochemical reaction and the chain growth. 

The absorption bands of the neutral states significantly decrease upon the chemical doping 

by sulfuric acid, while new absorption bands in the longer visible wavelength and NIR region 

appear, indicating the formation of charge transfer by the dopant. (Figure 3.5(b)) Accordingly, the 

doped films become transparent with more than 80% of transmittance along with the enhanced 

charge concentration. Figure 3.6 presents the conductivities of the doped copolymer thin films 

calculated from the sheet resistivity measured by the 4-point probe method and the film thicknesses 

determined by ellipsometry. The copolymer prepared from 1:1 ratio of DIDBuProDOT and EDOT 

showed the maximum conductivity. When a larger amount of DIDBuProDOT is used than EDOT, 

polycondensation becomes dominant by the UV irradiation so that the polymerization is likely to 

be less efficient. In the other regime where DIDBuProDOT/EDOT<1, electrical conductivities 

decrease with increasing EDOT molar ratios due to the reduced amount of iodine radicals and the 

consequently lower monomer to polymer conversion efficiency. When the two components are 

equivalent, efficient copolymerization via photoarylation between DIDBuProDOT and EDOT is 

anticipated. 
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Figure 3.6. Conductivities as a function of the feed ratio between DIDBuProDOT and EDOT 

 

Figure 3.7 describes the absorption changes of the spin-coated films during the UV 

polymerization at different temperatures. The completion of the solid-sate photo-induced 

copolymerization was determined by the saturation of the absorption bands at ~900nm 

corresponding to the iodine doped polymers. At room temperature, it commonly takes 6 to 12 

hours to complete the solid-state photo-polymerization. This rather long reaction time is 

impractical for real applications, and also can induce photodegradation during the prolonged UV 

irradiation. In the solid states, the mobility of the precursors is prone to be limited. Due to this 

mobility limitation, monomers as well as the radical species of the bulky growing polymer chains 

would not be able to readily diffuse to each other to further extend the conjugation. In order to 

impart mobility to the growing chains and precursors and enhance the propagation rate, the 

reaction mixture was heated up to 60oC during the UV irradiation. The reaction time is reduced 

from 6~12 hours to 4 hours in all compositions of DIDBuProDOT and EDOT. As depicted in 

Figure 3.8, the absorption peak of the neutral states for the heated samples at 60oC is stronger and 
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slightly red-shifted than that of the samples prepared at room temperature in all compositions, 

indicating that thermal energy renders more efficient UV polymerization by imparted better 

molecular mobility at the higher temperature. 

 

Figure 3.7. UV-vis spectra of the polymerized thin films at (a) room temperature, (b) 60oC, and 

(c) the plot of absorption changes depending on UV irradiation times. 

 

 

Figure 3.8. Absorption spectra of the UV-polymerized thin films at room temperature (blue) and 

60oC (red) with different feed ratios of DIDBuProDOT/EDOT; (a)100:0, (b)50:50, and (c)20:80. 

 

The developed UV polymerization based on photoarylation allows a variety of 

heteroaromatic molecules to be copolymerized with diiodo-thiophene derivatives. Under the same 

scheme of DIDBuProDOT copolymerization with EDOT, three different monomers, ProDOT 

incorporating photocleavable side chains (PDOT-PC, compound 8), 9H-fluorene, and 4H-

Cyclopenta[1,2-b:5,4-b’]bisthiophene (CyPBTh) are used to yield copolymers as depicted in 
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Figure 3.9 The copolymer thin films exhibited their own unique absorption spectra both in the 

neutral states and in the doped states as depicted in Figure 3.10. The films show higher than 80% 

transmittance. While the conductivities of the ProDOT-fluorene and ProDOT-CyPBTh 

copolymers are 400~500 S/cm, which is comparable to that of DBuProDOT-EDOT copolymer, 

ProDOT-PDOT-PC copolymer demonstrates lower conductivity of 160~180 S/cm due to the 

presence of the cleavable bulky side chains, implicating the photo-cleavage of the side chains was 

not fully carried out (Figure 3.11). 

 

Figure 3.9. Copolymers of ProDOT and (a) ProDOT-PC, (b) 9H-fluorene, and (c) benzothiazole. 

 

Figure 3.10. UV-vis absorption spectra of copolymers (a) in the neutral states, (b) in doped states, 

and (c) their transmittance spectra. 

 



 103 

 

Figure 3.11. Conductivities for the copolymers of DBuProDOT and three different monomers, 

ProDOT incorporating photocleavable side chains (PDOT-PC), 9H-fluorene, and 4H-

Cyclopenta[1,2-b:5,4-b’]bisthiophene(CyPBTh). 

 

In order to enhance the conductivity by reducing the side chain volume from the resulting 

polymer backbone, we employed 2,5-diiodo-3,4-ethylenedioxythiophene (DI-EDOT) instead of 

DIDBuProDOT and copolymerize with EDOT under the same condition. The deposited film, 

however, underwent crystallization upon drying on a hot plate at 60oC. As previously reported, in 

a solid-state polymerization of dihalo-EDOTs,9 short intermolecular interactions between iodine 

atoms yield high degree of stacks of the EDOT monomers. As depicted in Figure 3.12, a very weak 

absorption band at 400nm appeared after the UV irradiation but diminished by acetone washing. 

This suggests that the crystallization of precursors is detrimental to the polymerization efficiency 

owing to the restricted molecular mobility in the crystalline state. In other words, successful UV 
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polymerization in a solid-state thin film can be realized by attaining good enough mobility of 

precursours during the photochemical reaction as the more efficient copolymerization of 

DIDBuProDOT and EDOT at 60oC than room temperature testified. 

 

Figure 3.12. UV-vis spectra of an UV polymerized PEDOT thin film from DIEDOT and EDOT. 

 

We anticipated that the molecular mobility of the reaction mixture can be largely 

enhanced by incorporating an oligomeric ethylene glycol side chain in the diiodo-EDOT 

framework. Owing to their more flexible features than any other alkyl side chains, ethylene glycol 

side chains offer more mobility so as to promote the chain propagation during the UV 

polymerization. The synthesized DIEDOT-DEG incorporating a diethylene glycol monomethyl 

ether unit as a side chain (compound 9) was copolymerized with EDOT derivatives with an 1:1 

feed ratio under the same UV curing condition and the result was compared with the copolymer of 

DBuProDOT and EDOT as depicted in Figure 3.13. 
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Figure 3.13. The precursors used in the UV polymerization for the conducting polymer thin film 

fabrication. 

 

The polymerization efficiency is also affected by the intensity of the employed light 

source. A new 254nm UV lamp with 35W intensity was used to copolymerize DIEDOT-DEG, 

EDOT, and EDOT-DEG. The polymerized films exhibited broad absorption bands in the longer 

visible wavelength and NIR regions after the chemical doping with sulfuric acid, but their lmax is 

shorter than that of the copolymer thin film of DIDBuProDOT and EDOT as shown in Figure 

3.14(a). Surprisingly, the conductivity of the PEDOT thin films copolymerized with DIEDOT-

DEG and EDOT is nearly 10 times higher than that of DIDBuProDOT-EDOT copolymer (Figure 

3.14(b)). This result implies that the mobility of the reaction mixture during the solid-state 

polymerization plays a crucial role in forming the conducting polymer thin films with a high 

molecular weight. The results also reveal that EDOT-based copolymer is more advantageous than 

EDOT-ProDOT copolymer to achieve excellent electrical properties due to the absence of side 

chains. 
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Figure 3.14. Characterization of doped copolymerized thin films from DIDBuProDOT/EDOT, 

DIEDOT-DEG/EDOT, and DIEDOT-DEG/EDOT-DEG by (a) UV-vis absorption spectra of and 

(b) their conductivities. 

 

The optical and electrical properties of the UV polymerized thin films were examined as a 

function of the feed ratio between DIEDOT-DEG and EDOT as shown in Figure 3.15.  When the 

amount of DIEDOT-DEG is twice larger than that of EDOT, high degree of absorption is observed 

in near IR range corresponding to polaron states in the film where the obtained polymers were 

doped by iodine molecules to a great extent. While increasing the EDOT feed ratio leads to the 

decrease in the absorption in NIR, conductivity of the film is optimized at 1:1 ratio of DIEDOT-

DEG: EDOT with maximum conductivity of 2000 S/cm, which is consistent with the previously 

identified optimum 1:1 ratio of DIDBuProDOT and EDOT precursors. As we discussed from the 

previous results, polycondensation is dominant when DIEDOT-DEG is rich in the film so that 

most precursors participate in yielding small oligomers doped with iodine molecules resulting in 

a high doping level of the film but low transparency and poor conductivity. On the contrary, as the 

amount of EDOT becomes rich in the system, photoarylation is dominant but the chain extension 

is limited due to the scarce amount of iodine source to maintain the photochemical reaction. 
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Figure 3.15. Characterization of doped copolymerized thin films from DIEDOT-DEG/EDOT with 

different ratios by (a) UV-vis-NIR absorption spectra and (b) electrical conductivity and optical 

transmittance (blue letters: conductivity, red letters: transmittance). 

 

DIDBuProDOT and DIEDOT-DEG are copolymerized with ProDOT and EDOT 

derivatives having different side chains, respectively, to investigate the relationships between the 

molecular structures of the produced copolymers and the optical and electrical properties. As 

depicted in Figure 3.16, the doped copolymers thin films from DIDBuProDOT and ProDOT 

derivatives show analogous absorption without having any notable absorption band in the longer 

visible wavelength and NIR ranges. At the same time, the films maintain relatively high 

transparency in the visible range with a higher than 70% of transmittance value when the thickness 

of the doped films is 50~100nm. The doped polymer films copolymerized from DIEDOT-DEG 

and EDOT derivatives except for EDOT-DEG also show similar optical properties to those of the 

ProDOT copolymers. 
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Figure 3.16. Characterization of doped copolymerized thin films from DIDBuProDOT and 

ProDOT derivatives, and DIEDOT-DEG and EDOT derivatives by (a),(c) UV-vis-NIR absorption 

spectra and (b),(d) optical transmittance. 

 

Different from their similar optical properties regardless of ProDOT or EDOT derivatives, 

conductivities of the doped films are significantly affected by their molecular structures as 

compared in Figure 3.17(a). While the film polymerized only from DIDBuProDOT displays 

relatively low conductivity (144 S/cm) due to its dominant polycondensation to yield lower 

molecular weight species, copolymer thin films of ProDOT having short methyl or dimethyl side 

chains provide much higher conductivity of ~1,000 S/cm. When a long hexyl side chain is attached 

to the ProDOT unit, corresponding conductivity lowers down to ~200 S/cm, likely because the 

steric hinderance by the longer hexyl chains obstructs the molecular packing. In addition, the 



 109 

copolymers from ProDOT with hydroxyl or carboxyl side chains show low conductivity. The polar 

moeiteies are likely to hamper the polymerization by interacting with iodine or growing chain 

radical species. Hydroxyl or carboxyl side chains on the ProDOT monomer reduce the degree of 

polymerization due to the nucleaophilic attack by the functional groups to radical cation 

intermediates.22 Hence, polymerization of protected functional monomers followed by subsequent 

deprotection of the functional groups looks to be necessary in order to achieve large molecular 

weight conjugated polymers having neucleophilic side chains. When the ProDOT derivative 

having a triethylsilyl-protected carboxylic side chain is employed for the copolymerization with 

DIDBuProDOT, indeed 5 times higher conductivity was achieved than that of the ProDOT 

polymer film copolymerized from non-protected ProDOT-carboxylic acid and DIDBuProDOT as 

depicted in Figure 3.17(a). 

 

 

Figure 3.17. Conductivity and transmittance of doped polymer thin films copolymerized from (a) 

DIDBuProDOT and ProDOT derivatives and (b) DIEDOT-DEG and EDOT derivatives. (blue 

letters: conductivity, red letters: transmittance). 
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Conductivity data of the thin films copolymerized from DIEDOT-DEG and EDOT 

derivatives exhibit a similar trend with those of PProDOT copolymer thin films (Figure 3.17(b)). 

The copolymer thin film employing EDOT shows the best conductivity due to the absence of side 

chains and the resulting highly packed molecular structures. Therefore, as one can anticipate, the 

PEDOT copolymer thin films incorporating EDOT having any side chain indeed have lower 

conductivities even though the overall conductivities of PEDOT copolymers are higher than those 

of PProDOT copolymers. 

Interestingly, when DIDBuProDOT and EDOT were copolymerized, a unique morphology 

was observed from the thin film in optical microscopy as shown in Figure 3.18. Randomly oriented 

patterns were formed in the middle of the polymerized thin film by UV irradiation. Figure 3.18(c) 

showing an AFM image and its height profile reveals that the bright regions rise up with 

200~300nm heights of elevation from the darker areas. We believe that the patterns are formed 

due to the combined effects of shrinkage of the deposited film and the loss of adhesion from the 

glass substrate. When the film is polymerized to form conducting polymer films, the polymer 

chains become hydrophobic due to the increasing volume of butyl side chains. The change in the 

surface tension of the film could be attributed to the change in adhesion between the film and the 

substrate, resulting in the wrinkle formation. On the contrary, the thin film copolymerized from 

DIEDOT-DEG and EDOT exhibited very smooth morphology in optical microscopy with the 

height profile with only a few nanometers in the AFM image (Figure 3.18(b) and (d)). The smooth 

morphology implies that the polymerized thin film maintains a good adhesion with the glass 

substrate owing to the hydrophilic diethylene glycol side chain of DIEDOT-DEG. 
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Figure 3.18. Optical microscopic and AFM images of the copolymerized films of (a), (c) 

DIDBuProDOT and EDOT and (b), (d) DIEDOT-DEG and EDOT. 

 

To confirm the copolymerization between two different EDOT derivatives through the 

photoarylation, X-ray photoelectron spectroscopy (XPS) analysis was conducted for the thin films 

copolymerized from DIEDOT-DEG and 2-(Azidomethyl)-2,3-dihydrothieno[3,4-b][1,4]dioxine 

(EDOT-N3) and washed with chloroform to remove small molecules (Figure 3.19). As shown in 

Figure 3.20, XPS survey and core scans for the copolymerized films reveal analogous distributions 

of the functional groups of C 1s, S 2p, and O 1s spectra as in the previously reported PEDOT 

polymer films.10  

The oxygen rich diethyleneglycol side chain of DIEDOT-DEG and the presence of nitrogen 

on the side chain of EDOT-N3 are expected to show the elemental change of the copolymers 
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depending on the feed ratios of the two constituent monomers. It is noteworthy that an azide group 

on EDOT-N3 unit also undergoes a photolysis by UV irradiation to yield an amine (-NH2) group.23 

Assuming that EDOT-N3 precursors are equivalently copolymerized with DIEDOT-DEG 

molecules and their azide groups are completely transformed to amine groups by UV-irradiation, 

two sulfur atoms per every nitrogen atom on the polymer chains are anticipated as depicted in 

Figure 3.19.  

 

Figure 3.19. UV mediated copolymerization of DIEDOT-DEG and EDOT-N3. 

 

The core scan for N 1s in Figure 3.20(b) shows that the intensity of N 1s peak enhances as 

the feed ratio of EDOT-N3 increases. In particular, the quantitative analysis of N 1s and C 1s by 

XPS scan survey shows that the atomic ratio of sulfur to nitrogen is 2:1 under an 1:1 feed ratio of 

DIEDOT-DEG and EDOT-N3, implying quantitative photoarylation-based copolymerization. 

Interestingly, the copolymerized film from an 1:2 feed ratio of DIEDOT-DEG/EDOT-N3 also has 

an 2:1 of S/N atomic ratio. This result implies that one DIEDOT-DEG molecule reacts equivalently 

with one EDOT-N3 and extra EDOT-N3 molecule remains intact and is removed by chloroform 

washing. This also implicates that the movement of radical species running the 

photopolymerization is significantly restricted in solid state. 
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Figure 3.20. XPS spectra of copolymers of DIEDOT-DEG and EDOT-N3; (a) survey scan, core 

scans of (b) N 1s, (c) C 1s, (d) S 2p, and (e) O 1s. 

 

The FT-IR spectra in Figure 3.21 additionally support the copolymerization of the same 

precursors. The copolymerized films commonly exhibited absorption bands corresponding to the 

stretching modes of C=C and C-C in the thiophene ring (1473, 1439, and 1373 cm-1) and of C-O-

C in the ethylenedioxy group on the thiophene ring (1245 and 1142 cm-1) or diethyleneglycol side 

chains from DIEDOT-DEG. Besides the absorption bands from the conjugated backbone of 

PEDOT, the characteristic absorption bands from the side chains of the copolymers are observed 

in the FT-IR spectra. The broad bands between 1500 and 1750 cm-1 ascribed to in-plane NH2 

scissoring become stronger with an increasing feed ratio of EDOT-N3 but saturated at 1:1 feed 
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ratio of DIEDOT-DEG/EDOT-N3. This result is in good agreement with the atomic ratios of S/N 

in XPS spectra for the same samples. 

 

Figure 3.21. FT-IR spectra of the copolymerized thin films from different feed ratios of DIEDOT-

DEG and EDOT-N3.  

 

3.4 Conclusion 

In summary, the newly investigated UV-mediated solid-state copolymerization between 

2,5-diiodothiophene derivatives and a series of heterocyclic molecules in solid states rendered 

solvent-resistant conducting polymer thin films on glass substrates. We took advantage of a facile 

photoarlyation between 2,5-diiodo thiophene derivatives and other heterocyclic compounds to 

form robust and solvent resistant polymer thin films by UV irradiation. Besides the light source 

intensity, polymerization temperature also largely affects the solid-state photo-polymerization, 

implying that the mobility of the precursors is the critical determining factor for the degree of 
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polymerization. By incorporating a flexible and mobile diethylene glycol side chain to EDOT 

(DIEDOT-DEG), the polymerization efficiency was greatly enhanced to afford a PEDOT polymer 

thin film with excellent optical transparency and electrical conductivity after subsequent chemical 

doping with protonic acid. Eventually, we have successfully developed a novel one-pot UV photo-

polymerization to fabricate a transparent conducting polymer thin film with outstanding electrical 

conductivity (~2,200 S/cm) and high transparency (> 80%). To our knowledge, this optoelectronic 

value has not been reported in the conducting polymer thin films through photopolymerization. 

Considering the facile and simple thin film fabrication process and the corresponding excellent 

optical and electrical performances, the developed photoarylation-based solid-state polymerization 

is a promising strategy for the convenient and roll-to-roll fabrication of flexible transparent 

electrodes.  

 

3.5 Synthesis 

3.5.1 Synthetic Schemes for thiophene derivatives 

 

compound 1. 2,5-diiodo-[3,4-(3,3’-dibutylpropylenedioxy)]thiophene (DIDBuProDOT) 

 

 

Figure 3.22. Synthetic scheme for DIDBuProDOT 
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i) compound 1a. 3,4-(3,3’-dibutylpropylenedioxy)thiophene (DBuProDOT) 

 

6g of 3,4-dimethoxythiophene (41.61mmol, 1eq) and 10.187g of 2,2-dibutyl-1,3-

propanediol (54.10mmol, 1.3eq) was dissolved in 200ml of toluene with 500mg of p-

toluenesulfonic acid. The solution was refluxed at 120oC and the methanol produced by a 

transetherification of the reactants was removed by type 4A molecular sieves filled in a soxhlet 

extractor. The mixture was quenched by water after 24 hours reflux, extracted in ethyl acetate, 

then washed with brine and dried over MgSO4. After evaporating the solvent with a rotary 

evaporator, the residue was purified by column chromatography with the elution of methylene 

chloride/hexane (1:4) to give 3,4-(3,3’-dibutylpropylenedioxy) thiophene (DBuProDOT) (69%, 

7.70g). 1H-NMR (300MHz, CDCl3); 6.42(s, 2H), 3.85 (s, 4H), 1.46-1.15 (m, 12H), 0.98-0.86 (t, 

6H) 

 

ii) compound 1. 2,5-diiodo-[3,4-(3,3’-dibutylpropylenedioxy)]thiophene (DIDBuProDOT) 

 

5g of 3,4-(3,3’-dibutylpropylenedioxy)thiophene (DBuProDOT) (18.63mmol, 1eq) was 

dissolved in chloroform and stirred with 9.22g of n-iodosuccinimide (40.98mmol, 2.2eq) with a 

few drops of acetic acid. The mixture was quenched with DI water, washed with sodium thiosulfate 

to remove excess iodine, and dried over MgSO4, followed by the evaporation in vacuo. The residue 

was purified with the elution of methylene chloride and hexane (1:8) to yield DIDBuProDOT (85%, 

12.68g), 1H-NMR (300MHz, CDCl3); 3.92 (s, 4H), 1.46-1.15 (m, 12H), 0.98-0.86 (t, 6H) 
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compound 2. 3,4-(3-methylpropylenedioxy)thiophene (MPDOT) 

 

Figure 3.23. Synthetic scheme for MPDOT. 

 

5g of 3,4-dimethoxythiophene (34.68mmol, 1eq) and 3.75g of 2-methyl-1,3-propanediol 

(41.61mmol, 1.2eq) was dissolved in 200ml of toluene with 500mg of p-toluenesulfonic acid. The 

solution was refluxed at 120oC and the methanol produced by a transetherification of the reactants 

was removed by type 4A molecular sieves filled in a soxhlet extractor. The mixture was quenched 

by water after 24 hours reflux, extracted in ethyl acetate, then washed with brine and dried over 

MgSO4. After evaporating the solvent with a rotary evaporator, the residue was purified by column 

chromatography with the elution of methylene chloride/hexane (1:4) to give 3,4-(3-

methylpropylenedioxy)thiophene (MPDOT) (55%, 3.25g), 1H-NMR (300MHz, CDCl3); 6.50(s, 

2H), 4.18-4.09(q, 2H), 3.75-3.64(q, 2H), 2.46-2.31(m, 1H), 1.03-0.95 (d, 3H) 

 

compound 3. 3,4-[3,3’-(dimethylpropylenedioxy)]thiophene (DMPDOT) 

 

 

Figure 3.24. Synthetic scheme for DMPDOT. 
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5g of 3,4-dimethoxythiophene (34.68mmol, 1eq) and 4.72g of 2,2-dimethyl-1,3-

propanediol (41.61mmol, 1.2eq) was dissolved in 200ml of toluene with 500mg of p-

toluenesulfonic acid. The solution was refluxed at 120oC and the methanol produced by a 

transetherification of the reactants was removed by type 4A molecular sieves filled in a soxhlet 

extractor. The mixture was quenched by water after 24 hours reflux, extracted in ethyl acetate, 

then washed with brine and dried over MgSO4. After evaporating the solvent with a rotary 

evaporator, the residue was purified by column chromatography with the elution of methylene 

chloride/hexane (1:4) to give 3,4-(3,3’-dimethylpropylenedioxy) thiophene (DMPDOT) (60%, 

3.86g), 1H-NMR (300MHz, CDCl3); 6.48(s, 2H), 3.73(s, 4H), 1.03(s, 6H) 

compound 4. 3,4-(3-hexylpropylenedioxy)thiophene (HPDOT) 

 

Figure 3.25. Synthetic scheme for HPDOT. 

 

5g of 3,4-dimethoxythiophene (34.68mmol, 1eq) and 6.67g of 2-n-hexyl-1,3-propanediol 

(41.61mmol, 1.2eq) was dissolved in 200ml of toluene with 500mg of p-toluenesulfonic acid. The 

solution was refluxed at 120oC and the methanol produced by a transetherification of the reactants 

was removed by type 4A molecular sieves filled in a soxhlet extractor. The mixture was quenched 

by water after 24 hours reflux, extracted in ethyl acetate, then washed with brine and dried over 

MgSO4. After evaporating the solvent with a rotary evaporator, the residue was purified by column 

chromatography with the elution of methylene chloride/hexane (1:4) to give 3,4-(3-
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hexylpropylenedioxy)thiophene (HPDOT) (36%, 3g), 1H-NMR (300MHz, CDCl3); 6.47(s, 2H), 

4.21-4.05(m, 2H), 3.93-3.81(m, 2H), 2.35-2.05(m, 1H), 1.47-1.18 (m, 10H), 0.97-0.81 (t, 3H) 

 

compound 5. 3,4-[2,2’-bis(carboxymethyl)propylenedioxy]thiophene (PDOT-DCOOH) 

 

 

 

Figure 3.26. Synthetic scheme for PDOT-DCOOH. 

 

i) compound 5a. 3,4-[2,2’-bis(bromomethyl)propylenedioxy]thiophene (DBrProDOT) 

 

5g of 3,4-dimethoxythiophene (34.68mmol, 1eq) and 10.9g of 2,2-Bis(bromomethyl)-1,3-

propanediol (41.61mmol, 1.2eq) was dissolved in 200ml of toluene with 500mg of p-

toluenesulfonic acid. The solution was refluxed at 120oC and the methanol produced by a 

transetherification of the reactants was removed by type 4A molecular sieves filled in a soxhlet 

extractor. The mixture was quenched by water after 24 hours reflux, extracted in ethyl acetate, 

then washed with brine and dried over MgSO4. After evaporating the solvent with a rotary 

evaporator, the residue was purified by column chromatography with the elution of methylene 

chloride/hexane (1:2) to give 3,4-(2,2’-bis(bromomethyl)propylenedioxy)thiophene (DBrProDOT) 

(45%, 5.34g), 1H-NMR (300MHz, CDCl3); 6.50(s, 2H), 4.10 (s, 4H), 3.62 (s, 4H) 
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ii) compound 5b. 3,4-[2,2’-bis(cyanomethyl)propylenedioxy]thiophene (DCNProDOT) 

 

5g of 3,4-(2,2’-bis(bromomethyl)propylenedioxy)thiophene (21.34mmol, 1eq) and 2.15g 

of sodium cyanide (25.61mmol, 1.2 eq) were dissolved in 150ml of DMSO and stirred at room 

temperature for 10 days. The mixture was quenched by water and extracted in methylene chloride, 

then washed with brine and dried over MgSO4. After evaporating the solvent with a rotary 

evaporator, the residue was purified by column chromatography with the elution of methylene 

chloride/hexane (2:1) to give 3,4-(2,2’-bis(cyanomethyl)propylenedioxy)thiophene 

(DCNProDOT) (70%, 2.40g), 1H-NMR (300MHz, CDCl3); 6.61(s, 2H), 4.02 (s, 4H), 2.74 (s, 4H) 

 

iii) compound 5. 3,4-[2,2’-bis(carboxymethyl)propylenedioxy]thiophene (PDOT-DCOOH) 

 

2g of 3,4-(2,2’-bis(cyanomethyl)propylenedioxy)thiophene (8.54mmol, 1eq) was 

dissolved in 100ml of NaOH aqueous solution (2M) and 100ml of ethyleneglycol. The solution 

was refluxed at 95oC and cooled down to room temperature after 24 hours, then hydrochloric acid 

aqueous solution (1N) was added. The quenched solution was extracted 3 times with diethylether 

and washed with brine, followed by drying with MgSO4 and evaporation in vacuo. The residue 

was precipitated in chloroform to give a crystal form of 3,4-(2,2’-

bis(carboxymethyl)propylenedioxy)thiophene. (PDOT-DCOOH) (55%, 1.28g), 1H-NMR 

(300MHz, DMSO-d6); 12.34(s, 2H), 6.77(s, 2H), 4.03 (s, 4H), 3.34 (s, 4H) 
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compound 6. 3,4-[2,2’-bis(hydroxymethyl)propylenedioxy]thiophene (PDOT-DOH) 

 

 

Figure 3.27. Synthetic scheme for PDOT-DOH 

 

i) compound 6a. 3,4-[2,2’-bis(methylethanoate)propylenedioxy]thiophene (PDOT-DCOOCH3) 

 

5g of 3,4-(2,2’-bis(bromomethyl)propylenedioxy)thiophene (DBrProDOT, compound 5a, 

14.62mmol, 1eq) and 12g of sodium acetate (0.146mol, 10eq) were dissolved in 150ml of DMF 

and refluxed at 110oC overnight. After cooling down to room temperature, the solution was 

quenched with water and extracted 3 times into ethyl acetate, then washed with brine and dried 

with MgSO4, followed by evaporation in vacuo. The residue was purified with column 

chromatography with ethyl acetate/hexane (1:2) to give 3,4-(2,2’-

bis(methylethanoate)propylenedioxy)thiophene (PDOT-DCOOCH3). (80%, 3.51g), 1H-NMR 

(300MHz, CDCl3); 6.49(s, 2H), 4.19 (s, 4H), 4.05 (s, 4H), 2.08 (s, 6H) 

 

ii) compound 6. 3,4-(2,2’-bis(hydroxymethyl)propylenedioxy)thiophene (PDOT-DOH) 

 

3g of 3,4-(2,2’-bis(methylethanoate)propylenedioxy)thiophene (PDOT-DCOOCH3, 

9.99mmol, 1eq) was dissolved in 15ml of NaOH aqueous solution(2M) and 15ml of acetonitrile 

and stirred at room temperature overnight. The solution was diluted with 2N H2SO4, extracted with 
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ethyl acetate, and washed with brine. After drying the residue with MgSO4, the residue was 

purified with chloroform precipitation to give 3,4-(2,2’-bis(hydroxymethyl) 

propylenedioxy)thiophene (PDOT-DOH) (77%, 1.66g), 1H-NMR (300MHz, DMSO-d6); 6.69(s, 

2H), 4.65 (t, 2H), 3.88 (s, 4H), 3.49-3.40(d, 4H) 

 

compound 7. 3,4-[(2-methyl-2’-triethylsilylester)propylenedioxy]thiophene (PDOT-

COOTESi) 

 

 

 

Figure 3.28. Synthetic scheme for PDOT-COOTESi. 

 

i) compound 7a. 3,4-((2-methyl-2’-phenylmethylester)propylenedioxy)thiophene 

 

5g of 3,4-dimethoxythiophene (34.68mmol, 1eq) and 9.33g of 2,2-

Bis(hydroxymethyl)propionic acid (41.61mmol, 1.2eq) was dissolved in 200ml of toluene with 

500mg of p-toluenesulfonic acid. The solution was refluxed at 120oC and the methanol produced 

by a transetherification of the reactants was removed by type 4A molecular sieves filled in a soxhlet 

extractor. The mixture was quenched by water after 24 hours reflux, extracted in ethyl acetate, 

then washed with brine and dried over MgSO4. After evaporating the solvent with a rotary 

evaporator, the residue was purified by column chromatography with the elution of methylene 
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chloride/hexane (1:2) to give 3,4-((2-methyl-2’-phenylmethylester)propylenedioxy)thiophene. 

(25%, 2.64g), 1H-NMR (300MHz, CDCl3); 7.35(m, 5H), 6.47(s, 2H), 4.59-4.45 (d, 2H), 4.00-3.90 

(d, 2H), 1.28 (t, 3H) 

 

ii) compound 7b. 3,4-((2-methyl-2’-carboxyl)propylenedioxy)thiophene 

 

2.5g of 3,4-((2-methyl-2’-phenylmethylester)propylenedioxy)thiophene (8.21mmol, 1eq) 

was dissolved in 20ml of THF and 20ml of sodium hydroxide aqueous solution (2M) and stirred 

overnight. The solution was extracted with ethyl acetate and washed with brine. After drying the 

organic layer with MgSO4 and evaporating in vacuo, the residue was purified with chloroform 

precipitation to give 3,4-((2-methyl-2’-carboxyl)propylenedioxy) thiophene. (60%, 1.06g), 1H-

NMR (300MHz, DMSO-d6); 12.96(s, 1H), 6.79(s, 2H), 4.42-4.30 (d, 2H), 3.94-3.79 (d, 2H), 1.18(s, 

3H) 

 

iii) compound 7. 3,4-((2-methyl-2’-triethylsilylester)propylenedioxy)thiophene (PDOT-

COOTESi) 

 

1g of 3,4-((2-methyl-2’-carboxyl)propylenedioxy)thiophene (4.67mmol, 1eq) and 0.477g 

of imidazole (7.00mmol, 1.5eq) was dissolved in DMF and stirred. To the solution, 0.352ml of 

chlorotriethylsilane was added dropwise and stirred overnight. The solution was quenched with 

water and extracted with ethyl acetate. After drying the organic layer with MgSO4 and evaporating 

in vacuo, the residue was purified with chloroform precipitation to give 3,4-((2-methyl-2’-

triethylsilylester)propylenedioxy)thiophene (80%, 1.23g), 1H-NMR (300MHz, CDCl3); 6.49(s, 

2H), 4.56-4.46 (d, 2H), 3.98-3.87 (d, 2H), 1.31(s, 3H), 1.04-0.90(m, 9H), 0.66-0.54(m, 6H) 
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compound 8. 3,4-[2,2’-bis(2-nitro-5-(dodecyloxy)benzylcarboxylic)propylenedioxy] 

thiophene (PDOT-PC) 

 

 

Figure 3.29. Synthetic scheme for PDOT-PC. 

 

i) (2-Nitro-5-(dodecyloxy)phenyl)methanol 

 

The synthesis was carried out according to the reference.24 1H-NMR (300MHz, CDCl3); 

8.20-8.17(d, 1H), 7.20(d, 1H), 6.90-6.87(dd, 1H), 5.00(d, 2H), 4.09-4.06(m, 2H), 1.84-1.81(m, 

2H), 1.47(m, 2H), 0.91-0.87(t, 3H) 

 

ii) Compound 8 (PDOT-PC) 

 

1g of 3,4-(2,2’-bis(carboxylmethyl)propylenedioxy)thiophene (3.67mmol, 1eq), 2.73g of 

2-Nitro-5-(dodecyloxy)phenyl)methanol (8.08mmol, 2.2eq) prepared in the reference25, and 2.27g 

of DMAP(8.08mmol, 2.2eq) was dissolved in anhydrous methylene chloride under argon purging. 

To the solution, 1.67g of N,N’-dicyclohexylcarbodiimide (8.08mmol, 2.2eq) dissolved in 15ml of 

anhydrous methylene chloride was added. The mixture was refluxed overnight and cooled down 

to room temperature. The solution was quenched with 1N of HCl and NaHCO3, then the organic 

layer was dried with MgSO4 and evaporated in vacuo. The residual was purified with column 
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chromatography on silica using methylene chloride/hexane(1:1) to give 3,4-(2,2’-bis(2-nitro-5-

(dodecyloxy)benzylcarboxylic)propylenedioxy)thiophene. (50%, 1.67g), 1H-NMR (300MHz, 

CDCl3); 8.16-8.13(d, 2H), 7.00-6.99(d, 2H), 6.81-6.80(dd, 2H), 6.49(s, 2H), 5.50(s, 4H), 4.12(s, 

4H), 4.01-3.99(t, 4H), 2.90(s, 4H), 1.81-1.77(m, 4H), 1.43(m, 4H), 0.97-0.85(t, 6H) 

 

compound 9. 2,5-diiodo-[3,4-(2-(2-(2-methoxyethoxy)ethoxy)methyl)ethylenedioxy] 

thiophene (DIEDOT-DEG) 

 

 

Figure 3.30. Synthetic scheme for DIEDOT-DEG. 

 

i) compound 9a. [(2-(2-(2-methoxyethoxy)ethoxy)methyl)ethylenedioxy]thiophene (EDOT-

DEG) 

 

0.581g of NaH (60% with oil, 14.52mmol, 5.0eq) and 76.8mg of 18-crown-6-

ether(0.29mmol, 0.1eq) were added and stirred in 15ml of THF purged with argon. To the cooled 

solution with iced water, 0.5g of hydroxymethyl EDOT(2.90mmol, 1eq) was added and stirred for 

1 hour at room temperature. The solution was cooled down to 0oC with ice and 0.47ml of 1-bromo-

2-(2-methoxyethoxy)ethane (3.48mmol, 1.2eq)was added dropwise. The solution was refluxed at 

80oC for 24 hours and cooled down to room temperature, then quenched with 1N HCl dropwise, 

followed by the extraction with diethyl ether 3 times. The organic layer was washed 1N HCl and 
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brine, then dried with MgSO4 and evaporated under vacuo. The residue was purified with column 

chromatography to give EDOT-DEG. (50%, 400mg), 1H-NMR (300MHz, CDCl3); 6.32(s, 2H), 

4.39-4.29 (m, 2H), 4.12-3.99(m, 1H), 3,84-3.62(m, 8H), 3.59-3.49(m, 2H), 3.38 (t, 3H) 

 

ii) compound 9. 2,5-diiodo-[(2-(2-(2-methoxyethoxy)ethoxy)methyl)ethylenedioxy] thiophene 

(DIEDOT-DEG) 

 

300mg of EDOT-DEG (1.09mmol, 1eq) was dissolved in chloroform and stirred with 

excess n-iodosuccinimide (2.41mmol, 2.2eq) with a few drops of acetic acid. The mixture was 

quenched with DI water, washed with sodium thiosulfate to remove excess iodine, and dried over 

MgSO4, followed by the evaporation in vacuo. The residue was purified with the elution of 

methylene chloride and hexane (1:8) to yield DIEDOT-DEG. (84%, 0.48g) 1H-NMR (300MHz, 

CDCl3); 4.40-4.28 (m, 2H), 4.20-4.07(m, 1H), 3.91-3.60(m, 8H), 3.60-3.50(m, 2H), 3.38 (t, 3H) 

 

compound 10. Azidomethyl EDOT (EDOT-N3) 

 

 

Figure 3.31. Synthetic scheme for EDOT-N3. 

 

0.5g of chloromethyl EDOT(2.62mmol, 1.0eq, 95%, Sigma Aldrich) was dissolved in 25ml 

of DMF under argon and 0.341g of sodium azide (5.24mmol, 2.0eq) was added. The mixture was 

refluxed at 120oC for 3 hours and cooled down to room temperature, followed by quenching with 
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water. The mixture was extracted into diethylether and the resulting organic layer was washed with 

brine, dried by MgSO4, and evaporated in vacuo. The residue was purified with methylene 

chloride/hexane (1:2) to give azidomethyl EDOT. (74%, 0.38g), 1H-NMR (300MHz, CDCl3); 

6.45-6.22(q, 2H), 4.39-4.13 (m, 2H), 4.13-3.97(m, 1H), 3.66-3.41(m, 2H) 

 

Figure 3.32.  Monomers copolymerized with DIDBuProDOT. 

 

3.5.2 1H-NMR spectra of thiophene derivatives 

 

Figure 3.33. 1H-NMR spectrum of 3,4-(3,3’-dibutylpropylenedioxy)thiophene (DBuProDOT). 

1H-NMR (300MHz, CDCl3); 6.42(s, 2H), 3.85 (s, 4H), 1.46-1.15 (m, 12H), 0.98-0.86 (t, 6H) 
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Figure 3.34. 1H-NMR spectrum of 2,5-diiodo-[3,4-(3,3’-dibutylpropylenedioxy)] thiophene 

(DIDBuProDOT).1H-NMR (300MHz, CDCl3); 3.92 (s, 4H), 1.46-1.15 (m, 12H), 0.98-0.86 (t, 

6H) 

 

Figure 3.35. 1H-NMR spectrum of 3,4-(3-methylpropylenedioxy)thiophene (MPDOT). 1H-NMR 

(300MHz, CDCl3); 6.50(s, 2H), 4.18-4.09(q, 2H), 3.75-3.64(q, 2H), 2.46-2.31(m, 1H), 1.03-0.95 

(d, 3H) 
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Figure 3.36. 1H-NMR spectrum of 3,4-[3,3’-(dimethylpropylenedioxy)]thiophene (DMPDOT). 

1H-NMR (300MHz, CDCl3); 6.48(s, 2H), 3.73(s, 4H), 1.03(s, 6H) 

 

Figure 3.37. 1H-NMR spectrum of 3,4-(3-hexylpropylenedioxy)thiophene (HPDOT). 1H-NMR 

(300MHz, CDCl3); 6.47(s, 2H), 4.21-4.05(m, 2H), 3.93-3.81(m, 2H), 2.35-2.05(m, 1H), 1.47-

1.18 (m, 10H), 0.97-0.81 (t, 3H) 
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Figure 3.38. 1H-NMR spectrum of 3,4-[2,2’-bis(bromomethyl)propylenedioxy] thiophene 

(DBrProDOT), 1H-NMR (300MHz, CDCl3); 6.50(s, 2H), 4.10 (s, 4H), 3.62 (s, 4H) 

 

Figure 3.39. 1H-NMR spectrum of 3,4-[2,2’-bis(cyanomethyl)propylenedioxy] thiophene 

(DCNProDOT). 1H-NMR (300MHz, CDCl3); 6.61(s, 2H), 4.02 (s, 4H), 2.74 (s, 4H) 
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Figure 3.40. 1H-NMR spectrum of 3,4-[2,2’-bis(carboxymethyl)propylenedioxy] thiophene 

(PDOT-DCOOH). 1H-NMR (300MHz, DMSO-d6); 12.34(s, 2H), 6.77(s, 2H), 4.03 (s, 4H), 3.34 

(s, 4H) 

 

Figure 3.41. 1H-NMR spectrum of 3,4-[2,2’-bis(methylethanoate)propylenedioxy] thiophene 

(PDOT-DCOOCH3). 1H-NMR (300MHz, CDCl3); 6.49(s, 2H), 4.19 (s, 4H), 4.05 (s, 4H), 2.08 (t, 

6H) 
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Figure 3.42. 1H-NMR spectrum of 3,4-(2,2’-bis(hydroxymethyl)propylenedioxy) thiophene 

(PDOT-DOH). 1H-NMR (300MHz, DMSO-d6); 6.69(s, 2H), 4.65 (t, 2H), 3.88 (s, 4H), 3.49-

3.40(d, 4H) 

 

Figure 3.43. 1H-NMR spectrum of 3,4-((2-methyl-2’-phenylmethylester)propylenedioxy) 

thiophene. 1H-NMR(300MHz, CDCl3); 7.35(m, 5H),6.47(s, 2H),4.59-4.45(d, 2H),4.00-3.90(d, 

2H), 1.28(t, 3H) 
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Figure 3.44. 1H-NMR spectrum of 3,4-((2-methyl-2’-carboxyl)propylenedioxy) thiophene. 1H-

NMR(300MHz,DMSO-d6);12.96(s,1H),6.79(s,2H),4.42-4.30(d,2H),3.94-3.79(d,2H),1.18(s, 3H) 

 

Figure 3.45. 1H-NMR spectrum of 3,4-((2-methyl-2’-triethylsilylester)propylenedioxy) thiophene 

(PDOT-COOTESi). 1H-NMR (300MHz, CDCl3); 6.49(s, 2H), 4.56-4.46 (d, 2H), 3.98-3.87 (d, 2H), 

1.31(s, 3H), 1.04-0.90(m, 9H), 0.66-0.54(m, 6H) 
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Figure 3.46. 1H-NMR spectrum of 2-Nitro-5-(dodecyloxy)phenyl)methanol. 1H-NMR (300MHz, 

CDCl3); 8.20-8.17(d, 1H), 7.20(d, 1H), 6.90-6.87(dd, 1H), 5.00(d, 2H), 4.09-4.06(m, 2H), 1.84-

1.81(m, 2H), 1.47(m, 2H), 0.91-0.87(t, 3H) 

 

 

Figure 3.47. 1H-NMR spectrum of 3,4-(2,2’-bis(2-nitro-5-(dodecyloxy) benzylcarboxylic) 

propylenedioxy)thiophene. 1H-NMR (300MHz, CDCl3); 8.16-8.13(d, 2H), 7.00-6.99(d, 2H), 6.81-

6.80(dd, 2H), 6.49(s, 2H), 5.50(s, 4H), 4.12(s, 4H), 4.01-3.99(t, 4H), 2.90(s, 4H), 1.81-1.77(m, 

4H), 1.43(m, 4H), 0.97-0.85(t, 6H) 
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Figure 3.48. 1H-NMR spectrum of [(2-(2-(2-methoxyethoxy)ethoxy)methyl) ethylenedioxy] 

thiophene (EDOT-DEG). 1H-NMR (300MHz, CDCl3); 6.32(s, 2H), 4.39-4.29 (m, 2H), 4.12-

3.99(m, 1H), 3,84-3.62(m, 8H), 3.59-3.49(m, 2H), 3.38 (t, 3H) 

 

Figure 3.49. 1H-NMR spectrum of 2,5-diiodo-[(2-(2-(2-methoxyethoxy)ethoxy)methyl) 

ethylenedioxy]thiophene (DIEDOT-DEG). 1H-NMR (300MHz, CDCl3); 6.32(s, 2H), 4.39-4.29 

(m, 2H), 4.12-3.99(m, 1H), 3,84-3.62(m, 8H), 3.59-3.49(m, 2H), 3.38 (t, 3H) 
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Figure 3.50. 1H-NMR spectra of Azidomethyl EDOT (EDOT-N3). 1H-NMR(300MHz,CDCl3); 

6.45-6.22(q, 2H),4.39-4.13 (m, 2H),4.13-3.97(m, 1H),3.66-3.41(m, 2H) 
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Chapter 4. Conclusions and Future Outlook 

 

4.1 Research Summary 

Photoarylation is systematically examined as an essential tool for the photopolymerization 

of EDOT or ProDOT monomers. Photoarylation of 2,5-diiodo-EDOT (or ProDOT) with thiophene 

derivatives by UV light leads to the formation of conjugated molecules in a high yield. The 

photochemical reaction is substantially attractive in the sense that only monomers and light 

irradiation are involved in the coupling reaction without any photochemical catalysts or 

photoinitiators. By expanding the photoarylation scheme to a polymer regime, we have 

successfully achieved a variety of conjugated polymers through one-pot photopolymerization. 

Mechanistic studies on the devised solution photo-polymerization of conjugated polymers 

revealed the photopolymerization mechanism (chapter 2) and the photo-reaction scheme was 

adapted to the development of solid-state photopolymerization to fabricate highly transparent and 

conducting polymer thin films (chapter 3). 

A new light-controlled polymerization system was established in two consecutive 

photochemical reactions: i) photoarylation of diiodo-ProDOT and ProDOT derivatives by 365nm 

UV irradiation to yield ProDOT oligomers, ii) after reviving carbon-iodine end groups subsequent 

coupling of the oligomers by 532nm pulsed laser for chain extension. The conversion efficiency 
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of the ProDOT derivatives by photoarylation in hydrogen-free CBrCl3 is high enough to consume 

most monomers in 72 hours of UV irradiation, yielding ProDOT oligomers with narrow 

polydispersity. The limited chain growth up to an oligomer level caused by the formation of 

carbon-hydrogen end groups of the oligomers, which is not reactive anymore to UV light, was 

resolved by the iodine replenishment for C-I end group restoration and subsequent photo-

irradiation with 532nm pulsed laser. We achieved ProDOT polymers with a high molecular weight 

(Mn=27,000 g/mol) and narrow polydispersity (PDI=1.20) by applying the newly devised one-pot 

photopolymerization. 

Inspired by the excellent photochemical reactivity of the ProDOT derivatives in the 

photoarylation scheme in solution, one-pot solid-state photopolymerization of ProDOT or EDOT 

derivatives has been successfully devised to achieve highly robust and solvent-resistant conjugated 

polymer thin films. UV irradiation on DIProDOT(or DIEDOT) and ProDOT(EDOT) derivatives 

in solid state and subsequent acid doping afford transparent conducting polymer thin films. In 

particular, the incorporation of flexible oligomeric ethylene glycol side chains to EDOT monomers 

promotes the movement of the precursors and chain propagation during the UV polymerization, 

resulting in a dramatic increase in conductivity up to 2,200 S/cm. To the best of our knowledge, 

such a high value has not been realized by means of any photo-mediated polymerization and is 

comparable to the best conductivity (1,600~2,400 S/cm) of PEDOT:PSS films post-treated with 

ethylene glycol1 or acids2,3 or ITO coated PET films or glasses (103~104 S/cm)4. 

 

4.2 Future work 

4.2.1 Research development 

Although the solution photopolymerization provides a great opportunity to synthesize 

conjugated polymers with a high molecular weight and narrow polydispersity, the repeating units 
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of the resulting polymers were incorporated in random fashion. When the photopolymerization is 

adapted to copolymerization of two different monomers, it is evident that the resulting polymer 

gives a disordered distribution of the two repeating units along the polymer chain. Photo-controlled 

radical polymerization (photo-CRP) is a compelling strategy to devise highly ordered molecular 

architectures rendering efficient packing of the 2D polymer chains to enhance optical and electrical 

properties. Since the chain growth is accomplished by sequential addition of monomer “A” to the 

pre-synthesized polymer “B”,5 it is advantageous to synthesize conjugated block-copolymers 

having two different side chains affording self-assembled and highly oriented nanostructures in 

solid state. We believe that a photochemical coupling reaction of iodinated ProDOT oligomers and 

neighboring ProDOT monomers by 532nm pulsed laser has great potential to establish a photo-

CRP for conjugated polymers with a well-defined molecular structure.  

Considering that there is a great demand in thin, light-weight, and foldable displays,6 a 

polymeric substrate is regarded as an indispensable platform to fabricate flexible electronic devices. 

As we established the new UV polymerization scheme of conjugated polymers on glass substrates, 

it would be feasible and desirable to demonstrate excellent optical and electrical performances of 

conjugated thin films on plastic substrates as well. Among myriad of polymeric substrates, 

polyimide is a compelling material because of the outstanding stability against thermal and 

mechanical stresses, not to mention high chemical resistance.7 Since polymer substrates have 

distinctive physical and chemical properties from glass such as adhesion at the interface and UV 

induced aging/coloration, careful control of fabrication conditions including UV polymerization, 

solvent rinsing, and acid doping is required to achieve a high quality conducting polymer thin film 

with outstanding optical and electrical properties. 
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4.2.2 Future Applications of photopolymerized conjugated polymers 

We can take advantage of the simple fabrication procedure and the outstanding electrical 

properties of the photopolymerized conjugated polymer thin films to explore several promising 

energy harvesting or storage applications, such as battery, supercapacitors, thermoelectric 

generator (TEG), etc.  

Owing to the great redox capacitance, fast switching between redox states, and outstanding 

chemical or thermal stability, conducting polymers are of the surge in attention to flexible and 

light-weight charge storage devices such as supercapacitors or batteries. Although solid-state 

electrolytes are considered as an excellent substitute for liquid electrolytes, whose stability issues 

have been a great concern due to the electrolyte leakage and dendrite growth.8 In addition, 

substantial electrical resistance in solid states at electrolyte/electrode interface and poor ionic 

conductivity lowers electrochemical performances.9 In contrast, conducting polymers can serve as 

solid-state electrolytes having both ionic and electronic conductivities since they can hold two 

opposite electrochemical properties through n-doping and p-doping. The rigid characteristics of 

conjugated polymers can be compensated by incorporating gel-like oligomeric ethylene glycol side 

chains to release mechanical stresses at the interface as well as promote ionic charge transfer. By 

means of the UV polymerization of PEDOT incorporating oligoethylene glycol side chains, we 

anticipate breakthrough results to resolve the stability issue of lithium-ion batteries while 

maintaining electrochemical performances. 

Despite excellent ZT values (1.0~2.2) of inorganic thermoelectric materials such as 

Bi2Te310, nearly all current high-efficiency TE materials are expensive, brittle, based on elements 

of low abundance, limiting their practical use and scale-up, in particular for applications in 

wearable energy harvesting and mobile electronic devices. Organic semiconductors, on the other 

hand, are based on earth-abundant elements and are mostly synthesized at near room temperature, 
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leading to the attractive low cost and easy processability. They provide high mechanical toughness 

and elasticity as well as other practical advantages such as light weight and capability for large-

area deposition, making them suitable for flexible thermoelectric generators. Since thermal 

conductivity (k) is generally low in organic materials, improving ZT in organic semiconductor 

materials primarily relies on increasing the thermoelectric power factor (S2s) and carrier mobility 

(µ). These values can be significantly enhanced by engineering molecular structures of a modified 

PEDOT system through the UV polymerization from EDOT and its derivatives. 
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