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ABSTRACT

Social media and network research often focus on the agreement between dif-

ferent entities to infer connections, recommend actions and subscriptions and even

improve algorithms via ensemble methods. However, studying differences instead of

similarities can yield useful insights in all these cases. We can infer and understand

inter-community interactions (including ideological and user-based community con-

flicts, hierarchical community relations) and improve community detection algorithms

via insights gained from differences among entities such as communities, users and

algorithms. When the entities are communities or user groups, we often study the

difference via node-aligned networks, which are networks with the same set of nodes

but different sets of edges. The edges define implicit connections which we can infer

via similarities or differences between two nodes.

We perform a set of studies to identify and understand differences among user

groups using Reddit, where the subreddit structure provides us with pre-defined user

groups. Studying the difference between author overlap and textual similarity among

different subreddits, we find misaligned edges and networks which expose subreddits

at ideological ‘war’, community fragmentation, asymmetry of interactions involving

subreddits based on marginalized social groups and more. Differences in perceived

user behavior across different subreddits allow us to identify subreddit conflicts and

features which can implicate communal misbehavior. We show that these features

can be used to identify some subreddits banned by Reddit. Applying the idea of dif-

ferences in community detection algorithms helps us identify problematic community

assignments where we can ask for human help in categorizing a node in a specific

community. It also gives us an idea of the overall performance of a particular com-

munity detection algorithm on a particular network input. In general, these improve

ensemble community detection techniques. We demonstrate this via Community-

Diff (a community detection and visualization tool), which compares and contrasts

different algorithms and incorporates user knowledge in community detection output.

We believe the idea of gaining insights from differences can be applied to several other

problems and help us understand and improve social media interactions and research.

xii



CHAPTER I

Introduction

Social media plays a major role in our day-to-day life. Online social networks like

Facebook and Twitter have billions of users who connect with friends and family,

find new friends and post updates about their daily lives. Online discussion forums

and news aggregators like Reddit provide hundreds of millions of users a place to

share, view and discuss different opinions with like-minded people. People from all

over the world jointly contribute to write and maintain over 5 million articles in

Wikipedia. Social media sites are often used for different social or political discussions

and movement. Social network analysis helps us understand this phenomenon and

improve downstream applications. Social media websites are also plagued by user

misbehavior in a variety of forms [5, 35, 57, 58, 83, 108] including but not limited to

spamming, trolling, flame wars and griefing. In a large number of cases, the extent

of this abuse is not well documented. Network modeling of online social media is a

powerful tool in understanding social behavior and gaining new insights, improving

applications for recommendation systems, online marketing, and providing better

usability and user experience for millions of social media users.

Nodes Similarity Matrix

...

...Pairwise
Similarity

Network Communities

Network
Inference

Community 
Detection

Figure 1.1: A general pipeline for analyzing network-based communities from a set
of given nodes/entities. Apart from community detection many other
network analysis algorithms like centrality measures can be applied on
the inferred network.

A large aspect of social network analysis is defining a link or an edge between two
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nodes or entities (an entity can be anything ranging from a user, a post/comment

to a discussion topic or a group of users in different contexts) and finding groups

or communities of the said entities. Semantically, these links may encode a variety

of relationships such as friendOf (social media friend networks), similarTo (recom-

mender system networks), or isA (Wordnet, a semantic network of English words).

They can be directional, weighted and temporally varied. Moreover, these links can

either be explicit (friendship links between two users) or inferred (many common

users between two user groups) [27]. Where explicit, the links between individuals

(person-to-person links) are measures of friendship (Facebook), interest (Twitter), or

other relationships (family, fan, etc.). When an online system does not have features

that explicitly support linking, we rely on inferred connections. For example, we may

infer that two people are “linked” if they are part of the same discussion list. In-

ference is sometimes necessary in the case of person-to-person links and often in the

case of community-to-community links where the social media websites rarely pro-

vide explicit linking. Inference can be useful on explicit networks also. A friendship

network can be ‘reduced’ based on likes/messages etc.

Apart from social networks, link inference and community detection are used in

many other kinds of networks. For example, functional groups in biological net-

works are identified using community detection [29, 91]. In machine learning and

data mining, many non-network problems are converted into a network analysis

problem (including community detection problems) by inferring links between rel-

evant nodes/entities. For example word networks in natural language processing

(NLP) [139] or user-item recommender models [94] allow us to use community detec-

tion to solve problems as diverse as keyword detection or movie recommendations.

Most of these problems follow a broad general pipeline depicted in Figure 1.1. This

pipeline starts with a set of nodes or entities and some similarity measure is applied to

the entities to derive a similarity matrix. A similarity matrix A contains the similarity

scores between all pairs of nodes (the cell A[i, j] stores the similarity score between

nodes i and j). The similarity matrix is processed into a network and then commu-

nity detection and further network analysis algorithms are applied to the network.

It is worth noting that there are other methods of inferring a connection between

two individuals. In social network analysis, sometimes networks are constructed by

communication behavior (e.g., retweeting, chat, liking, lending money, etc.). We can

modify the pipeline to include these kinds of networks as well.

Community-to-community links are less common compared to links between a

pair of individuals and most of the time, these are inferred links. This type of in-

2



ferred link and community detection are used for deciphering inter-community mobile

communications [90]. Inter-community links can be useful for recommender systems

when suggesting similar communities to a user in a forum or another social media

website. These link might also depict negative relationships. For example, Kumar et

al. [109] studied controversial cross-postings in Reddit to identify specific community

conflicts.

Nodes

...

...
...
...

...

...

......

Pairwise
Similarity 1

Pairwise
Similarity 2

Pairwise
Similarity n

Hyperparameters

Matrix 
Comparison

Similarity Matrices

......

...

...

...

...

...

Difference Matrices

... ...

Node-aligned
Networks

N
etw

ork In
feren

ce

C
om

m
u
n
ity 

D
etection

Figure 1.2: An expanded pipeline for analyzing network-based communities from a
set of given nodes/entities.

However, inferred links can vary wildly based on the metric used for inference

(for example, author overlap vs topical similarity between two user groups) and this

difference often provides useful insights. Expanding the network analysis pipeline,

we can run different pairwise similarity metrics in parallel to infer different kinds of

pairwise links and compare them. We can create a similarity matrix for each different

3



similarity measure and compare the difference between two similarity measures by

computing a difference matrix using corresponding two similarity matrices. We can

create networks from both similarity and difference matrices. These networks share

the same set of nodes (the set of nodes we start with) but a different set of links.

We call these node-aligned networks. We can apply community detection on these

networks to get an idea about how nodes are grouped together via a certain kind

of similarity (for example, two users who talk about similar topics in social media

should be grouped together if we are evaluating users via topical similarity of their

posts) and how grouping via similarity measures differ from each other. Figure 1.2

shows a pictorial representation of this modified pipeline. Note that, this pipeline

can be further expanded using data from different time periods (e.g. we can create

a pipeline by using text/author similarity from few consecutive years to identify the

temporal evolution of Reddit or change in behavioral patterns of its users).

Community A

Community B

anti-social

social

“Bundle” of author messages

Up-voted (rewarded) message

Down-voted (sanctioned) message

Neutral message Community 
Controversial Author

A

B

A

B

Con�ict graphCon�ict edge

Figure 1.3: A general methodology for identifying conflicts and creating a conflict
graph from a set of given user communities.

Inferred links between two nodes are not limited to different similarity metrics

either. For two user groups, we can deduce antagonistic relationships (conflicts) if

same set of users behave or perceived to behave (based on the groups’ reward/sanction

mechanism including up/downvotes ) differently depending on the group as shown

in Figure 1.3. We call these particular users controversial authors and the edge as

a conflict edge. Conglomerating these edges, we can create a conflict graph which

documents conflicts given a set of user groups. Based on controversial authors, we

can also infer which user groups are ‘targeted’ together and form a co-conflict graph

with the same set of nodes. These node-aligned graphs documents conflict between
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different user groups and can be used to identify and understand community con-

flicts and communal misbehavior. This technique is less general as it makes use of

user groups and not any set of entities, but still has wide applicability for any type

of social network or social media site with a overlapping community structure like

subreddits, Facebook pages and groups, online news communities and Twitter hash-

tag communities (people who tweeted a particular hashtag are part of that hashtag

community).

1.1 Dissertation Overview

In this dissertation, we focus on gaining insights from differences in four different

projects. Two other common motifs in these projects are creation of node-aligned

networks, and inferring community-to-community relationships. In the first project,

we apply the expanded network analysis pipeline on subreddit comment text and

authors to identify ‘misaligned’ links and communities in Reddit. We use author and

textual overlap between pairs of subreddits to create a pair of subreddit similarity

networks : author and term similarity networks. We use the difference between au-

thor and text similarity to infer author-coherent links (high author similarity but low

term similarity) and topic-coherent (high term but low author similarity) links and

create a pair of misaligned networks. Note that the subreddit similarity networks and

the misaligned networks are node-aligned networks as the nodes are subreddits in all

of them. We provide the algorithm to identify these misaligned links and communi-

ties and use them to decipher inter-group dynamics (hierarchical links, community

fragmentation, communities with opposing viewpoints, satellite subreddits etc.).

In the second project, we identify differences in perceived commenting behavior of

the same user within multiple subreddits and use it to identify subreddit conflicts.

In this project, we build two node-aligned networks — the subreddit conflict network

which is a directed, weighted network depicting antagonistic subreddit relations and

the co-conflict network which shows which subreddits are usually targeted together.

We analyze these graphs to identify most instigating and targeted subreddits, find the

relationship between subreddit size and conflict intensity, reciprocity of the conflicts

and find implication behind certain subreddit bans.

To test the efficacy of these interaction features, we identified more than 1000

banned subreddits with at least 100 comments and used the interaction features along

with text-based features to cluster and predict different kinds of banned subreddits.

We improve the banned subreddit prediction result against an unbanned sample of the
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same size by adding interaction features compared to using only textual features (with

a significance level of 0.018). We also implement a banning-by-example paradigm

where banned subreddits of a particular category can be identified using other banned

subreddits in the same category as examples. We achieve 0.913 mean precision at k

(k=10) measure for banning-by-example and this idea can be useful for community

moderators in any social media.

Finally, we apply the idea of gaining insights from differences on the problem of

choosing suitable community detection algorithms via CommunityDiff, an interac-

tive visualization system that combines visualization and active learning to support

the end-user’s analytical process. We create a mechanism for visualizing ensem-

ble spaces (an abstract space where each point refers to a community detection al-

gorithm), by leveraging differences in outputs of most commonly used community

detection algorithms. CommunityDiff also features weighted combinations of al-

gorithm outputs, that can identify patterns, commonalities, and differences among

multiple community detection algorithms. Among other features, CommunityDiff

introduces an active learning mechanism that visually indicates uncertainty about

community labels (based on disagreement among different community detection algo-

rithms) to focus end-user attention and supporting end-user control which ranges from

explicitly indicating the number of expected communities to merging and splitting

communities. Based on this end-user input, CommunityDiff dynamically recalcu-

lates communities. We demonstrate the viability of our system through a study of

speed of end-user convergence on satisfactory community labels. As part of build-

ing CommunityDiff, we describe a design process that can be adapted to other

Interactive Machine Learning (IML) applications.

1.2 Motivation

In their recent research Peel et al. [151] showed that there is not always a one-to-

one correspondence between the communities determined by the network structure

and node metadata. In fact, different node metadata can generate different group-

ings. Metadata-based clustering can be viewed as a form of link inference where we

draw a connection between individuals based on metadata similarity. The fact that

there are differences in the generated networks is an argument for studying the dif-

ference and find out where this difference is surprising and how it originates. Based

of this idea, instead of the classical node-link structure of a network, we can view

the relationship between two nodes or entities as a set of edge attributes or edge

6



metadata, where each edge attribute is based on a different metric. These attributes

can be explicit (friendship between two social media users) or inferred (do their posts

share enough textual similarity?). This gives rise to a set of node-aligned networks

based on different attributes. The pre-existing pipeline for converting data science

problems (Figure 1.1) to network analysis problems is easily extended to a highly

parallel pipeline (Figure 1.2) which incorporates the idea of node-aligned networks.

Note that, the node metadata and hence the edge metadata changes over time. We

can create node-aligned networks based on the same similarity metric but at differ-

ent timestamps. A natural extension of our view of networks is to replace node and

edge metadata with a set of time-series data where each time-series corresponds to a

different attribute.

Peel et al. also showed that any specific community detection algorithm may

not perform well on all networks, which implies that the ability to choose correct

algorithm for given task and the human in the loop learning for community detection

is important. This is a major motivation behind designing CommunityDiff, an

interactive visualization tool to compare and select clustering algorithms which takes

user inputs into account.

1.3 Contributions

The contributions of this dissertation are threefold. First, we provide a method-

ology for understanding differences in inference in online user groups. These types

on analysis can be used to identify and understand relationships among online com-

munities including community hierarchies, communities with ideologically opposing

viewpoints and community fragmentation. We can also identify individual commu-

nity types (e.g., is the community a mainstream community or is it marginalized)

using this methodology. By looking into differences in user behavior, we can identify

community conflicts and show that some of the features we identify have implications

for identifying communal misbehavior. We apply these features on top of textual

features to identify specific types of community sanctions in Reddit (banned sub-

reddits) and show significant improvement over using only textual features using a

banning-by-example paradigm.

We applied these methodologies on Reddit where subreddits represent user-defined

online communities, but our pipelines are generalizable to any online social media

with community structure. All social media do not have explicit group structure like

Reddit but we can infer communities via metadata (Facebook lists, Twitter hashtag
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community) or graph alignment algorithms [86, 85, 192] as a preprocessing step and

apply our pipeline. For conflict and communal misbehavior detection, our pipeline is

even more generalizable as our user behavior based features are content agnostic and

can be applied to communities with languages other than English.

Our final contribution is presenting CommunityDiff, an end-to-end visualiza-

tion tool to compare and contrast different community detection algorithms to choose

the best algorithm and incorporate user knowledge into the final output by looking

into differences in algorithms. This methodology is applicable to other sets of algo-

rithms where the ground truth is scarce and there is a lot of disagreement among

different algorithm outputs. Prime examples of these types of algorithms are cluster-

ing and anomaly detection.

We demonstrate that studying differences of inference, user behavior, and algo-

rithms is useful in multiple regards. We hope that our methodology and analyses

would help to deal with problems of online communities and make understanding

differences in algorithm outputs easier.
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CHAPTER II

Network Representation of Data and Community

Detection Algorithms

2.1 Network representation of data

In many data mining and machine learning scenarios, data can be represented as

networks or graphs. A graph G(V,E) consists of a set of vertices V and a set nodes

edges E. The set of vertices V encodes real-world entities which can range from users

in a social network, webpages on the internet to words in text network and roads

in the road networks. An edge or link e in E represents connection between a pair

of vertices vi and vj. An edge can be directed/undirected and weighted/unweighted.

For example, Facebook friend-to-friend links are undirected but Twitter follower-

following edges (i.e. person A follows person B) are directed. An edge can refer

to many different kinds of relationships between nodes. For example, two users in

a social media website may have one kind of edge between them because they are

friends or have a different kind of edge because they are from the same geographical

area.

2.1.1 Link inference

In many cases, links are explicit e.g., friendship links in social networks. Explicit

links may not always represent the semantics we want. we might want to remove

some edges, keep some or predict entirely new edges based on the problem. How-

ever, in many scenarios, we have to infer the complete network structure from the

data [27]. Common examples of these kinds of inferred networks are word and sen-

tence networks in NLP [139] and machine translation, collaborative filtering networks

in recommender systems [94] etc. Link inference or network inference is highly related

to link prediction [127], but they are not the same. Link prediction usually refers to
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predicting if there should be a link between two vertices when we already have an

established network structure. However, link inference or network inference refers to

creating the whole network from a set of free-floating nodes. However, in many cases,

link prediction uses very similar methods as link inference (for example, using node

metadata and similarity measures).

There are many different ways to infer a network [27]. Most of them share a

common first step — calculating some kind of similarity between a pair of vertices.

The similarity can be based on one attribute or many. An example of a single attribute

similarity is the textual similarity between the posts of two social media users. As with

many similarity metrics, there are many varied ways of computing text similarity [77]

and the suitable metric varies from application to application. In other cases, multiple

node attributes are combined together to predict similarity values. For hierarchical

metadata, tree-based methods [21] are used for comparing keyword similarity. There

are variants of link prediction algorithms which can be used to calculate similarity

for link inference. For example, a variant of Adamic-Adar measure [1] (a common

neighbor based link prediction algorithm) re-weights common attributes of two nodes

based on the inverse log of the attribute’s frequency (similar to TF-IDF metric)

to calculate similarity. Hashing-based methods [165] can also be used for quickly

inferring networks from multiple time-sequecnces.

After we have the pairwise similarity values, we then have to choose which edges

to keep. Two very common approaches are global thresholding (edges below a certain

threshold are pruned) and k-nearest neighbor graphs [62] (each node is connected

to its k-nearest neighbors based on similarity value). Both approaches have their

advantages and disadvantages. K-nearest neighbor graphs are often disconnected

into multiple components and by definition directed graphs. However, we can ignore

directions or take only reciprocal links (i.e. if there is a link from vertex A to vertex B

and there is a link from B to A) to generate undirected graphs. Global thresholding

can ensure a connected graph by using a suitable threshold, but in many cases,

the threshold is low enough to create a hairball graph with too many edges which

obfuscates community structure of the network. Another approach is finding the

minimum spanning tree [106] for the network. This approach results in a tree which

is not suitable for most network analysis algorithms including community detection.

More sophisticated approaches like the backbone extraction algorithm [167] focus

on preserving the distribution of weights seen in the original data. This ensures a

connected graph which is also much sparser compared to global thresholding.

All the above methods are unsupervised, i.e. we do not need training data to infer
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a network. However, if training data (i.e. some set of node metadata and a network

originating from only those metadata) is available, we can train a machine learning

model to infer networks. A related example is measuring social tie strengths in social

media [75] using social behavior and communication patterns in Facebook. In this

particular example, Gilbert et al. did not infer a network but instead measured the

strength of friendship relations using user reported tie strength as training data, but

similar methods can be used if training data is available.

2.1.2 Node aligned networks

We refer to graphs which share the same set of vertices or nodes as node-aligned

graphs or networks. These networks represent different relationships among the same

set of entities. These links can be explicit (friendship links and links denoting if

two persons are from the same geographical area, nodes are social media users),

inferred (author overlap and topical similarity between two discussion forums) or even

based on the same metric at different timestamps (friendship over different periods

of time, nodes are social media users). There are many ways compare the similarity

between a pair of node-aligned networks. The simplest one is edge overlap [149]

which calculated the number of common edges compared to the total number of

edges. Papadimitriou et al. [149] used signature similarity for anomaly detection in

web graphs. Signature similarity is a SimHash [87] based algorithm (a technique

for quick estimation of similarity between two sets using hashing) which takes edge

weights into account. Bunke et al. [30] proposed several methods to study changes

in communication networks which can be applied to measure the similarity between

node-aligned networks. However, the two best approaches among them, graph edit

distance (calculates the edit distance between adjacency matrices of the graph) and

maximum common subgraph (find the largest common subgraph based on edges) are

both NP-complete. Koutra et al. [105] proposed DeltaCon, which computes similarity

matrices based on node affinity (computed using fast belief propagation [104]) and

compute their similarity. We use community detection to understand different node

clusters originated by different sets of edges in node-aligned networks.

Node-aligned networks are similar to multiplex and multilayer networks [101] as

all of them connect the same set of nodes in different ways. However, node-aligned

networks are not multilayer as each network has a different set od edges and different

types of edges are not layered on top of each other in a single network.
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2.2 Community detection algorithms

There are numerous community detection algorithms which are used in practice.

Some of the widely used ones are described below. All of these algorithms work

on undirected and weighted networks. As node-aligned networks are not multilayer

networks, we do not discuss and use multilayer-specific community detection algo-

rithms [18, 96, 186].

2.2.1 Fastgreedy

Fastgreedy is a hierarchical agglomerative algorithm by Newman et al. [42, 147]

which follows a bottom-up approach. Fastgreedy, as its name suggests, greedily

merges communities iteratively by maximizing modularity, a measure of ‘modular

strength’ of a network. Modularity, Q is captured as:

Q = 1
2m

∑
vw[Avw − kvkw

2m
]δ(cv, cw)

Where v and w and two nodes, ki is the degree of node i, and ci is the community

label for node i, m is the total number of edges in the graph, A is the adjacency

matrix representation of the graph (i.e. Avw > 0 if an edge exists between v and

w), and δ is the Kronecker delta — an indicator for testing if the communities are

equal. The intuition for this function is that we are testing the number of edges

within a community versus the number of edges expected with random assignment.

Stated differently, a strong community contains more edges between its members than

expected by chance.

Initially, each vertex is in its own separate community. Neighboring communities

are merged iteratively, in the favor of maximum modularity increase, until modularity

could not be increased further. This algorithm runs much faster than other usual

community detection algorithms; hence it is useful for community detection in large

graphs. However, it does not perform particularly well in many cases.

2.2.2 InfoMap

InfoMap [163], on the other hand, follows a very different approach and aims to

provide the shortest description length of a random walker trajectory. The descrip-

tion length is measured by the expected number of bits per vertex to encode the

random walk path. This algorithm uses the minimum description length principle in

information theory and follows the idea that a random walk within a community is
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likely to stay within the same community as the number of intra-community edges is

higher compared to the number of inter-community edges.

2.2.3 Label propagation

Label propagation [159] follows a straight-forward approach of assigning a vertex

the most frequent label from its neighborhood. Initially, every vertex is assigned one

of the k labels randomly and these labels are updated according to the most frequent

label among the node’s neighbors. This method is repeated until no label is changed.

The initial assignment of labels can significantly affect the outcome of this algorithm.

Moreover, the number of different labels limits the number of communities. This

method is very fast and suitable for very large graphs.

2.2.4 Multilevel

This is yet another greedy modularity maximization technique by Blondel et

al. [136] which follows a hierarchical approach. First, the method finds ‘small’ com-

munities based on greedy local optimization. Next, a new network is created where

the communities found are treated as nodes. The same technique is applied over and

over to achieve modularity maximization.

2.2.5 Spinglass

Spinglass [160] originates from statistical physics and is based on Potts model.

In this approach, each vertex has an initial spin state from c specified spin states

and edges dictate if two vertices would remain in the same spin state or not. This

model is simulated a number of times and vertices having the same spin state are put

into the same community. This method uses a predefined number of spin states c,

so the total number of communities is bound by c. The initial choice of spin states

may significantly affect the outcome of this algorithm. Compared to some other

community detection methods, this algorithm is rather slow.

2.2.6 Walktrap

Walktrap [153] is a random-walk based community detection algorithm which

follows the same idea as InfoMap that a random walk originated inside a community

is likely to stay inside that community. Walktrap employs a short random walk usually

consisting of three to four steps to build small communities. These communities are

merged in a bottom-up fashion hierarchically to achieve the final partition.
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2.3 Summary

In this chapter, we described network-related terminologies and existing research

related to link inference and node-align networks. We talked about different types of

link inference algorithms and their pros and cons. We defined node-aligned networks

and created node-aligned networks via link inference. We also described different

community detection algorithms that we make use of throughout this dissertation.

We can use other network analysis techniques like centrality measures on the node-

aligned networks as well.
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CHAPTER III

Reddit: Data and Existing Work

3.1 Choice of the Reddit dataset

There are several social media, social networking websites and news/discussion

forums where we can apply the expanded pipeline for network-based analysis. This

includes popular social networks like Facebook and Twitter, and social aggregator and

discussion forums like Reddit. We focus our studies on Reddit for several different

reasons.

A major concern while choosing a suitable dataset is the availability of the data

and what percentage of the data is available to us. Facebook data is generally not

publicly available and Twitter only allows the use of a maximum of 10% of its feed data

to select research organizations for academic purposes. On the other hand, Reddit

has a comprehensive publicly available dataset compiled by Baumgartner [17]. This

dataset contains various types of metadata (author, subreddit, upvotes, downvotes,

time of posting etc.) for both Reddit posts and comments and spans over several

years (January 2006 to June 2018 at the time of writing and new data is added

periodically). Although this dataset does not have deleted or otherwise moderated

posts and comments and miss some data [72], it is much more ‘complete’ compared

to other similar social media datasets. This is one of the primary reasons for focusing

our research on the Reddit dataset.

As we focus on community-to-community relationships, Reddit provides another

unique opportunity over Facebook and Twitter as it operates as a combination of

topic-specific user-groups dubbed subreddits. Each of these subreddits focuses on a

specific topic or are based on some kind of social aggregation (e.g., image sharing,

video sharing) or discussion. With the exception of default subreddits before 2017,

subreddits are usually chosen by a particular user and a user can post, comment and

subscribe to any number of public subreddits as long as he/she abides by the rules
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specified by the subreddits (rules differ from subreddit to subreddit). Subreddits pro-

vide an opportunity to study explicit user-defined communities and their interactions

compared to inferred user communities in other social media (e.g., followers of a spe-

cific Facebook page and Twitter hashtag communities). Another reason for choosing

Reddit is its vast scale. For example, in 2016 alone, we have 9.75 million unique users

who commented around 743 million times in different subreddits. Considering all

comments from 2010 to 2017 we have 3.8 billion comments from 542.6k subreddits.

For different projects, we use different portions of the Reddit dataset due to its

vast size. We describe some relevant statistics of the selected data in their respective

chapters.

3.2 Related work

Previous work on Reddit is diverse but in large part has focused on a single

subreddit or a small, manually-selected set of subreddits, often as case studies to

analyze behavior in a specific context. For example, how the subreddit nosleep dealt

with a sudden increase in readership [100] and the subreddit FindBostonBombers led a

botched attempt to crowdsource finding the Boston Marathon Bombers [156]. Leavitt

et al. used a very different news event — Hurricane Sandy, a natural disaster — to

study how news content was produced and curated in real time [116], and to examine

how Reddit’s user interface affected the production and curation process [117]. Studies

have also examined the effects of Reddit’s interface design. For example, Gilbert found

that social loafing damaged the site’s ability to highlight quality content [74]. Others

have examined the role of bots [125], throwaway accounts [115] in Reddit’s design,

and moderator disruptions in calls for policy change [34, 134].

Reddit is also a popular medium for analyzing language on a particular topic —

e.g. smoking cessation [182] or mental health [13, 14, 54, 55, 99] — or studying specific

types of user interaction, such as social feedback in weight loss communities [47],

seeking support for sexual abuse [11], strategies for persuasive arguments [178, 185]

or dogmatism in user comments [66]. Reddit data has also been used to train a model

that identifies abusive comments [36] and understand users’ moral values using word

choice [38].

Less research has focused on the structure of Reddit’s network itself [148]. Given

the opaqueness of Reddit’s structure, which has little explicit structure beyond sub-

reddits, researchers have attempted to classify subreddits using a variety of methods

and metrics. Zhang et al. characterized user behavior within subreddits by us-
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ing comment text to map subreddit topics onto four quadrants: generic-consistent,

generic-dynamic, distinctive-consistent, and distinctive-dynamic [191]. Relevant to

our study, Hamilton et al. characterized a small number of manually collected sub-

reddits according to the loyalty of their users, finding differences in how much time

end-users devote exclusively to a particular subreddit [81]. For example, they found

that sports subreddits tended to have loyal users while default subreddits did not.

While behaviors within subreddits have clear implications to inter-subreddit behavior,

these studies did not extend to analyze linking.

Targeted studies have tried to identify the relationships between subreddits. Hes-

sel et al. focused on highly related communities, identified according to their affixes

(e.g. atheism and trueatheism, or food and foodhacks) [89]. These pairings often

indicated a splintering, either as a result of conflict between users or to afford more

specialized discussion. However, these instances only represent a small portion of the

Reddit network. Reddit’s default subreddits and openness to cross-posting presents

an additional challenge, as subreddit networks based on cross-posting are quite dense

and require additional filtering. Olson and Neal [148] used author similarity to cre-

ate a network, then used a backbone extraction algorithm [167] to prune the least

important connections. Their analysis of a 2013 dataset found 59 communities with

a small-world, scale-free network structure. This power-law distribution was partly

attributed to Reddit’s UX design, in which new users are subscribed to default sub-

reddits [148].

More recently, Martin [133] also made use of author similarity, in this case for

applying topic modelling using an adapted latent semantic analysis. The method

indirectly identified topic similarity, as well. For example, the author “subtracted”

politics from The Donald (a subreddit for Donald Trump supporters) to infer which

topics The Donald ’s authors contributed most when not talking about politics.

A related study to our own by Hessel et al. [88] combined multiple metrics, using

a comparison of author and term similarity to identify obscured interests of users

by identifying links according to high user similarity and low term similarity. Using

this method, the authors identified several interesting examples, such as the relation-

ship between LadiesofScience and FancyFollicles (about primarily multicolor hair)

and craftit (a crafting subreddit). The authors based their analysis only on a lim-

ited sample text post submissions (maximum 5000 posts per subreddit), rather than

comments or submissions in other media formats (common in many of the popular

subreddits). In our work, we extend the idea of finding high-author/low-text coherent

subreddits by also identifying other misaligned variants.
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3.2.1 Trolling in Reddit

We find that differences in user behavior in different Reddit communities has im-

plications in identifying anti-social behavior in group level. we briefly discuss existing

research about individual and communal anti-social behavior in Reddit.

Individual trolling in Reddit is predominantly studied through content analysis

(e.g., [137]). A key result for Reddit has been comparing the differences between a

smaller number of communities in terms of trolling behavior. For example, Schneider

performed a contrastive study on intercultural variation of trolling by two subreddits,

ShitRedditSays and MensRights [166]. Most related to our work is the study by Kumar

et al. [109] which found that very few subreddits are responsible for the majority of

conflicts. This has implications to the conflict graphs we construct in that we may

expect key conflict ‘nodes.’

More recently, there has been some research on interventions (e.g., banning) on a

case-by-case basis. For example, topic models of been used to study the evolution of

(a now banned) subreddit DarkNetMarkets [154]. Chandrasekharan et al. [35] stud-

ied the effect of banning two particular subreddits, fatpeoplehate and CoonTown, to

combat hate-speech. The work concluded that the bans were likely effective in com-

bating hate-speech. However, this work does not elaborate on subreddit-to-subreddit

relations before or after the ban. Subreddit relations are discussed from an ideological

frame by identifying subreddits which discuss the same topic from different points of

view [53]. However, this approach does not capture conflict explicitly. We study the

landscape of subreddit conflicts and banned subreddits as a whole instead of doing it

on a case-by-case basis.
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CHAPTER IV

Identifying Misaligned Inter-Group Links and

Communities in Reddit

4.1 Overview

Network modeling of online social systems is a common approach for the study

of social behavior. Where explicit, the links between individuals measure friendship,

shared interests, or other relationships (family, followers, fans, etc.). When the online

system does not have features that explicitly support or encourage linking, we rely

on inferred connections. For example, we may infer that two people are “linked” if

they post on the same discussion forum or that two communities are linked if they are

similar based on text. Inference is sometimes necessary in the case of person-to-person

links and often in the case of community-to-community links, where explicit links are

rare. For example, subreddits (communities on Reddit) tend not to make explicit

connections between each other. Yet, they are connected in many ways. Pairs of

subreddits may share topics, share authors, share moderators, link to similar content

in web, and so on. While indirect [184], similarities based on these features correlate

with—and predict—connections. These connections reflect various social processes

and can help model both the current state of the social system and the process by

which the relationships emerged.

Choices about which similarity measure(s) and inference algorithm to use (not to

mention the hyperparameters of the algorithm, such as normalization and threshold-

ing) must be made carefully, as these choices will influence which links are predicted

and how they are to be interpreted. The top of Figure 4.1 depicts a conventional anal-

ysis pipeline: similarity measures are applied to a disconnected network to generate

a pairwise similarity matrix, and then an inference algorithm determines which val-

ues should be considered links and produces a network. On these inferred networks,
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Figure 4.1: Network inference pipeline. Topic and author networks refer to topic and
author similarity networks respectively.

downstream analysis such as community detection can be performed (e.g., clustering

subreddits into larger communities).

In many situations, different similarity measures are likely to be highly correlated.

High author similarity between communities often means topic similarity will also be

high. Conversely, low author similarity means we should expect topic similarity to

be low, as well. When we see this agreement, it often signals a “good link.” Here we

treat evidence as additive: if both text and authorship agree, the subreddits should be

connected. Many inference algorithms rely on variants of this similarity comparison

to infer connections. However, as we demonstrate in the context of Reddit, such

correlation can be weak and the many edges that violate this expectation result from

behavior and design and may lead to very different outputs.

We argue that disagreements between inferences are often as informative as agree-

ments. We define a measure to compare inferred similarity matrices that identifies

“misaligned” links (Figure 4.1, bottom). For example, two subreddits may share

many authors but discuss entirely different topics; we call these types of links author-

coherent links. When two subreddits have high text similarity but low author overlap,

we call these topic-coherent links. To account for the influence of unequal and diverse

levels in popularity of different subreddits we develop a score (double-z score, or z2-

score). This score can be used to create directed networks that capture “misaligned”

links both locally (in the context of a specific subreddit) and globally.
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Our measure of misalignment acts to operationalize, more generally, various struc-

tures of interest for social media researchers. For example, social media researchers

have targeted phenomena such as “communities at war” [2, 121, 122, 126], community

fragmentation (i.e. multiple linked sub-communities instead of a single large commu-

nity) [71, 89, 190], isolated or niche-interest community links [55], and “strongly

linked” communities [89]. Many of these studies have required domain knowledge

that is hard to generalize or automate, especially when using common link inference

methods. That is, it is difficult to find multiple community pairs/groups that have a

certain structure (e.g., “communities at war”) or to score or rank these found struc-

tures for further analysis. Reasons for this include: (1) a single inference algorithm

(e.g., text or author) does not provide enough “signal” to capture these relation-

ships, (2) algorithms that use multiple inferences (e.g., text and author) make naive

assumptions about the agreement–or alignment–between the inferred networks, and

(3) many algorithms suffer from the presence of a few highly popular communities

which tend to be present in a majority of detected links and hide “unexpected” con-

nections. Instead, we demonstrate that misalignment between inferred networks can

be more generally measured and normalized, and that this measure can be used to

find phenomena of interest.

Concretely, we are able to find repeated patterns in these misaligned links. For

example, high topic coherence may unearth subreddits that are “at war” with each

other (e.g., those with opposing political viewpoints) or have hierarchical relation-

ships (e.g., a niche video game may have a separate community from a more generic

gamer subreddit). We also find that subreddits with different ratios of incoming and

outgoing links are often out of the mainstream or marginalized. By comparing net-

works derived through standard similarity measures (e.g., author and text) to our z2-

derived measure, we are able to characterize different types of subreddit-to-subreddit

relationships.

Our contributions are twofold. First, we demonstrate a methodology for com-

paring two inference workflows to identify misaligned links and communities. We

introduce a score to compare networks derived from different similarity metrics that

can be used to detect properties that are missed when considering only single infer-

ence techniques, or those that are additive. Second, we apply these techniques to

Reddit to identify subreddit-to-subreddit relationships. We identify key structures

(i.e. topic-coherent, author-coherent, and satellite structures). Our analysis classifies

how pairs of subreddits interact, how specific subreddits are situated in the broader

context of the Reddit ecosystem, and proposes mechanisms by which networks and
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higher level communities are formed.

We focus on differences between author overlap and textual similarities to under-

stand community-to-community relations in Reddit and studied a set of node-aligned

networks (author and topic similarity networks and author and topic-coherent net-

works). A paper based on this chapter is published at [53].

4.2 Related work

In addition to work covered in Chapter III, we also identify related materials in

the study of politics and social media. The idea of high topic coherence (high text,

but low author, similarity) occurs implicitly in the study of political discourse in

social networks. Though they discuss similar issues, authors rarely cross-post, leading

to fragmentation. Adamic et al. [2] very clearly demonstrated the lack of cross-

links between Democratic and Republican bloggers during the 2004 U.S. election.

Within more recent social media contexts, Lotan [126] studied Facebook, Twitter and

Instagram user networks discussing the topic of the strife at Gaza strip and showed

fragmentation within the context of a specific topic. In Twitter, Liu et al. [121] found

that users who often mention each other but don’t follow each other are “at war.” In

our work, we demonstrate how warring sub-communities in Reddit can be detected.

Studies comparing text and network structure have also focused on political dis-

course. For example, Livne et al. [124] studied interactions between political candi-

dates on Twitter during the U.S. 2010 midterm election using both network structure

and tweeted. The works notes differences in the strength of correlation between

network similarity and language similarity depending on political party. However,

the work did not discuss the interaction between the measures. Conver et al. [43]

discussed the difference between the mention and retweet network while describing

political polarization in Twitter.

4.3 Dataset

We selected Reddit (www.reddit.com) due to its popularity and structure. Reddit

acts as both aggregator of a diversity of content and as a discussion board. We

obtained 10.5 years of Reddit data (posts, authors, comments, etc.) ranging from

January of 2006 to June of 2016 1. We focus our analysis on the month of June 2016,

1The dataset was compiled compiled by Baumgartner [17], available at files.pushshift.io/

reddit/)
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the most recent month at the time of our retrieval. While we find 74,951 subreddits

with at least one comment for this period, the distribution is long tail and 22.1% of

these subreddits saw only one comment posted. We define a subreddit as “active” if it

had more than 500 comments made by more than 100 unique authors in June 2016.

Roughly, 500 comments corresponds to the 92.6 percentile in subreddit comment

counts and 100 unique authors correspond to 90.45 percentile in subreddit unique

author counts. We find 5,193 subreddits that met this criteria. Further filtering out

subreddits with “over 18” flags (largely pornographic material), we were left with

4,924 subreddits. Overall, 62.3 million comments (122.7 million sentences) made by

10.6 million unique users were included in our analysis.

Even within this subset, subreddits’ activity levels approximate a long-tail distri-

bution. The median number of comments per subreddit was 2083, and the median

unique authors was 545. The most active subreddit, AskReddit , had about 4.6 million

comments made by about 568k unique authors. In contrast, nashville — a subreddit

well above the median level of commenting activity — had 8573 comments made by

1492 unique authors. This disparity is partly a consequence of Reddit’s design. New

Reddit users are automatically subscribed to a changing set of “default” subreddits.

In our June 2016 dataset, these 56 default subreddits (1.1%) all had more than 2 mil-

lion subscribers each; no other subreddit had more than 1 million subscribers. These

56 subreddits account for 23.6% of comments.

4.4 Method

The standard analysis pipeline for transforming disconnected entities into a net-

work is illustrated in Figure 4.1. It involves using a similarity metric to create a

pairwise similarity matrix. This matrix, often normalized and thresholded, is treated

as an adjacency matrix from which a network is constructed. Further analysis, such

as community detection, can then be executed on this network. We assume that

multiple such pipelines can exist in parallel and that comparing both intermediate

and downstream data structures (e.g., similarity matrices, networks, or communities)

can lead to interesting findings.

4.4.1 Similarity Metrics

In our analysis, we selected two common similarity measures: text similarity of

comments and author overlap.
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Figure 4.2: Computing the z2-score.

4.4.1.1 Textual similarity–Tsim

Text similarity was calculated by using the angle between term vectors describing

each subreddit. Specifically, we applied the standard cosine similarity on a “bag-

of-words” model that had been weighted through term frequency-inverse document

frequency (TF-IDF) [140]. We applied standard NLP cleaning to all sentences in in a

subreddit (stopword and punctuation removal, lowercasing, url removal) and phrase

extraction. Sentences of two or fewer words remaining were ignored. Common multi-

word tokens (phrases) were detected through a standard algorithm [140]. Specifically,

one- to four-grams (all one- to four-word phrases) were extracted from 10% of the

text, which we consider training data (roughly 12M sentences). Common “grams”

(measured by the number of times the phrase appears relative to the individual terms)

were retained. For each subreddit, the count of a particular term (tfi) was normalized

by the maximum frequency for all terms in that subreddit. The IDF frequencies

utilized the number of subreddits that contain that term dfi. For calculating document

frequency we used all subreddits from June, not only the core 4,924, which removes

bias and partially controls for larger values from larger subreddits. The final feature

vector for each subreddit contains the TF-IDF score for each term (a term is a single

word or a multi-word phrase detected by our phrase detection algorithm) that appears

in the corresponding subreddit.

There are many algorithms other than TF-IDF that can be used for measuring

textual similarity between two subreddits. These algorithms include word embed-

ding [141] and topic modelling [23, 174]. We opted for a simpler text similarity

measure, TF-IDF, as both word embedding and topic modelling approaches are dif-

ficult to tune, and are significantly more costly in terms of space and time. This

is a concern as our dataset contains 122.7 million sentences. TF-IDF is still a very

good measure for measuring text similarity and widely used in information retrieval

research.
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4.4.1.2 Author similarity–Asim

To calculate author similarity, we similarly calculated the cosine distance to the

weighted (TF-IDF) “bag-of-authors.” For each subreddit, author frequency (TF) was

calculated as the number of times an author posted in the subreddit, normalized by

the maximum number of posts made by a single author in that subreddit. Author

IDF was determined by the number of subreddits the corresponding author posted

on. As with text, for IDF calculation we considered all subreddits that were active

in June. Deleted authors were removed.

4.4.2 Matrix Generation

Using the two similarity functions described above, we calculated the pairwise

similarity of the 4,924 subreddits to generate two symmetric similarity matrices —A

and T— for author and text similarity, respectively. A cell, Aij (or Tij) contained the

result of the similarity calculation for subreddits i and j.

4.4.3 Pairwise relationships between subreddits

Once they are constructed, we are able to compare A and T (for example, using

Spearman’s rank correlation to calculate the correlation between the matrices). The

author matrix is sparse, as many subreddits do not share any authors; in contrast,

the term matrix contains no 0’s as there is invariably some textual overlap. The next

steps account for this difference between A and T .

4.4.3.1 Matrix agreement

To compare the likely links, or “edges,” that will be formed from the matrices we

set thresholds Athresh and Tthresh as filters on the corresponding matrix. If the cell

value is above the threshold, the cell was set to 1 (an edge exists); otherwise it is 0.

Because the author matrix was already sparse, we set Athresh to 0 so all non-zero cells

were retained as edges. For the term matrix, Tthresh can be varied; we consider this a

tunable hyper-parameter of the analysis pipeline. Once we transformed the matrices

into binary form, we simply determined the agreement between them as a measure

of similarity.
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4.4.3.2 Binned comparison

As we have two scores for each subreddit pair, a natural analysis would map each

pair onto a standard (though likely binned) x-y plot. One could then easily find pairs

matching specific constraints; for example, one could find all subreddits pairs with

a 90th percentile score for text and less than the 10th for author similarity. Pairs in

this set would roughly correspond to topic-coherent pairs (high term but low author

similarity).

This approach has a number of problems, however. First among them is that

certain subreddits may dominate the pairings in a particular quadrant. For example,

a default subreddit will likely have many author-coherent links, as they have author-

ship overlap with nearly all other subreddits even when they are topically unrelated.

Second, we would ideally like a single score to identify misaligned subreddit connec-

tions. Neither the rank differences between similarities nor raw difference produce a

satisfactory answer.

4.4.3.3 Double z-score (z2)

To create our misalignment metric, the z2-score, we went through a four-step

process of calculating and standardizing the differences between the author and term

similarity matrices.

To generate a single score comparing the similarity matrix, we might expect to

be able to simply calculate a new matrix D where each cell Dij = norm(Aij − Tij),
meaning each cell in the difference matrix would correspond to the difference in the

values for that cell in the original similarity matrices. However, because the data

distributions for author and term similarity are very different, we chose to calculate

the difference matrix using rank differences instead of simply subtracting the raw

similarity scores.

Thus, the first step was to create ranked similarity matrices, where the raw simi-

larity scores for a given source subreddit and each of the 4,923 remaining destination

subreddits are ranked against each other. In the original matrices, rows and columns

were equivalent, as the raw similarity scores are symmetric. In these new ranked

similarity matrices, this is no longer true: for any particular subreddit pair, it is very

unlikely that the similarity relationship will be symmetric. For example, a small sub-

reddit is likely to have high author overlap with a large, popular subreddit, simply

because of its size; however, this overlap accounts for only a small proportion of the

large subreddit’s authorship, so the link returning from the large subreddit to the
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small one is likely to be ranked much lower.

The second step was to create a single rank-difference matrix D by subtracting

the two rank-similarity matrices (the center matrix in Figure 4.2). In this asym-

metric matrix, the rows represent the source subreddits; the columns represent the

destination subreddits.

Because of the subreddits’ diversity, the distributions of rank differences in each

row are very different. Therefore, in the third step, we standardize the scores in

each row by calculating the z-score (represented by the fourth matrix in Figure 4.2).

Represented as an equation: Dij = norm(rank(Aij) − rank(Tij)). Recall that the

z-score (or standard score) Kz for a set of values K is calculated by subtracting the

mean of K, µK , from each value ki in K and dividing by the standard deviation of

K, stdK . Thus, Kz
i = (Ki − µK)/stdK . The z-score normalized values will be mean-

centered on 0 and will capture the number of standard deviations the value is from the

mean. In the matrix context, mean and standard deviation can be calculated per row

or per column. Therefore, to calculate the single z-score transformed matrix, Dz, we

determined the mean and standard deviation of each row Di of the difference matrix

D. Specifically, for any cell Dz
ij we computed (Dij − µ(Di))/std(Di). The values in

this matrix tell us the difference between author and term ranks for the source and

destination subreddit, standardized by the distribution of source similarities.

This has not yet solved the problem of some subreddits simply being similar to all

others, however. As described earlier, very large subreddits have this problem because

of their size, but it can be caused by other subreddit quirks as well. CatsStandin-

gUp, a popular image subreddit, is one example. When comparing its single z-score

distribution to that of a second subreddit — say, pokemongo— CatsStandingUp has

high positive z-score in Dz (see Figure 4.3). This is misleading, partly because Cats-

StandingUp has high author similarity with many subreddits, but also because it has

unusually low text similarity with most other subreddits: the only word allowed in

the comments is the word “cat.” Commenting rules such as these can artificially

inflate or deflate single z-scores.

To address this, we take our fourth and final step: taking the z-score again,

this time column-wise. This produces Dzz: the double z-score (z2-score) differ-

ence matrix (the rightmost matrix in Figure 4.2). For any cell Dzz
ij we compute

(Dz
ij − µ(Dz

j ))/std(Dz
j ). Subreddits which have high positive z2-score have high au-

thor coherence: higher author similarity than would be expected, given the term

similarity. A high negative z2-score indicates high topic coherence: higher term sim-

ilarity than would be expected, given the author similarity. Where term and author
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Figure 4.3: Comparison between z-score distribution in rank difference list of all other
subreddits for two subreddits: CatsStandingUp and pokemongo

similarities are about as expected (i.e. aligned), the z2-score is close to 0.

This final matrix of z2-scores, Dzz, is asymmetric and this matrix can be used to

build directed and weighted networks.

4.4.4 Subreddit networks

Given our similarity matrices (author and term) and the z2-score difference ma-

trix, we are able to produce various network representations. While correlated, the

networks have different semantics, each with a different application.

For the author similarity network, an easy way to determine which edges

should be created would be to use a threshold on author similarity and to create

an edge between subreddits if the threshold is exceeded. However, we found that

arbitrary thresholds result in a very dense central component with with many dis-

connected subreddits outside it. This is in part due to default subreddits with high

similarity to all subreddits. We instead used an alternative approach popular for pro-

ducing networks from pairwise similarity values [129]. In this method, we took the

top 1% of similarity values for each subreddit to create edges. Each threshold is thus

unique to the subreddit and ensures a connected graph. To further filter out very weak

edges, we included only edges which are in the top 5th percentile of similarity glob-

ally. The trade-off is that while this does not ensure a completely connected graph,

most nodes are connected and edges are largely reliable in community-detection ap-

plications. Other approaches for generating networks (e.g., [167]) emphasize other

features, such as preserving power-law degree distributions in the final network. The

analysis we describe below is applicable when generating networks using alternative

strategies.
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To produce the term similarity network we applied the same technique as

above. As with the author network, we did not get a fully connected graph, but we

did have a giant component containing majority of the nodes. As we used the same

initial nodes (subreddits), we had a direct node-mapping between the author and

term networks, though the edges were different.

Using the difference matrix Dzz we introduce the notion of misaligned networks

i.e. networks where edges are defined by misaligned links. Recall that when there

is agreement between the author and term similarity for a pair of subreddits, the

difference matrix cell will contain a value close to 0. These cells are common, and

expected. Extremely high or extremely low values, on the other hand, are what

we term “misaligned.” Using the difference matrix, we produced two networks: the

author-coherent network, containing only edges with a z2-score of 3.0 or more, and

the topic-coherent network, containing only edges with a z2-score of -3.0 or less. The

first contains only edges when the z2-score is 3.0 or more. Because the matrices are

asymmetric, the produced graphs are directed.

Given these networks, we were able to apply standard metrics such as the cluster-

ing coefficient (density of closed triangle compared compared to connected triplets).

4.4.4.1 Community detection and modularity

There are many different community detection algorithms that can be used to

detect communities in the undirected similarity networks and the directed misaligned

networks. Some of the common algorithms for undirected networks are FastGreedy [147,

42], InfoMap [163], Label Propagation [159], Louvain or Multilevel [136], Spinglass [160]

and Walktrap [153]. These algorithms make use of a varied range of underlying tech-

niques for detecting communities. In recent comparisons [6, 112, 157], both Louvain

and Infomap are shown to perform well. Louvain or multilevel algorithm [24, 136]

is based on modularity maximization for community detection. Recall that modu-

larity is a measure of cohesiveness of a network [145]. Louvain follows a hierarchical

approach by first finding small, cohesive communities and then iteratively collapsing

them in a hierarchical fashion. Infomap uses a different criteria. Specifically, it is an

algorithm based on information theory that assumes that a random walk within a

community is likely to stay within that community, as there are more intra-community

edges than inter-community edges.

For the author and term similarity networks, we applied all six aforementioned

algorithms and compared their results. Random walk based algorithms such as In-

foMap and Walktrap produces a large number of very small communities, whereas
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Label Propagation and FastGreedy produces one very large community which en-

compasses most of the network. Louvain produces reasonably-sized (not too small or

large) communities compared to other algorithms for these graphs and is scalable for

larger graphs. For this reason we use Louvain for community detection in similarity

networks.

However, Louvain can only be used on undirected networks. Therefore, for the

directed misaligned networks we used Infomap [163]. InfoMap can be applied to both

directed and undirected networks, which is a rare property among many community

detection algorithms.

4.4.4.2 Measuring difference in the detected communities

To compare the different communities produced by the different networks, we used

a metric called Normalized Mutual Information (NMI) [179], which produces a score

between 0 and 1 depending on how similar two “partitionings” are. Generally, NMI

is used to evaluate two different community partitions given by two different algo-

rithms on the same network. Here, we used NMI to compare community partitions of

different networks which shared the same set of nodes. Specifically, we used NMI to

give us a single numerical representation of the difference between the communities

in the author- and term-similarity networks.

We also calculated the µ-score, which is the proportion of edges that goes out-

side the community compared to all edges that are touching the community. We can

extend this for communities derived from multiple networks. For example, we took

all pairs of subreddits in a community and calculated average pairwise author and

term similarity. For a “better” community these values should be higher. Especially

for communities in the author similarity network, the average pairwise author simi-

larity should be higher than that of the term similarity network; for term similarity

network, the average pairwise term similarity should be higher. This gives us an ex-

ternal evaluation (i.e. not dependent on network properties) of the goodness of these

communities.

4.5 Results

The z2-score can give us three types of information: information about individual

subreddits, pairs of subreddits, and subreddit networks. In this section, we report

descriptive statistics of the matrices, and then illustrate for each information type

the characteristics and relationships that can be analyzed using the z2-score, using
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examples from the Reddit data.

4.5.1 Matrices

4.5.1.1 Similarity matrices

An analysis of the similarity matrices produces the expected results, provid-

ing a first validation of the z2-score. As expected, a Spearman’s rank correlation

found a weak positive correlation between author and term similarity, r(12120424) =

0.266, p < 0.001. The relationship between author and term similarity is visualized

in Figure 4.4. We note the many subreddit pairs with both high author and high

term similarity (represented by the relatively brighter bins in the upper right of the

heatmap) and the high values along the diagonal.

Figure 4.4: Author similarity vs. term similarity for all pairs of subreddits that have
non-zero author similarity score. Subreddit pairs are binned in a 20x20
grid according to percentile value. Brighter colors indicate more subreddit
pairs in a 2-dimensional bin.

When thresholding the two matrices for creating a simple network representation

(i.e. a value above some threshold means an edge should exist) we find the overlap

between matrices to range from 43% to 61%. We compute this by thresholding the
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author similarity matrix at above 0 and varying the term similarity threshold from

0.05 to 0.95. Edge agreement (based on thresholding) peaks at a threshold of 0.20.

Given the fairly linear fit between author and term similarity we analyzed pairs

by ranking outliers. Specifically, we ran a regression analysis on author similarity

score and term similarity score and used Cook’s distance [44] to identify outliers

with undue influence on the regression line. Taking the 1% of subreddit pairs with

the highest Cook’s distance, we found that some defaults — AskReddit , bestof , gifs ,

LifeProTips — appeared in an unusually high number of pairs. This is consistent with

expectations, as Reddit’s default memberships induce high author overlap between

the defaults and other subreddits.

Figure 4.5: Distribution of z2-scores for all pairs of subreddits.

4.5.1.2 Misaligned matrices

We use the z2-score difference values to find misaligned links both in terms of

absolute and relative misalignment. We define absolute misalignment as z2-scores of

3.0 or greater (author coherent) or less than -3.0 (topic coherent), meaning that it is

more than 3 standard deviations away from the mean (as z-scores for a majority of

subreddits are normally distributed). The distribution of z2-scores for all subreddit

pairs is plotted in Figure 4.5. On average, each subreddit has 18 outgoing author-

coherent links and 9 outgoing topic-coherent links. However, there is considerable

variation in this value, and in cases where a subreddit has few or no links with z2-

scores high enough to qualify as absolute misalignment, it is still valuable to look at

the most misaligned links for that subreddit. We call these types of links relatively

misaligned links.
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4.5.2 Characterizing subreddit pairs

The z2-score affords analysis of four types of subreddit pairs: strongly similar links

(high term similarity and high author similarity), strongly dissimilar links (low term

and low author similarity), misaligned author-coherent links and misaligned topic-

coherent links. Each of these also have several subtypes. In this section, we report

the results of the analysis of the misaligned links.

4.5.2.1 Author-coherent links

The first type of misaligned link is one with high author similarity but low term

similarity (a high positive z2-score). In many cases, this reveals a latent shared interest

between the two subreddits. We call these author-coherent links. Author-coherent

links appear in two types of relationships; we describe both below.

Hierarchical links: Author-coherent links can indicate that the subreddits are

part of a hierarchy. One example is the subreddit pokemon, which had surprisingly

high author similarity with a number of subreddits devoted to other videogames avail-

able on the Nintendo 3DS platform (MyCastleFE , EtrianOdyssey , monsterhunterclan,

etc.), with z2-scores ranging from 2.55 to 3.22. Author overlap can be attributed to

Nintendo 3DS gamers talking about different games. These subreddits represent niche

interests within the same broad topic (Nintendo 3DS games).

In the case of the Nintendo 3DS subreddits, the hierarchy is natural. Others

have a hierarchical structure that is enforced through subreddit rules or norms. For

example, the subreddit pair mturk and HITsWorthTurkingFor had a misalignment

score of 3.42. Both had a high author overlap, but we expected a similarly high

term overlap given the topics (both are forums for Amazon’s Mechanical Turk crowd-

sourcing service).

One strategy for differentiating between natural and enforced hierarchical links

is to perform a log-odds analysis [143] of the text in the two subreddits (identifying

which terms were more probabilistically likely to appear in one of the subreddits or

the other). This makes it possible to identify important differences in terms. Words

most likely to appear in mturk were related to a general discussion of MTurk (e.g.

“work,” “pay,” “mturk”). The top phrases in HITsWorthTurkingFor are from a bot

using the same template repeatedly (e.g. “bot action performed automatically”), with

very little discussion otherwise. This shows an enforced hierarchical pair, where mturk

is the general-interest subreddit and HITsWorthTurkingFor is a niche subreddit for

posting work with primarily bot activity in the comments.

33



Community fragmentation: Author-coherent links are sometimes an indica-

tion of community fragmentation: groups that we would expect to share one com-

munity are in fact spread across several communities. For example, USMilitarySO , a

subreddit for the significant others of U.S. military members, shared high author co-

herence with subreddits about budget makeup (drugstoreMUA, MakeupRehab), preg-

nancy and motherhood (CautiousBB , clothdiaps), and local subreddits for cities with

large military presence (jacksonville, MotoLA). This is an indication that though

many of USMilitarySO ’s members also post on, for example, CautiousBB , they dis-

cuss pregnancy primarily on CautiousBB and not on USMilitarySO . In other words,

the community is fragmented across multiple different subreddits.

This interpretation can be validated by “adding” the text of the two subreddits

together and calculating term cosine similarity between the combined text (in our ex-

ample, CautiousBB +USMilitarySO) and all other subreddits. Subreddits that have

similar levels of cosine similarity with CautiousBB and USMilitarySO individually,

and high cosine similarity with CautiousBB +USMilitarySO , are subreddits represent

the topic overlap between the original two. TheGirlSurvivalGuide is an example of

this: it has a cosine similarity of 0.67 and 0.63 with USMilitarySO and CautiousBB ,

respectively, and 0.76 for CautiousBB +USMilitarySO .

In contrast, subreddits that have high cosine similarity with the combined Cau-

tiousBB +USMilitarySO , but high cosine similarity with only one of the subreddits

when taken individually, represent the fragments of the community. Therefore, while

pregnant has high cosine similarity (0.80) with CautiousBB +USMilitarySO , it has a

much higher similarity with CautiousBB than with USMilitarySO (0.84 versus 0.53).

This validates our initial interpretation that users move to subreddits like CautiousBB

to discuss pregnancy and do not discuss it frequently on USMilitarySO .

In this way, it is possible to identify author-coherent links that indicate com-

munity fragmentation without relying on interpretation or domain knowledge of the

subreddits in question, and differentiate them from hierarchical author-coherent links.

4.5.2.2 Topic-coherent links

A second type of misaligned subreddit pairs are those with very negative z2-

scores. Here we find high term similarity and low author similarity, which we call

topic-coherent links.

Communities at war: In some cases, topic-coherent links connect communities

that have opposing opinions on the same topic. One example is TrollXChromosomes

(a feminist subreddit) → MGTOW (an anti-woman subreddit), which has a z2-score
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of -3.05. Another example is askscience (form for discussion of science-related topics)

and theworldisflat , where participants look for scientific evidence that the world is flat

(z2 of -3.01). In both of examples, the subreddits use similar language but relatively

few authors in the one subreddit also post in the other.

One effect of the z2-score is that when opposing communities cross-post, the score

is close to 0. For example, one natural place to look for topic-coherent links is in po-

litical subreddits. By June 2016, both Hillary Clinton and Donald Trump had gained

the presumptive nomination for their respective parties in the 2016 U.S. presidential

election. However, the z2-scores for the candidates’ largest subreddits indicate rela-

tively low topic cohesion. This is because they ranked highly in both term and author

similarity. The Donald → hillaryclinton had a z2-score near zero, -0.25, indicating

the text and author similarities were about what was expected. The z2-score for

hillaryclinton → The Donald (the mirrored link) was higher, at -1.90, but in both

cases they were in each other’s top decile in both author and text similarity.

Topic-coherent fragmentation: Other topic-coherent links connect communi-

ties that are not necessarily antagonistic. A number of subreddits about different

programming languages have high topic coherence, e.g. javascript and matlab. A

number of programming subreddits — java, javahelp, programming — have high topic

coherence with subreddits for students taking computer science courses, such as OS-

UOnlineCS and cs50 (a Harvard University programming class). Interestingly, some

of these links are approximately symmetric, often not the case for these misaligned

links: javahelp → cs50 has a z2-score of -3.76, while cs50 → javahelp has a z2-score

of -3.02. With mutually low author overlap, this example suggests that the students

of cs50 are not utilizing Reddit as a resource for programming help; however, the

z2-score alone cannot differentiate between antagonistic and non-antagonistic topic

coherence.

4.5.3 Characterizing individual subreddits

In the previous section, we discussed examples primarily in terms of relative mis-

alignment. If we focus only on the most misaligned links overall—those greater than

3.0 or less than -3.0 — we see that some subreddits have many more outgoing mis-

aligned links than others, or many more incoming misaligned links. For example, US-

MilitarySO has 55 outgoing links outside of the -3.0 to 3.0 range, while The Donald

has only one.

Intuitively, we might expect a subreddit with many outgoing links with high au-

thor coherence (high mean z2) to mean that the authors in that subreddit also post
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in many other parts of Reddit about unrelated topics. Few incoming high author

coherence links, that might mean that Reddit’s “mainstream” is not interested in

the subreddit. For example, a mother might post on many subreddits, but mostly

talk about motherhood on subreddits devoted to the topic, such as Mommit . Sim-

ilarly, having many outgoing topic-coherent links with few incoming topic-coherent

links could indicate that the subreddit serves a niche audience for a general topic

that is part of the Reddit mainstream, such as a subreddit for trading skins and

other equipment within a specific popular video game (csgotrade is one example of

this). Conversely, we would expect subreddits with many incoming links and not

a lot of outgoing links to be gathering places on Reddit. If there are both author-

and topic-coherent links incoming, we might be able to characterize these subreddits

as Reddit’s “mainstream”: places where many different authors with many differ-

ent interests gather to discuss topics of universal interest. By the same token, a

subreddit with many more outgoing than incoming links that are both author- and

topic-coherent might represent a community that exists on the margins of the Reddit

mainstream: not isolated, but not fully accepted, either.

4.5.3.1 Mainstream vs. marginalized subreddits

To investigate this, we looked at the proportion of outgoing versus incoming links

for each subreddit. This proportion of outgoing versus incoming links is similar to

what is called the hub and authority scores [102], where hubs have many outgoing links

and authorities have many incoming links. For this analysis, we combined author- and

topic-coherent links (i.e. edges were considered if they had a z2 above 3 or below -3).

This made it possible to filter outliers like CatsStandingUp, which has an artificially

high number of outgoing author-coherent links because its text is limited to the single

word “cat.” No comprehensive categorization of subreddits exists, so we focused on a

small sample of the subreddits at the extremes: those with many more outgoing links,

and with many more incoming links. Specifically, we selected subreddits which had

above the median number of total links and were in the highest 5% of subreddits with

more outgoing than incoming links, and vice versa. We then assigned each subreddit

to one of several broad categories according to topic.

This expected pattern is reflected in the data. Subreddits displaying author-

ity behavior (i.e. many more incoming than outgoing links) tend to have content

that is appealing to a general Reddit audience. Subreddits displaying hub behavior

(i.e. many more outgoing than incoming links) tend to cater to identities that are

marginalized from the Reddit mainstream.

36



We categorized 122 subreddits with the highest proportion of incoming to out-

going links. Of these, 30 (24.6%) were default subreddits, which tend to appeal to

general audiences. Another 22 (18.0%) were image boards such as nonononoyes and

reactiongifs . Much of the remaining content covered topics of technology, gaming,

and comics. In total, these subreddits — we refer to them broadly as “internet cul-

ture” — comprise 63.1% of these 122 subreddits. Of the remaining subreddits, 5 were

far-right political forums, 1 was anti-capitalist, and 3 were advice forums targeted at

a male audience; the others did not fall into any particular category.

The 121 subreddits with the highest proportion of outgoing to incoming links had a

different composition. Of these, only 28 (23.1%) were internet culture subreddits, and

tended to have a more specific focus (e.g. xmen instead of comics). In the remaining

subreddits, 28 (23.1%) targeted specific identities that are less well-represented in

Reddit’s readership: women, people of color, people over 30, and local subreddits for

specific cities. Two far-right and four far-left forums were also in this group. The

remaining subreddits did not fall into any particular category.

To validate our analysis, we calculated hub and authority scores using the HITS

algorithm [102] in a subreddit network with the most misaligned links as directed

edges. The score is commonly used in network analysis and identifies central nodes

based on both the number of incoming links (authorities) and outgoing links (hubs).

The correlations were fairly strong for both: the authority score and number of in-

coming links had a correlation of r(2388) = 0.71, p < 0.001, and the hub score and

number of outgoing links had a correlation of r(2388) = 0.44, p < 0.001. In addi-

tion, a few selected case studies from throughout the proportion distribution were

also consistent. Since Reddit contributors are more likely to be male than female, we

would expect subreddits targeted toward men to have more incoming than outgoing

links, with the opposite being true for subreddits targeted toward women. AskMen

has 197 incoming links and 0 outgoing links (an authority); in contrast, AskWomen,

a subreddit with an almost identical number of subscribers, has 1 incoming link and

21 outgoing links (a hub). Further, in a selection of subreddits targeted toward a

male or female audience (six each), three of the male-targeted subreddits were hubs,

while for female-targeted subreddits only one qualified as a hub, the default subred-

dit TwoXChromosomes . Six LGBTQ subreddits were more evenly split: three hubs,

three authorities. However, subreddits targeted specifically toward trans and gen-

derqueer folk were much more likely to be hubs; of the 10 subreddits tested, eight

had more outgoing than incoming links.
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4.5.3.2 Satellite subreddits

Most misaligned pairs have a high author similarity rank and low term similarity

rank, or vice versa. That is not always the case, however, as the z2-score is not simply

a measure of rank difference. Some links have a high z2-score even though both their

author and term similarity ranks are both very high, i.e. in the top 10% for the origin

subreddit for both similarity types. These links are interesting because they identify

relatively close relationships for subreddits that are otherwise unusually isolated in

authorship or shared terms. We call these satellite pair links.

One example of this type of subreddit is Divorce, an advice and support forum

with relatively high term similarity but very low author similarity with the rest of

Reddit. It has a median raw term similarity score of 0.33, compared to an overall

median of 0.22 for all subreddit links, and yet shares an author in common with only

27.4% of other subreddits, compared to 60.7% for all subreddits. Consequently, the

pair Divorce → datingoverthirty has surprisingly high author coherence (z2-score of

3.11) even though the raw authorship similarity score is low. This suggests that the

authors in these subreddits are usually isolated from the rest of the network compared

to other subreddits that discuss similar topics.

Subreddits that are unusually isolated in authorship but have multiple outgoing

links of high author coherence tend to share common characteristics. Like Divorce,

most of these subreddits are advice and support subreddits for relationships, mental

health issues, or other medical problems. Of the 50 subreddits that have five or more

of these high-author satellite pair links, 44 fall under this category. Examples include

selfharm, TryingForABaby , Fibromyalgia, and rapecounseling . These 50 subreddits

have a median text similarity considerably higher than the median for all subreddits

(0.31 versus 0.22), but have lower median shared authorship than Reddit at large

(median 47.5% versus 60.7%). Further, the majority of these links (55.6%) are to

other isolated advice and support subreddits.

Less common are subreddits that are unusually isolated in term similarity with

surprisingly high topic coherence. Only 139 of these pairs exist, compared to 2258 for

authorship satellite pairs, which make these subreddits more difficult to characterize.

4.5.4 Characterizing subreddit networks

4.5.4.1 Author similarity network

Community detection produced 8 large communities (Table 4.1) in the author

similarity network that include all but 6 of the 4,924 nodes (those remaining were
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sorted into communities of less than three nodes).

Top 3 subreddits Size µ-score cc Aut. score Term score
funny todayilearned pics 1128 0.44 0.16 0 0.21

AskReddit worldnews announcements 988 0.52 0.19 0 0.18
IAmA videos Music 887 0.35 0.16 0.004 0.17

gaming leagueoflegends Games 740 0.49 0.17 0 0.19
space technology europe 595 0.55 0.24 0 0.21

sports BlackPeopleTwitter nfl 360 0.57 0.22 0 0.34
Fitness trees Drugs 160 0.62 0.44 0 0.32

Art ArtisanVideos montageparodies 60 0.56 0.74 0.001 0.23

Table 4.1: Top communities in the author similarity network. The community’s three
largest subreddits are listed, along with the size and a number of metrics
that measure the quality of the community structure: µ-score, cluster-
ing coefficient (CC), and median raw pairwise similarity scores for both
authors and terms.

As shown in the table, author communities tend to have a relatively high µ-score

(median = 0.54) and a relatively low clustering coefficient (median = 0.20), indicating

that community structure is fairly poor. This partly a function of the size of the

communities. As measured by the clustering coefficient, cohesiveness improves in

the smaller communities. Pairwise raw similarity scores are another way to evaluate

the community structure. While at first glance, the median raw pairwise author

similarities seem very low, this is because these scores are very low overall, with

an overall median of 5.24 × 10−6. The author communities have a median pairwise

author similarity that is about 10 times higher than the overall median, an indication

that the identified communities are reflecting a true community structure, even if the

µ-score and clustering coefficient indicate that it is not strong.

As with the author similarity matrix, it is likely that the muddy structure of the

author similarity network is a reflection of Reddit’s design. Because all new users

begin with a similar set of default subreddits from which they explore other parts

of Reddit, those defaults have author connections to many other subreddits. This

would explain why all of the identified communities in the author similarity network

include at least one default subreddit, and the largest communities include multiple

defaults. Even so, there is a coherent theme in many of these communities: gaming ,

leagueoflegends , and Games , as an example, or trees and Drugs (trees is a subreddit

for users of cannabis).
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Top 3 subreddits Size µ-score cc Auth. score Term score
gaming sports leagueoflegends 845 0.24 0.27 0 0.31

IAmA blog tifu 728 0.44 0.25 0 0.22
AskReddit funny todayilearned 621 0.60 0.18 0 0.21

worldnews announcements news 516 0.39 0.30 0 0.39
LifeProTips Futurology technology 503 0.53 0.31 0.001 0.45

pics travel beer 289 0.42 0.32 0 0.59
hiphopheads Guitar tipofmytongue 155 0.12 0.44 0.001 0.43

nonononoyes cars bicycling 143 0.13 0.71 0.002 0.46
hearthstone magicTCG CompetitiveHS 45 0.01 0.72 0 0.44

gardening Aquariums Fishing 30 0.08 0.66 0.001 0.39

Table 4.2: Top 10 communities in the term similarity network. The community’s
three largest subreddits are listed, along with the size and a number of
metrics that measure the quality of the community structure: µ-score,
clustering coefficient (CC), and median raw pairwise similarity scores for
both authors and terms.

4.5.4.2 Term similarity network

Compared to the author similarity network, the term similarity network produced

many more communities (Table 4.2): 26 in total, with more variation in size (3 to

845 subreddits). The term similarity network also produced many more communities

of one to two nodes, totaling 19.8% of subreddits.

The term similarity network had low µ-scores and high clustering coefficients:

communities in the term network have a median µ-score of 0.007 and median clus-

tering coefficient of 0.71. This indicates a good community structure, particularly in

comparison to the author similarity network. As with the author communities, cohe-

siveness improves as the community shrinks. The µ-score also tends to get lower as

the communities get smaller, an indication that the community structure is improv-

ing. Looking at the pairwise term similarity scores, the term communities’ median

score of 0.30 is higher than the overall median of 0.22.

As with the communities in the author network, many of the term communities

include defaults — unsurprising, given that the defaults are chosen to have widespread

appeal — but the influence is not as strong so not all communities include defaults.

As would be expected, the themes of each community are clearer than in the author

communities, and we can clearly make out different gaming, news, technology, music,

and hobby-related communities.
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4.5.4.3 Comparing similarity networks

We find the NMI score between the term and author derived networks to be fairly

low at 0.284. In this particular pairing the differences are likely due to the existence of

default subreddits. Communities in author similarity network are larger and mostly

centered around these defaults, whereas communities in term similarity network vary

greatly in size and are topically more cohesive. However, we note that the largest

communities in both networks share many common nodes.

4.5.4.4 Misaligned networks

We computed two misaligned networks using the z2-scores, one with high author-

coherent links (z2 ≥ 3) and one with high topic-coherent links (z2 ≤ 3). Both are

composed of one giant component (containing 2670 and 2023 nodes for the author-

and topic-coherent networks, respectively), and many small connected components.

After running the InfoMap community detection algorithm, we found the clearest

structure in the topic-coherent network. Disregarding communities with fewer than

5 subreddits, the algorithm found one large community of 1940 subreddits and many

127 smaller communities ranging in size from 5 to 143. These communities usually

have very low clustering coefficient (median 0.0) and very high mu-score (median 0.7),

but have median pairwise author and term similarity scores that are much higher than

the communities in the similarity networks (3.3× 10−4 the median author score and

0.31 median term score in the similarity networks). Table 4.3 shows some examples of

these topic-coherent communities. We observe that they consist of subreddits related

by broad general category (e.g., “sports”) with different sub-topics that often have

very little to no overlap in participation (nfl , soccer , nba).

Top 3 subreddits Size Broad category
listentothis tipofmytongue electronicmusic 143 Music and music/video recommendation

hearthstone magicTCG boardgames 91 Board games and card video games
Python perfectloops dailyprogrammer 81 Programming

Diablo diablo3 Smite 68 Online multiplayer gaming
Gunners LiverpoolFC Seahawks 48 Sports fan clubs

EatCheapAndHealthy keto fitmeals 46 Food and health
nfl soccer nba 45 Sports

compsci jobs cscareerquestions 44 Education and career
bicycling motorcycles MTB 39 Motorcycles and bicycles

Table 4.3: Some interesting misaligned communities in the topic-coherent network.
The community’s three largest subreddits are listed, along with its size
and broad categories.
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4.5.5 Summary

The z2-score method makes it possible to characterize communities and the rela-

tionships between them in a dense network with little explicit structure. By using

multiple measures of similarity — author overlap and term similarity — we are able

to identify relationships that would be invisible if one used a single measure, and

use those relationships to analyze elements in the network that are of interest to re-

searchers. Below, we summarize how the z2-score can be used to analyze different

elements in the network.

4.5.5.1 Individual subreddits

• Mainstream vs. marginalized subreddits: By calculating the proportion of

the total number of incoming and outgoing links with extreme z2-scores (similar

to hub and authority scores in network analysis) one can differentiate between

communities that are part of the network’s mainstream and communities that

participate in the mainstream but are pushed to the margins. In this way, one can

also learn about the network as a whole: what is mainstream, what is marginalized,

and what is isolated.

• Satellite subreddits: Satellite subreddits have authors that are more isolated

from the rest of the network than would be expected, given the subreddit topic, or

vice versa; in our analysis, these communities tended to cater toward vulnerable

users (e.g. selfharm). These are distinct from subreddits that are just isolated,

which can be found simply by using the similarity matrices to find subreddits that

have low term and low author similarity. Satellite subreddits can be identified

using a particular subtype of author- and topic-coherent links we call satellite

pair links, in which two subreddits have both very high author and very high term

similarity but still have a high z2 because both subreddits are otherwise unusually

isolated from other subreddits.

4.5.5.2 Subreddit pairs

• Author-coherent links: These relationships indicate that a community (in this

analysis, a subreddit) shares more authors with another community than would

be expected, given their level of textual similarity. These links can identify two

different phenomena: hierarchical links and community fragmentation. Hierarchi-

cal links occur between subreddits that represent niche interests within the same
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broad topic; these can occur naturally, or can occur as a consequence of subred-

dit rules. Community fragmentation occurs when a single group of users that we

would expect to share one community instead spread across multiple communities

to discuss different topics. These links are interesting because they can reveal a

shared interest in topics that do not always seem related at first glance.

• Topic-coherent links: In these relationships, a community has more textual

similarity with another community than would be expected, given their author

overlap. This usually means that two different groups of people are discussing the

same topic, but not talking to each other. These can take several different forms.

Some are links between communities “at war” and not speaking to each other;

conversely, links with low z2-scores between two antagonistic communities indicate

that they are cross-posting on each others’ forums. Topic-coherent links are not

always an indication of antagonism, however; in topic-coherent fragmentation, the

linked communities may have ambivalent or neutral opinions of the other.

4.5.5.3 Subreddit networks

The z2-score can also be used to characterize a network as a whole. Unlike the

results for individual subreddits and subreddit pairs, where we reported only the mis-

aligned results, we analyzed networks constructed from the similarity matrices as well

for additional face validity. In the undirected similarity networks, both author and

term networks show definite community structure in Reddit, although the communi-

ties in author similarity network are very much focused on default subreddits as an

artifact of Reddit design (all new users are automatically subscribed to default subred-

dits). For the directed misaligned networks that used z2-scores, the author-coherent

network did not show a pronounced network structure when a directed community

detection algorithm is run, but topic-coherent network produced small communities

based on a common, broad interest with the individual subreddits different enough

from each other that they have few users in common.

4.6 Discussion

In this chapter we demonstrate how the z2-score based methodology can be used

to find misaligned links and communities. The z2-score makes it possible to find par-

ticular relationships that have been identified as interesting by previous research but

have been difficult to find and characterize systematically. Hierarchical communities
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and community fragmentation, both of which can be identified using the z2-score, are

important in understanding how a network and its communities develop over time.

In addition, the z2-score may have other practical applications, such as identifying

vulnerable users who may be at risk of harm. For example, high-author satellite sub-

reddits are populated by users who are unusually isolated from the rest of Reddit; as

this tends to correspond with subreddits such as SuicideWatch and selfharm, these

users may be in particular need of support.

4.6.1 Limitations

The z2-scores alone can not distinguish between all relationship types; in many

cases, human input and domain knowledge is required to interpret the z2-score results.

For example, we can not distinguish “communities at war” from other topic-coherent

links. Human input or additional NLP techniques (e.g., sentiment analysis) are nec-

essary. Though rare we also find that if there is significant cross-posting between

warring subreddits, then both author and term similarity between the subreddits are

high. Thus, z2-score alone can not detect these pairs. For example, The Donald and

hillaryclinton are warring subreddits, but many authors from The Donald posted

in hillaryclinton in the month of June. This resulted in high author similarity be-

tween both. We also need to employ additional measures to identify misaligned links

that are produced by subreddit moderation like mturk → HITsWorthTurkingFor .

We demonstrated some techniques that can automatically distinguish between rela-

tionship types — for example, the subreddit “addition” that makes it possible to

differentiate between hierarchical and fragmented communities — but some level of

human interpretation was still necessary in many of our reported results.

We also need to keep in mind that z2-score makes use of pairwise similarity val-

ues that necessities access to metadata of all social entities in the process. Getting

access to metadata is difficult in many cases. For example, we do not have access to

moderator list of all public subreddits. This limits the usefulness of z2-scores when

using common moderators as a similarity measure in Reddit.

4.6.2 Future extensions

4.6.2.1 Expanding text analysis

Additional quantitative methods such as log-odds ratios or sentiment analysis

could shore up validity in future analyses. For example, sentiment analysis might

be able to differentiate between communities at war and topic-coherent fragmenta-
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tion. Developing additional techniques that can automatically differentiate between

different types of relationships will increase the method’s validity and reduce the need

for subjective interpretation. It would also be useful in z2-score analyses that look

for additional hidden structures in the network. For example, Reddit has a small

network of non-English-language subreddits. Unsurprisingly, these tend to be more

isolated from the rest of Reddit. However, links of high author coherence pointing to

these subreddits from English-language subreddits can show points of crossover, e.g.

between English and non-English soccer subreddits.

4.6.2.2 Additional similarity measures

Useful insights can be gained from using other kinds of similarity measures be-

tween subreddits, such as a moderator network where edges between subreddits in-

dicate that they share at least one common moderator. In a preliminary analysis,

we found a community of Internet meme subreddits (dankmemes) and subreddits

of popular animes in meme culture (KillLaKill , cowboybebop). This is not apparent

when observing only author and term similarity networks.

4.6.2.3 Application in other social media

The concept of z2-scores can readily be applied to other social media and so-

cial networking websites like Twitter or Facebook. For example, differences tweet

hashtag use and @-mentions can reveal nuances in communication in Twitter. Our

pipeline does not restrict the user from using any kind of similarity measure between

two entities. Moreover, choice of similarity measurement algorithms or community

detection algorithms can be fine-tuned. We believe with appropriate choice of simi-

larity measures and algorithms z2-scores can be used to detect “communities in war”,

community fragmentation or isolated groups in other social media. However, as dis-

cussed before, when we have incomplete data, z2-scores have limited usefulness as

they depend on pairwise similarity values.

4.7 Conclusion

We described a method for inferring network structure using different similar-

ity metrics for social media data. Rather than focusing on the agreement between

different scores, we identified the importance of differences in capturing uncommon

structures and behaviors. We provided a method for comparing the pairwise simi-
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larity matrices and a normalization (the z2-score) that identifies ‘misaligned’ connec-

tions. Both extremely high and extremely low values of z2 can be used to produce

‘misaligned networks’ that display topical or author coherence. We applied these

methods to the study of subreddits and demonstrated that they were able to identify

(and help in classifying) different types of behavioral patterns as well as artifacts of

UX design. We believe that our technique can be applied in other scenarios where

network inference is employed in the study of social media.

In the next chapter, we look into differences in local user behavior in subreddits

instead of differences in inference. We find that there are implications for anti-social

behavior if we study users who behave differently in different subreddits.
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CHAPTER V

Extracting Inter-community Conflicts in Reddit

5.1 Overview

Anti-social behavior in social media is not solely an individual process. Com-

munities can, and do, antagonize other groups with anti-social behaviors. Similarly,

both individuals and communities can be sanctioned in reaction to this behavior. On

Reddit, for example, individuals can be banned or otherwise be sanctioned (e.g., have

their posts down-voted). Likewise, entire subreddits can also be sanctioned when

multiple individuals use the community as a platform for generating conflict, in vio-

lation of general Reddit norms. We look into anti-social behavior in Reddit through

the lens of difference in user behavior in different subreddits.

Critically, the form of anti-social behavior at the community level can be quite var-

ied. The ability to identify and coordinate with others means that actions considered

anti-social for the individual can be expanded to group settings. A group can thus

act anti-socially — producing mass spamming and trolling, flame wars, griefing, bait-

ing, brigading, fisking, crapflooding, shitposting, and trash talking — against both

individuals and other subreddits [109, 166]. On Reddit, as in other discussion boards,

the ability to create (multiple) accounts under any pseudonym can further exacer-

bate such behaviors. Although a vast majority of users are generally norm-compliant,

anonymity can lead to less inhibited behavior from users [176]. In aggregate, the re-

sult is an entire embedded network of subreddit-to-subreddit conflicts inside of the

Reddit ecosystem. Research has found specific instances of these conflicts. Our goal is

to inferentially identify the structure and dynamics of this community-to-community

conflict network at scale.

To achieve this, we address a number of challenges. First among them is the lack

of explicit group membership. Group ‘membership’ in Reddit, and systems like it, can
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be vague. While subscriptions are possible, individuals can display member-like be-

haviors by posting to subreddits they are not part of. Such behaviors — subscription

and posting — are not, however, a clear indication of the individual’s ‘social homes.’

An individual can display both social and anti-social behaviors within the community

via posting. Instead, what we seek is not simply to identify an individual’s ‘home’

but to further discriminate between social homes and anti-social homes.

To achieve this separation, we apply a definition that extends Brunton’s construct

of spam: a community defines spam as (messaging) behavior that is not consistent

with its rules and norms [28]. That is, we seek to separate norm-complaint behaviors

that indicate social membership and those that are norm-violating (indicating an

anti-social home). Rather than relying on a global definition of norms, we utilize

the sanctioning and rewarding behavior of individual subreddits in response to norm

violation and compliance respectively. An explicit measure we leverage is up- and

down-voting on posted comments. While these are not the only kind of sanctions

and rewards, they are (a) consistently used, and (b) can be aggregated both at the

individual and community levels. As we demonstrate below, inference based on these

lower level signals can help identify broader conflicts.

A further appeal of the bottom-up approach is that the converse, top-down iden-

tification of sanctions at the subreddit level, does not provide a clear indication of

conflict. First, this signal is sparse as the banning of subreddits remains rare. Except

for explicit brigading, which are (hard to detect) coordinated attacks on another sub-

reddit, community-based anti-social behaviors may not result in a community being

sanctioned. Second, even when a sanction is employed it may be due to other reasons

than community-on-community attacks. For example, subreddits such as fatpeople-

hate (a fat-shaming subreddit) and europeannationalism (a Nazi subreddit) have been

banned but not necessarily due to any specific ‘attack’ but rather non-compliance with

Reddit-wide norms on hate speech.

Our bottom-up inference is different in that we can identify pairs of social and anti-

social homes and aggregate these to find conflicts. Specifically, we can find authors

implicated in conflicts — which we call controversial authors — by identifying those

that have both social and anti-social homes. From this, we can say that if multiple

authors have a social-home in subreddit A and an anti-social home in subreddit B,

then there is a directed conflict between A and B. By finding aggregate patterns using

all Reddit comments from 2016 (9.75 million unique users and 743 million comments),

we can construct the subreddit conflict graph at scale. Furthermore, we demonstrate

how the directed edges in our graph can be weighted as a measure of conflict intensity.
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The process of identifying conflict edges and their associated weights is complicated

by the inherent noise in behaviors and high-variance of community sizes. A specific

contribution of this chapter is the use of different aggregation and normalization

techniques to more clearly identify the conflict graph.

Using this graph, we can determine not only the broad landscape of community-

to-community conflicts but can answer specific questions as well: Which subreddits

are most often instigators of conflict (versus targets)? Are conflicts reciprocal and

are they proportional in intensity? Does ‘attacking’ multiple subreddits imply broad

misbehavior by members of that subreddit or the work of just a few individuals? Are

certain subreddits targeted ‘together?’ Do conflicts shift over time?

Briefly, we find that subreddit conflicts are often reciprocal, but the conflict inten-

sity is weakly negatively correlated with the intensity of the ‘response.’ We also find

the larger subreddits are more likely to be involved in a large number of subreddit

conflicts due to their size. However, our analysis of the fraction of users involved

can isolate situations where both relative and absolute counts of involved authors

are high. Additionally, we find different patterns of conflict based on intensity. For

example, a single subreddit targeting many others may divide its attention, resulting

in decreased intensity across the targets. On the other hand, we find anecdotal evi-

dence that subreddits which act as social homes to many controversial authors and

have high average conflict intensity against other subreddits often display communal

misbehavior. Because of the longitudinal nature of our data, we are also able to per-

form a dynamic analysis to isolate temporal patterns in the conflict graph. We find,

for example, that subreddits that conflict with multiple other subreddits change their

main focus over time.

Our specific contributions are mapping the static and dynamic subreddit conflict

networks across Reddit. We identify group membership and define the concept of

social and anti-social homes as a way of defining conflicts. By analyzing the different

static and temporal patterns in subreddit conflicts, we provide evidence for mecha-

nisms that can identify communal misbehavior. We provide a baseline for quantifying

conflicts in Reddit and other social networks with ‘noisy’ community structure and

where individuals can behave (and misbehave) in a communal fashion. This chapter

has implications in identifying community features which can be used to automati-

cally monitor community (mis)behavior in such social networks as an early warning

system.

In this chapter, we focus on differences in user behavior in different subreddits

to identify and understand patterns in community-to-community conflicts in Reddit.
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We make use of two node-aligned networks the conflict graph and the co-conflict

graph for this purpose. A paper based on this chapter is published at [51].

5.2 Related Work

In addition to relevant related works on trolling in Reddit in Chapter III, we

describe works pertaining to conflicts in social media and signed social networks in

this section.

5.2.1 Conflicts in Social Media

Undesirable behavior in online communities are widely studied in social media

research. Qualitative analysis often focuses on identifying and characterizing different

types of inappropriate online behaviour or provides case studies in different forums.

Analysis of Usenet news, for example, helped explore identity and deception [58].

General anti-social behaviors [83] can also manifest in ‘site-specific’ ways as in the

trolling and vandals on Wikipedia [169], or griefing and combative strategies in Second

Life [41].

Predicting trolls and other anti-social behavior is another well explored research

area. For example, researchers have studied the connection between trolling and neg-

ative mood which provided evidence for a ‘feedback’ loop that contributes to further

trolling [39]. In the context of prediction, several studies focused on detecting certain

anti-social behaviors on specific sites (e.g., vandalism in Wikipedia [5, 110]). Others

have attempted to predict both anti-social behaviors or sanctions. Examples of the

former include finding sockpuppets (same user using multiple accounts) on discussion

sites [108] and Twitter [73]. Within Reddit, Kumar et al. [109] studied controversial

hyperlink cross-postings between subreddits to identify community conflict. Exam-

ples of the latter (sanction prediction) include future banning based on comments [40]

and using abusive content on one forum to predict abuse on others [36]. The bulk

of research has emphasized the behavior of individuals rather than inter-community

anti-social behavior (rare exceptions emphasized specific types of anti-social behav-

ior). While we draw upon this literature to understand individual trolling, our focus is

on a broad definition of higher-order inter-community conflicts. That is, our aim is to

identify inter-community conflict (rather than individual-on-individual or individual-

on-community) by developing behavioral mapping mechanisms in the context of the

broader network.

50



5.2.2 Signed Social Networks

We analyze subreddit conflicts by creating a subreddit conflict graph, which can

be viewed as a signed graph (where all the edges are marked negative). Use of signed

graphs for trolling detection is uncommon but has been explored in past research.

Kunegis et al. [111] predicted trolls and negative links in Slashdot (a technological

news website and forum where users are able to tag other users as ‘friend’ or ‘foe’).

Multiple studies [170, 187] proposed models to rank nodes in signed social networks.

Signed networks incorporate both positive and negative edges. In our case, it is dif-

ficult to make claims about positive relations in the conflict graph. Because most

individuals are norm-compliant, edges constructed between two social homes may be

an artifact of authors being largely norm-compliant and simply reflect correlated in-

terests. In contrast, an author that displays both norm-compliant and norm-violating

behaviors provides a better indication of likely conflict.

5.3 Dataset

For the analysis presented here, we used all publicly available Reddit comments

from 2016. This was a subset of the multi-year Reddit data (posts, authors, comments,

etc.) compiled by Baumgartner [17]. We specifically mined commenting behavior

(rather than posting) for building conflict graphs. Comments are much more prevalent

than posts, and anti-social behavior in Reddit often involves inflammatory comments

rather than posts. For each comment, we make use of the following metadata: author

of the comment, which subreddit the comment was posted on and how many upvotes

and downvotes the comment received. We found that there are 9,752,017 unique

authors who commented at least once in Reddit in our sample. Though largely a

‘human population,’ bots can also be programmed to generate comments. Of the 9.7M

authors, 1,166,315 were ‘highly active,’ posting more than 100 comments throughout

the year. On average, a Reddit user posted in 7.2 subreddits and commented 76.2

times in 2016. As may be expected, most Reddit users are pro-social. In 2016, we

find that 79.2% of authors (across all of Reddit) have at least 90% of their comments

upvoted.

5.4 Identifying Inter-community Conflicts

To define the conflict graph between subreddits we need first to identify edges

that capture community-on-community ‘attacks.’ We would like these edges to be
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directed (as not all conflict is reciprocated) and weighted (to indicate the strength of

the conflict). Our goal is not to only identify ‘passive’ ideological opposition but also

behaviors where one subreddit actively engages with the other.

This distinction is important as there are instances where two subreddits are

discussing the same topic through different ideologies (as determined through text

analysis), but have very low author overlap. For example, the askscience (discussion

forum for science-related topics) and theworldisflat (forum for scientific evidence that

the world is flat) could be considered to be ideologically opposed [53]. However, there

are very few authors who post in both subreddits, meaning there is no engagement

and no ‘conflict’ by our definition. These individuals do not agree but largely leave

each other alone.

Instead, we focus on identifying individuals that post to multiple subreddits and

behave differently depending on the subreddit. In our model, behaviors, such as

commenting, can be norm-compliant or norm-violating. Norm-compliant are those

behaviors that the community finds agreeable in that they are consistent both with

the way behaviors (e.g., message posting) should be done and/or the content of the

message itself. Norm-violating are those behaviors that are disagreeable in the same

way (how they’re posted or what is in them). Norm-violating behavior can include

traditionally anti-social behaviors: flame wars, griefing, spamming, trolling, baiter,

brigading, baiting, fisking, crapflooding, shitposting, and trash talking. This, again, is

consistent with Brunton’s spam definition [28]. The appeal of this localized definition

of spam is that each community can assert what they consider social or anti-social

behavior (i.e. norm-compliant and norm-violating) and can make local decisions to

reward or sanction such behaviors respectively.

Our inferential goal is to operationalize social and anti-social behavior by lever-

aging reward and sanction behaviors as indicators. For this purpose, we use up- and

down-votes. Obviously, not all compliant behaviors are rewarded through up-votes,

nor are all norm-violating sanctioned through down-votes (banning being a notable

alternative). Other metrics for norm-violation may include identifying banned users

or users whose comments are regularly removed by moderators. Unfortunately, such

data is not readily available (removed comments and authors will be missing from

the dataset). Posts can also be marked as ‘controversial’ to signal undesirable be-

havior, but these are not always anti-social per se. Additionally, both banning and

controversial post ‘tagging’ may not be reliably imposed. Upvoting and downvot-

ing, however, are specifically part of the incentive structure for Reddit and are both

uniformly applied and ubiquitous.
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Figure 5.1: General methodology for identifying conflicts and creating the conflict
graph.

An individual who reliably produces enough measurable norm-compliant behavior

(e.g., many upvoted messages) can be said to have a social home in that community.

Likewise, an individual that produces a substantial amount of measurable norm-

violating behavior (i.e. many downvotes) is said to have an anti-social home in that

community. An individual can have multiple social and multiple anti-social homes.

Because our goal is to find conflict edges we do not consider authors that are only

social or only anti-social. Those who are globally norm-violating (e.g., spammers,

malicious bots, etc.) and are negatively treated in all subreddits in which they post

are removed from consideration. Figure 5.1 (left) illustrates this idea.

A second key aspect in building the conflict graph is in aggregation. One particular

individual may have a social home and an anti-social home. However, from the single

example, we can not infer that the other members of that person’s social home would

endorse the messages the person is posting to the other subreddit. Instead, we look

for signals in the aggregate. If there are many individuals, who cross-post to two

subreddits — where one subreddit is clearly a social home, and the other is clearly

an anti-social home — we infer that a conflict exists. This conflict need not be

reciprocated, but as we show below, it often is.

We can roughly quantify the anti-social behavior of a user within a subreddit if

he/she has more downvoted comments compared to upvoted comments. Note that

a single comment can have multiple upvotes and downvotes. Reddit automatically

upvotes a user’s own comment (all comments in Reddit start with one upvote). We

consider the user’s upvote as a ‘baseline’ as we assume the author views his or her

own comment positively1. We say a comment is downvoted (in aggregate) if the

1The algorithms described in this project can be applied with or without a individuals’ personal
upvotes. However, we note that exclusion of this number may slightly change the descriptive statistics
we report.
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total number of downvotes for the comments exceeds upvotes, and upvoted when

upvotes exceed downvotes. Similarly, we determine that a user has shown social

behavior if they have more upvoted comments (rewarded, norm-compliant) compared

to downvoted ones (sanctioned, norm-violating) within a subreddit.

To distinguish between an author’s ‘home’ and simply a ‘drive-by’ comment, we

enforce a threshold (we call this significant presence) of more than ten comments in

the subreddits over the course of the year (2016). This threshold also ensures that

we can observe enough up and down votes for any particular author. Additionally,

new authors in a subreddit might break some unfamiliar rules, and receive downvotes

initially. Our threshold gives sufficient data to determine if they ‘learned.’ We also

enforce that the user has more than 100 total posts in 2016, which ensures that they

have an overall significant presence on Reddit.

As authors were automatically assigned to default subreddits (AskReddit , news ,

worldnews , pics , videos), many Reddit authors began by posting in these groups 2.

Norms (and norm-compliance) in these subreddits may be significantly different from

rest of the subreddits. Using our definition of social homes, a large number of users

have at least some default subreddit as their social home or anti-social home just

because they started by posting in these forums. For this reason, we exclude default

subreddits from our analysis.

5.4.1 Controversial Authors

We denote an author with at least one social and one anti-social home as a con-

troversial author (the purple figures in Figure 5.1). In 2016, 1,166,315 authors had

more than total 100 comments over the year. After filtering for significant presence

in subreddits, we found 23,409 controversial authors. This indicates that only about

2% of the more prolific Reddit users fall into this category. Among the controver-

sial authors, 82% have only a single anti-social home. The vast majority (92.5%) of

controversial authors have more social than anti-social homes. This indicates that

these authors differ from the conventional idea of a “troll” who misbehaves in every

forum they participate in. This also means that a typical controversial author fo-

cuses his/her ‘misbehavior’ on a small number (usually 1) subreddits. This result is

consistent with Reddit users being loyal (in posting) to a small set of subreddits [81].

In aggregate, if there are many controversial authors that have a social home in

subreddit A and anti-social home in subreddit B, we view this to be a directed conflict

2Though this does not impact our analysis (for 2016 data), we note that default subscription was
replaced in 2017 with a dynamic popular subreddit homepage.
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from A against B. We call this a conflict edge. The sum of all these edges, after some

additional filtering, captures the conflict graph (Figure 5.1, right).

Our approach has the benefit that aggregation can eliminate various types of noise.

While upvoting/downvoting is noisy at the level of any particular message, aggrega-

tion at the author level allows us to look for consistent behaviors (i.e. are messages

from an author always rewarded in one place and sanctioned in another?). Noise at

the level of a particular controversial author is similarly mitigated by aggregation (are

there multiple individuals being rewarded in one place and sanctioned in the other?).

5.5 The Subreddit Conflict Graph

5.5.1 Constructing the Conflict Graph

To construct the conflict graph, we apply the following strategy. If k authors have

a social-home in subreddit A, and an anti-social home in subreddit B, we can create a

weighted directed conflict edge from A to B. If we create these edges for all subreddit

pairs, we have a graph of antagonistic subreddit relations. Weights for these edges

must be normalized as different subreddits have a different number of users. Thus, a

raw author count (i.e. common authors with a social home in A and anti-social home

in B) is misleading. Larger subreddits would dominate in weights as more authors

often means more controversial authors. For convenience, we refer to the ‘source’ of

the edge as the instigating subreddit and the ‘destination’ as the targeted subreddit.

We normalize the raw controversial author counts by the number of common

authors in both subreddits. Furthermore, for each subreddit pair, we require that

there are at least five controversial authors between them to ensure that we are not

misidentifying a conflict due to very few controversial authors (i.e. if there is k1

authors with social home in subreddit A and anti-social home in subreddit B, and k2

authors with social home in subreddit B and anti-social home in subreddit A, k1 +k2

must be at least five). We emphasize that the weight, direction, or even existence, of

an edge from subreddit A to B, is very different from an edge from B to A.

5.5.2 Eliminating Edges Present due to Chance

While defining conflict between a pair of subreddits, we need to make sure that

users are not perceived negatively in the attacked subreddit by chance. For two sub-

reddits A and B with ncommon common users and nactual users perceived positively in

subreddit A but negatively in subreddit B (we only consider users who posted more
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than 10 times in both subreddits), we calculate the number of users who can be per-

ceived negatively in subreddit B by chance. First, we define an empirical multinomial

distribution of comment types for subreddit B, i.e. we calculate the probabilities of a

random comment in subreddit B being positive (upvoted), negative (downvoted) or

neutral. To create this multinomial distribution, we only use comments from users

who posted more than ten times in subreddit B as these are the users we consider

when declaring controversial authors. For a common user i, if i posted ni times in

subreddit B, we sample ni comments from the probability distribution and calculate if

he/she is perceived negatively in the sample. We sample all common users and count

the total number of users perceived negatively in subreddit B. We repeat this experi-

ment 30 times to create a sampling distribution of the expected number of negatively

perceived users and calculate the z-score of nactual using this sampling distribution.

We only retain conflicts from A to B, where this z-score is greater than 3, i.e. the

number of users perceived negatively in the attacked subreddit is significantly higher

than the number expected from random chance. The final set of subreddits (nodes)

and associated edges are the conflict graph.

5.5.3 Conflict Graph Properties

The final subreddit conflict graph for 2016 consists of 746 nodes and 11,768 edges.

This is a small fraction of active subreddits in 2016 (around 76,000) which is, in

part, due to the low amount of ‘multi-community posting’ on Reddit [81] (i.e. very

few authors regularly post to more than one ‘home’ community). As we require

multi-community posts to create an edge, the result is that many subreddits are ‘free

floating’ and are removed from consideration. Of the 746, nine were banned some-

time between the end of 2016 and April of 2018: PublicHealthWatch (a subreddit

dedicated to documenting the ‘health hazards’ of, among others, LGBTQ groups),

altright , Incels (involuntary celibate), WhiteRights , european, uncensorednews , euro-

peannationalism, DarkNetMarkets and SanctionedSuicide. An additional six became

‘private’ (requiring moderator approval to join and post), which includes a couple of

controversial subreddits: Mr Trump and ForeverUnwanted .

The conflict graph consists of 5 components, with the giant component containing

734 nodes. The next largest component consists of only 6 nodes representing different

sports streaming subreddits (nflstreams , nbastreams , soccerstreams etc.). Through

manual coding of subreddits we identify the following high-level categories: politi-

cal subreddits (e.g. politics , The Donald , svenskpolitik) discussion subreddits, video

game subreddits (e.g. Overwatch, pokemongo), sports fan clubs, location-focused
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subreddits (e.g. canada, Seattle, Michigan, Atlanta), subreddits for marginalized

groups (e.g. atheism, DebateReligion, TrollXChromosomes , lgbt , BlackPeopleTwit-

ter), *porn subreddits (these are image sharing subreddits with their name ending

with porn, they are not pornographic in nature — e.g. MapPorn, HistoryPorn) and

NSFW subreddits (e.g. nsfw , NSFW GIF ). Because of our use of 2016 data and the

associated (and contentious) election, political subreddits are heavily represented in

the conflict graph. Figure 5.2 shows the ego network for the subreddit Liberal in the

conflict graph.

PoliticalDiscussion

Liberal

ShitPoliticsSays

politics

Figure 5.2: Ego network for the subreddit Liberal . Thicker edges denote higher con-
flict intensity.

Edge weights in the conflict graph are often low. On average, only 3.57% (me-

dian is 1.70%) of authors in the ‘conflict source’ subreddit (i.e. their social home)

post to the target subreddit (i.e. their anti-social home). There are, however, edges

with extremely high weights. The highest edge weight in our data is 85.71% from

The Donald to PanicHistory . However, in this case, this is due to the disproportion-

ate difference in size of the two (they share only seven common authors). Thus, a

high conflict intensity does not necessarily mean that a large fraction of originating

subreddit users are antagonistic to the target subreddit. Nonetheless, it does point

to the fact that larger subreddits with many controversial authors can overwhelm a

smaller subreddit. The high edge-weight here indicates the degree to which this hap-

pens. Using the subreddit conflict graph, we can isolate the main source and targets

of conflicts and understand where conflicts are one-sided or mutual.

Are conflicts reciprocal? We find that if a conflict edge exists between sub-

reddit A and B, in 77.2% cases the inverse edge will exist. Calculating the Spear-

man correlation between conflict intensities of pairs of reciprocated edges, ρ(5126) =

−0.111, p < 0.0001, we observe a weak (but significant) negative relationship. Fig-

ure 5.3 depicts the outgoing conflict (source) intensity versus incoming conflict (the
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conflict target) intensity. This indicates that a targeted subreddit usually recipro-

cates, but the intensity is usually not proportional.
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Figure 5.3: Conflict intensity vs intensity of reciprocation in the subreddit conflict
graph (log-scale). Un-reciprocated edges appear at the bottom and left
edge.

Which subreddits are most targeted in 2016? The indegree of a subred-

dit roughly indicates the number of other subreddits targeting it. The weighted

sum of these edges (weighted indegree) corresponds to the intensity. The top 10

most targeted subreddits by indegree are politics , SubredditDrama, AdviceAnimals ,

EnoughTrumpSpam, atheism, SandersForPresident , The Donald , PoliticalDiscussion,

technology and KotakuInAction respectively. However, when we order subreddits by

total incoming conflict intensity (see Table 5.1) the list is somewhat different. In both

lists, we observe that the most targeted subreddits are social and political discussion

forums as well as forums that discuss Reddit itself. The heavy presence of political

forums can be attributed to the 2016 US presidential election. We try to deduce if,

in general, the most targeted subreddits by degree are also the most targeted subred-

dits by average incoming intensity (total intensity/number of sources) and vice versa.

When contrasting indegree to average intensity for subreddits that are targeted by at

least one subreddit (we have 673 such subreddits), we find a weak positive correlation

with Spearman ρ(673) = 0.242, p < 0.0001. A subreddit targeted by many subreddits

is not necessarily targeted with high intensity. Conversely, subreddits targeted by

only a few others can nonetheless be targeted with high intensity.

Which are the most conflict ‘instigating’ subreddits in 2016? By using the

conflict graphs outdegree (weighted or not) we can similarly find the largest conflict

sources. The top-10 subreddits ranked by outdegree are politics , AdviceAnimals ,
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Subreddit Indegree Weighted indegree
SubredditDrama 272 19.51
EnoughTrumpSpam 217 13.25
BestOfOutrageCulture 46 10.59
ShitPoliticsSays 48 10.29
Enough Sanders Spam 48 9.80
sweden 81 9.62
KotakuInAction 168 9.19
ShitAmericansSay 94 8.83
PoliticalDiscussion 185 8.08
vegan 71 7.26

Table 5.1: Top-10 targeted subreddits ranked by total incoming intensity.

The Donald , SandersForPresident , WTF , technology , atheism, SubredditDrama,

EnoughTrumpSpam and PoliticalDiscussion.

When ordered by total intensity, the top-10 list changes to include more news,

politics, and controversy focused subreddits (Table 5.2). This list also includes a

now banned subreddit (uncensorednews). However, we observe that most of these

subreddits have low average conflict intensity (i.e. intensity per edge is low). If we

order by average intensity (Table 5.3), we find that subreddits targeting very few

others (usually 1 or 2 subreddits) show up at top spots. However, we find that the

subreddits at the first, third and ninth position of this list (europeannationalism,

a Nazi subreddit, PublicHealthWatch, an anti-LGBT subreddit and WhiteRights)

are banned by Reddit. A controversial now private subreddit (ForeverUnwanted)

also appears in this list. This may have implications for identifying problematic

subreddits.

As before, we can check if the subreddits most often at the source of a conflict

(by outdegree) are also the most instigating (by average conflict intensity). Using 719

‘source’ subreddits in our conflict graph, we find a weak positive correlation between

the number of targeted subreddits and the average outgoing conflict intensity (Spear-

man ρ(719) = 0.189, p < 0.0001), which falls in line with our previous discussion.

Do larger subreddits get involved in more conflicts due to their size?

We find that larger subreddits are more likely to get involved in both incoming and

outgoing conflicts. Using number of unique authors who posted more than 10 times

in 2016 in the subreddit as a measure of subreddit size, we find moderate positive

correlation between both size and number of incoming conflicts (Spearman ρ(673) =

0.403, p < 0.0001), and size and outgoing conflicts (Spearman ρ(719) = 0.457, p <

0.0001). However, taking conflict intensities into account, we find size and average
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Subreddit Outdegree Weighted outdegree
The Donald 260 17.75
politics 542 10.15
conspiracy 141 7.39
KotakuInAction 152 7.35
uncensorednews 113 7.14
AdviceAnimals 268 6.76
SandersForPresident 211 6.62
CringeAnarchy 148 6.12
ImGoingToHellForThis 114 5.99
Libertarian 92 5.86

Table 5.2: Top 10 subreddits (conflict source) ranked by total conflict intensity.

Subreddit Outdegree Average outdegree
europeannationalism 1 0.75
OffensiveSpeech 1 0.62
PublicHealthWatch 1 0.62
askMRP 1 0.57
ForeverUnwanted 2 0.50
theworldisflat 1 0.43
FULLCOMMUNISM 2 0.42
marriedredpill 1 0.38
WhiteRights 2 0.34
SargonofAkkad 2 0.33

Table 5.3: Top 10 subreddits (conflict source) ranked by average conflict intensity.

incoming conflict intensity is moderately negatively correlated (Spearman ρ(673) =

−0.594, p < 0.0001). Similarly, size and average outgoing conflict intensity is also

weakly negatively correlated (Spearman ρ(719) = −0.222, p < 0.0001). This tells

us that subreddits with larger size are more likely to be involved in conflicts just

because there are more authors commenting in them, but average conflict intensity

is not indicative of subreddit size.

5.5.3.1 Node properties

Edge weights alone do not tell us if controversial authors are particularly prevalent

in a specific subreddit. Rather, it only indicates the fraction of common users who

are sanctioned (norm-violating) in the target subreddits. However, these common

users might represent only a small fraction of users of a subreddit. This is especially

possible for the larger subreddits. To determine which subreddits are the social home
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for many controversial authors, we use three additional metrics: con author percent

is the percentage of controversial authors who make their social home in a subreddit

relative to the number of authors who posted in that subreddit (more than 10 times in

the year); avg subs targeted and median subs targeted are the average and median of

number of subreddits that these controversial authors ‘target.’ These numbers can tell

us (a) what fraction of a subreddit are engaged in conflict, and (b) are they engaging in

broad (across many subreddits) or focused conflicts. We limit our study to subreddits

with at least 20 controversial authors who have a social home on that subreddit

(overall, we find 698 subreddits meet this criterion). Removing smaller subreddits

minimally affects the top-10 subreddits (see Table 5.4) by con author percent (only

theworldisflat , with 11 controversial authors, is removed from the list). We refrain

from listing one pornographic subreddit in the table at rank 8.

Subreddit Con author % Average Median
PublicHealthWatch 35.25 2.44 2.0
OffensiveSpeech 34.78 2.86 2.0
WhiteRights 32.60 3.19 2.0
ThanksObama 32.59 2.34 1.5
europeannationalism 32.43 2.77 2.0
subredditcancer 27.51 2.33 2.0
subredditoftheday 24.90 1.94 1.0
POLITIC 23.94 1.91 1.0
undelete 23.04 2.13 1.0
SRSsucks 22.18 2.07 1.0

Table 5.4: Top 10 subreddits with highest percentage of positively perceived con-
troversial authors (with at least 20). The average and median columns
correspond to avg subs targeted and median subs targeted respectively.

Most subreddits in top 10 list are either political forums or somewhat controversial

in nature. To lend further credence to this measure, PublicHealthWatch (an anti-

LGBT subreddit, rank 1), WhiteRights (rank 3) and europeannationalism (a Nazi

subreddit, rank 5) score highly with our metric and were recently banned by Reddit.

It is also important to note that most controversial authors have only one anti-social

home. Thus in almost all cases, median subs targeted is 1. The only exceptions are

the first six subreddits in the table 5.4, The Farage (median is 2) and sjwhate (median

is 2). Note that all banned subreddits shown in this table have a median of 2. The

median con author percent for all 698 subreddits is 4.09%, and the lowest is 0.36%.

It is worth noting that, the three banned subreddits in this list targeted only one or

two subreddit each but with very high conflict intensity (e.g., europeannationalism
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attacked AgainstHateSubreddits with conflict intensity of 0.75). All three subreddits

also show up in the list of most conflict-source subreddits by average conflict intensity.

This shows that a subreddit does not have to target multiple other subreddits to be

problematic.

Compared to the top-10 subreddits by con author percent, large political subred-

dits in the most instigating subreddit list (conflict source) had a lower percentage of

controversial authors who engage in conflict with other subreddits (e.g., The Donald

(8.09%), SandersForPresident (6.75%), politics (5.71%)). However, in many cases,

these values are higher than the median.

5.5.3.2 Banned subreddits

Three out of nine banned subreddits in the conflict graph rank within the top 10

when ranked by con author percent and average conflict intensity. Table 5.5 show

rank (and value) by con author percent and average conflict intensity for all nine

banned subreddits (lower ranks means higher con author percent and higher average

intensity respectively). We observed that moderately low ranks in both measures for

three other banned subreddits. Two controversial moderated subreddits Mr Trump

(rank 37 by con author percent and rank 20 by average intensity) and ForeverUn-

wanted (rank 74 by con author percent and rank five by average intensity) also rank

low when ranked by both measures. High con author percent means that a large frac-

tion of the corresponding subreddit is participating in norm-violating behavior and

high average intensity means that a large fraction of common authors between the

source and target subreddits are norm-violating. Low ranks by both these measures

should indicate that the corresponding subreddit is misbehaving as a community.

This is supported by the fact that 6 out of 9 banned subreddits and two controversial

subreddits (both set to private by moderators of the respective subreddits) display

this behavior. We emphasize again that subreddits can be banned due to their con-

tent and not due to the conflict they caused. Such subreddits will not rank low in

these two measures.

5.6 Co-Conflict Communities

5.6.1 Creating the Co-conflict Graph

Although most controversial authors have only one anti-social home, there are

nonetheless patterns of conflict directed from one subreddit against multiple others.
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Subreddit
Con author %
rank (value)

Average conflict
intensity rank (value)

PublicHealthWatch 1 (35.25) 2 (0.62)
europeannationalism 5 (32.43) 1 (0.75)
WhiteRights 3 (32.60) 9 (0.34)
altright 23 (18.18) 19 (0.24)
european 31 (17.41) 24 (0.20)
Incels 183 (7.87) 57 (0.11)
uncensorednews 13 (19.94) 123 (0.06)
DarkNetMarkets 635 (1.59) 494 (0.02)
SanctionedSuicide 475 (2.94) 199 (0.04)

Table 5.5: Banned subreddits and their ranks and values by average conflict intensity
and con author percent.

Subreddits targeted by same set of authors gives us further insight about these authors

and the subreddits they call home. Using all subreddits from the conflict graph, we

can create graphs that map the subreddits that are co-targeted. In the co-conflict

graph, nodes are still subreddits. Edges are determined by generating a weighted

edge between two subreddits A and B if the Jaccard coefficient between the set

controversial authors, who have anti-social homes in A and B, is positive. The Jaccard

coefficient denotes how many of such authors A and B have in common compared

to distinct negatively perceived controversial authors in both subreddits. If X and

Y denotes the set of such authors in subreddit A and B respectively, the Jaccard

coefficient between X and Y is defined as:

Jaccard(X, Y ) = X∩Y
X∪Y

We also make sure that there are at least 2 common negatively perceived contro-

versial authors between subreddits A and B, so that we do not misidentify an edge

due to one single author.

5.6.2 Co-conflict Graph Properties

As majority of controversial authors misbehave in only one subreddit, the co-

conflict graph has many disconnected components. We only focus on the largest

connected component (i.e. the giant component) which consists of 237 nodes and

780 edges. Unlike the subreddit conflict graph, the co-conflict graph is undirected.

Furthermore, edge semantics are different as edges denotes the similarity between

two subreddits. Common network analysis algorithms can be applied to this graph

more intuitively. Use of community detection, for example, can help us determine
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which groups of subreddits (rather than pairs) are ‘co-targeted.’ There are multiple

algorithms for community detection in undirected networks [69] (e.g., FastGreedy,

InfoMap, Label Propagation, Louvain or Multilevel, Spinglass and Walktrap). The

algorithms have different trade-offs [6, 112, 157], though generally both Louvain and

Infomap are shown to perform well. Louvain or multilevel algorithm [24, 136] is

based on modularity maximization, where modularity is a measure of cohesiveness of

a network. An attractive property of Louvain is that it follows a hierarchical approach

by first finding small, cohesive communities and then iteratively collapsing them in

a hierarchical fashion. This approach on the co-attacked graph produced reasonably

sized communities and the results of the community detection algorithm were very

stable (i.e. do not change much on different runs). Note that, we use the weighted

Louvain algorithm for this purpose.

5.6.3 Community Detection Results

We evaluate the communities using µ-score and clustering coefficient (CC). µ-score

is defined as fraction of edges from within the community to outside the community

compared to all edges originating from the community. The clustering coefficient of a

node is the fraction of connected neighbor pairs compared to all neighbor pairs. For

a community, the CC is the average of clustering coefficients of all nodes in the com-

munity. In general, low µ-score and high CC denotes a ‘good’ community. Using the

weighted multilevel algorithm on the co-attacked graph we find 15 distinct commu-

nities. Table 5.6 shows exemplar subreddits per community, size of the community,

µ-score and clustering coefficient for subreddits with at least 10 nodes in them.

Figure 5.4 shows the co-conflict graph and its communities. In general, most com-

munities show low µ-score and low clustering coefficient due to presence of star-like

structures (i.e. a large number of nodes are connected to one single node). For exam-

ple, politics is connected to 103 other subreddits. Smaller subreddit communities are

topically more cohesive compared to larger communities. For example, community 6

(video game subreddits) and 7 (gun-related subreddits) in table 5.6 are both topically

very cohesive.

It is worth re-emphasizing that the co-conflict graph does not necessarily mean

that a pair of subreddits in the same community are ‘friendly’ and do not have a

conflict with each other. For example, Christianity and atheism belong to same com-

munity and there are many authors who have a social home in Christianity and anti-

social home in atheism. Similarly, SandersForPresident and Enough Sanders Spam

are in the same community and are very much “at war”. This is mostly due to pres-
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No Example subreddits Size µ-score cc description
1 politics , PoliticalDiscussion, hillaryclinton,

SandersForPresident , EnoughTrumpSpam,
Enough Sanders Spam, AskTrumpSupporters ,
SubredditDrama

74 0.33 0.41 mostly politics and polit-
ical discussion subreddits

2 KotakuInAction, conspiracy , undelete, Men-
sRights , , PublicFreakout , WikiLeaks , worldpol-
itics , Political Revolution, europe, The Donald

39 0.20 0.29 Political subreddits, con-
troversial subreddits

3 nsfw , NSFW GIF , woahdude, cringepics ,
trashy , WatchItForThePlot

34 0.23 0.38 mostly NSFW subred-
dits, subreddits making
fun of others

4 nba, nfl , baseball , Patriots , canada, toronto,
ontario

16 0.17 0.15 sports subreddits,
Canada related subred-
dits

5 TopMindsofReddit , AgainstHateSubreddits ,
SRSsucks , worstof ,ShitAmericansSay , TrollX-
Chromosomes

15 0.19 0.24 Subreddits focusing on
other subreddits

6 Overwatch, DotA2 , GlobalOffensive, No-
MansSkyTheGame, leagueoflegends

11 0.06 0.00 video game related sub-
reddits

7 guns , progun, Firearms , gunpolitics , shitgun-
controllerssay

10 0.06 0.23 gun-related subreddits

8 relationships , OkCupid , AskMen, AskWomen,
niceguys , instant regret , sadcringe, TheBluePill

10 0.39 0.51 relationship subreddits,
satirical subreddits

Table 5.6: Communities in co-conflict network with at least 10 nodes. For each com-
munity, exemplar subreddits, size of the community, µ-score and clustering
coefficient(cc) is shown

ence of aforementioned star-like structures. For example, Republican and democrats

both are only connected to politics and thus belong in the community containing

politics . This does not mean that Republican and democrats have a common group

of people perceived negatively.

5.7 Conflict Dynamics

One interesting question for our conflict graphs is how they change over time? It

is possible that controversial authors maintain the same social and anti-social homes

over time. Conversely, a subreddit with controversial authors may ‘shift’ its negative

behaviors to different subreddits over time. To better understand these dynamics,

we study this in both an aggregate manner (i.e. does the most targeted and most

instigating subreddits vary each month or do they remain mostly static?), and from

the perspective of a few individual subreddits (how does rank of a particular subreddit

among most targeted and most instigating subreddits vary over time?). To do so, we

created conflict graphs for each month in 2016. These monthly graphs use the same

set of subreddits and the same set of controversial authors used in constructing the

yearly conflict graph.

We focus this preliminary analysis on subreddits that targeted five or more other

subreddits over the year and model how their ‘conflict focus’ varies. That is, do they
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Figure 5.4: The Co-conflict Graph. Different communities are shown in different col-
ors. 1 denotes is politics , a subreddit demonstrating star pattern. 2
denotes the gun-related subreddit community and 3 denotes community
of video game subreddits.

specifically focus on a single subreddit over all months, or does their most targeted

subreddit in a specific month vary from month to month? To determine this, we count

the number of times the most targeted subreddit for each conflict source subreddits

change from one month to the next. We call this the change count for the attacking

subreddit. By definition, change count can vary from 0 (most targeted subreddit did

not change in all 12 months) to 11 (most targeted subreddit changed every month).

If a subreddit did not target any other in a particular month, but targeted some

subreddit in the next (or vice versa), we count that as a change. Figure 5.5 shows

the distribution of change count for source subreddits.

On average, we find that change count is 6.91 (median of 7), which means that

most subreddits shifts their primary focus over time. We find only 2 subreddits did

not change their target at all in 12 months. One example of this is CCW (concealed

carry weapons subreddit) targeting GunsAreCool (a subreddit advocating for gun

control in USA).

Because of the 2016 US election, the monthly ‘most targeted’ and ‘most instigat-

ing’ subreddits are still predominantly political. However, some subreddits only ap-

pear in the beginning of the year (e.g. SandersForPresident is in the list of top 3 most

instigating subreddits for the first four months, The Donald is the top 3 most targeted
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Figure 5.5: Change count for source subreddits who targeted at least 5 subreddits

subreddit list for the first 3 months) or end of the year (e.g. EnoughTrumpSpam is

in the list of top 10 most targeted subreddits for the last 7 months and during that

time, it is the most targeted subreddit). On the other hand, some subreddits show

remarkable consistency — The Donald is always the most instigating subreddit (for

all 12 months) and politics , SubredditDrama are always in the top 10 most targeted

subreddits list.
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Figure 5.6: Rank by intensity of being targeted for four political subreddits over 2016.

Figures 5.6 and 5.7 illustrate the rank of four political subreddits related to the
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Figure 5.7: Rank by conflict intensity for four political subreddits over 2016.

US presidential election (The Donald , EnoughTrumpSpam, SandersForPresident and

Enough Sanders Spam). The figures capture the rank of these in the most targeted

(largest indegree in the conflict graph) and most instigating lists (largest outdegree)

respectively. These demonstrate both the pattern of stable conflict as well as varying

ones.

Perhaps the most important observation from these plots is how mirrored they

are. The Donald is always the most instigating subreddit and it is consistently tar-

geted back. EnoughTrumpSpam gained popularity during March 2016 and gradually

became more instigating in the next two months. For the last seven months of 2016,

EnoughTrumpSpam is the most targeted subreddit. SandersForPresident is near the

top in both most targeted and most instigating list until the end of July 2016 and

from November 2016. However, in three months between July and November, this

subreddit did not have any antagonistic relation with any other subreddit as it was

shutdown after US political conventions in July and subsequently brought back after

in November. Enough Sanders Spam was formed in July 2016 and instantly became

highly targeted due to its content. This shows that, a subreddit instigating/targeted

can be highly dependant on external events.
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5.8 Discussion

In this chapter, we demonstrate a quantitative method for identifying community-

to-community conflicts by aggregating users who behave differently depending on the

community they interact with. We define social and anti-social homes of a user based

on a local perception of norm-compliance and norm-violation (which we measure by

reward and sanction through voting). This method allows us to find conflict in any

social network with ‘noisy’ community structure. Though we focus on Reddit in a

specific year (2016), we believe the work is more broadly usable both across time and

other social media sites.

Before discussing in which situations our approach may or may not be usable,

we briefly summarize our key findings. We find that community-to-community con-

flicts are usually reciprocal but mutual conflict intensities usually do not match up.

We identify which subreddits generated most conflict and which subreddits were most

targeted. By analyzing subreddits banned by Reddit in relation to our measures (e.g.,

average conflict intensity, a high percentage of positively perceived controversial au-

thors, etc.) we illustrate how our technique may be useful for identifying problematic

subreddits. Co-conflict subreddit communities show that subreddit conflicts are not

random in nature, as we observe topically similar subreddits usually belong to the

same co-conflict community. We perform a preliminary analysis of temporal patterns

in subreddit conflicts and find that the conflict focus usually shifts over time.

Below we focus on the generalizability and limitations of our findings and ap-

proach. Specifically, we discuss the appropriateness and alternatives to using up/down-

votes to determine conflicts, contrast of a subreddit conflict with topically opposite

subreddits, robustness of the threshold parameters, the potential of communal misbe-

havior versus behavior of only a few members of a given community and the co-conflict

graph.

5.8.1 Downvotes for determining community conflicts

A downvoted comment in a particular subreddit may be a reaction to a number

of factors ranging from innocuous norm-violation, being off-topic, presenting a non-

conforming viewpoint, low-effort posts (e.g. memes), reposts, and truly malicious

behavior. Furthermore, social news aggregation websites like Reddit generally skew

towards positive feedback, and are susceptible to social influence effects [144]. Because

any individual comment, or even author, may receive up- or down-votes due to these

factors, we rely on aggregate signals in our analysis. Thus, a user having many
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comments with downvotes (these comments may have more upvotes compared to

downvotes) or downvoted comments at all, might point to existence of an anti-social

home of the user. However, we opt for a more stringent definition of anti-social home

due to two reasons. First, Reddit provides a comment score which is simply the

number of upvotes minus the number of downvotes, but does not provide the exact

number of up and downvotes as a measure of reducing spam-bot activity 3. Thus,

we can not use the number of up and downvotes of a comment provided by Reddit

as a reliable metric. Furthermore, a user in a subreddit might have downvotes (and

a few downvoted comments) due to being new in the subreddit (i.e. not knowing all

the rules) or brigading, where users from antagonistic subreddits downvote random

or targeted comments as a ‘downvote brigade’. However, we would like to point out

that our definition and threshold parameters of social and anti-social homes are not

set in stone and can be easily adapted for similar definitions or threshold parameters,

without changing the rest of the algorithmic pipeline to determine the conflict graph.

It is also worth repeating that a downvote does not provide a global quality as-

sessment of a comment. Rather, a downvoted comment within a subreddit signifies

that this particular subreddit perceives the comment as low quality. This is a local-

ized definition of quality defined by the subreddit and it is consistent with Brunton’s

model of spam [28]. Globally, these comments might not be seen as norm-violating

or low-quality. We acknowledge the fact that users may receive negative feedback

not for their own antisocial behavior, but for the antagonistic stance of the receiving

community. We do not assume that, for a conflict edge, the instigating community is

a ‘community of aggressors’. In fact, depending on the viewpoint, it might be viewed

as a ‘refuge for social outcasts.’ New users in a subreddit are more susceptible to

innocuous norm-violation due to them not knowing all rules of a new subreddit, but

with time they tend to learn. To eliminate these users from the list of controversial

users, we enforce a minimum threshold of comments in a subreddit. Excluding these

users, we use downvote within a subreddit to determine subreddit conflicts and not

as an indicator of the global quality of the comment.

5.8.2 Subreddit conflict due to ideological differences

Many subreddit conflicts in the subreddit conflict graph are between subreddits

with topically or ideologically opposing viewpoints. This is expected given the high

presence of political subreddits in the graph. However, identifying subreddits with

3https://www.reddit.com/wiki/faq
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ideologically differing viewpoints does not signify a subreddit conflict. Similarly, top-

ical differences do not explain all subreddit conflicts. Two subreddits with opposing

ideologies may engage in a civil discussion about the topic, may not engage at all or

be part of a subreddit conflict. In many cases, engagement is very low or non-existent.

An example of this is askscience and theworldisflat [53]. Similarly, the conflict edge

from The Donald to PanicHistory can not be fully explained by topical opposition.

On the other hand, the presence of subreddit conflicts between many ideologically

antagonistic subreddits works as a sanity check and provide insight into what kind of

ideological opponents are more likely to engage in community level conflicts.

5.8.3 Robustness of threshold parameters

We employ multiple thresholds to ensure proper conflict identification. Although

some of the thresholding can be eliminated via other methods [132], we use this

approach for computational simplicity and effectiveness. Nonetheless, threshold pa-

rameters must still be tuned for the particular dataset and application. We discuss

our philosophy behind choosing different parameters and justify our choice via a set

of small-scale sensitivity analyses. We focus on key differences for different threshold

values.

The first threshold is the number of comments by a user. We only consider users

who commented more than 100 times to ensure that we perform our analysis on

active users. However, we find that our results are quite robust to change in the

threshold. Considering users who commented more than 50 times we see around

10% increase in the number of controversial authors. On the other hand, a stricter

threshold of 200 reduces the number by 16%. The conflict graphs generated using

these thresholds also show little change. We observe 3.1% increase in conflict graph

nodes and 1.1% increase in conflict edges using threshold 50, and 4.2% decrease in

nodes and 2.7% decrease in edges using a threshold 200. Removing overall low activity

accounts from consideration removes malicious sockpuppet accounts (i.e. a single user

uses multiple accounts usually unlinked with each other). Unfortunately, we can not

directly account for these users as we do not have the data. However, with knowledge

of sockpuppets, we can merge multiple accounts before thresholding, which retains

the behavior of the sockpuppet account in the aggregate.

The next major threshold we use is determining the minimum number of com-

ments for a user to have a social or anti-social home. We settled for users having

more than 10 comments in a subreddit. This threshold works as a trade-off between

adding genuine social and anti-social homes for users with lower activity, possibly
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in smaller subreddits and falsely identifying social and anti-social homes due to low

user activity. Using a lower threshold of more than five comments adds 131% more

controversial authors, which in turn adds 124% more nodes and 378% more edges

in the conflict graph. On the other hand, using a stricter threshold of more than 20

comments, eliminated 63% controversial authors and 62% nodes and 86% edges in the

conflict graph. This stricter threshold also eliminates five of nine banned subreddits

from the conflict just because they are not very large in size. It can be argued that

different thresholds should be used for social and anti-social homes as one-off mali-

cious comments from many users can overwhelm subreddits. However, due to ease

of account creation in Reddit, these one-off comments are often done via ‘throwaway

accounts’ created for the explicit purpose of anti-social behavior and it is difficult to

link these sockpuppets to specific communities. Moreover, it is very difficult to iden-

tify truly malicious one-off comments from innocuous norm-violations or low-effort

posting as we do not have labeled data and deciphering the true intention behind

these comments are often context-sensitive (i.e. same comment can be perceived as

malicious or non-malicious depending on the context). Our experience is lowering the

threshold for determining anti-social homes add many false conflict edges. We choose

to err on the side of caution by having a somewhat strict threshold without eliminat-

ing most smaller low activity subreddits. We acknowledge that while this approach

finds social and anti-social home for long-term misbehaving users, it does not capture

sudden conflicts risen from strong external stimuli (e.g., 2015 AMAgeddon) or when

long-standing contributors to a community suddenly starts ‘misbehaving’ [83].

The thresholds for determining conflict edges (at least five controversial authors

behaving differently in a pair of subreddits) and co-conflict graph edges (at least

two controversial authors perceived negatively in a pair of subreddits) are somewhat

lenient, as our definition of a controversial author is quite strict. We observe, a stricter

threshold in both above-mentioned cases, eliminates smaller low-activity subreddits

from consideration.

5.8.4 Identifying communal misbehavior

Many conflict edges in the conflict graph have low intensity and most subred-

dits have low con author percent value. In other words, only a few individuals in a

subreddits compared to subreddit size are controversial authors. We can infer that

getting involved in subreddit conflicts does not imply communal misbehavior. In

fact, larger subreddits are more likely to be involved in more conflicts due to their

size. However, there is an important distinction in a conflict edge compared to a
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few pathological individuals behaving badly. We determine conflicts via controversial

authors, which means the users who are perceived negatively in the target subreddit

are perceived positively in the source subreddit. This implies either these controver-

sial authors behave very differently in the source compared to the target, or users

in the source subreddit support the controversial author’s behavior. We do not look

for such distinctions in this project. However, this distinction may be useful to iso-

late in future work. To determine community-wide misbehavior we primarily look

into what percentage of active subreddit members are positively perceived contro-

versial authors (con author percent). For many banned subreddits (where we infer

communal misbehavior because these were banned) we observe that more than 30%

of subreddit users fall into this category. Many banned subreddits also show high

average outgoing conflict intensity. In general, Reddit users restrict themselves to

posting in only a few subreddits [81]. Thus, a conflict edge with high intensity shows

that whatever little interaction the participating subreddits have, is toxic. Notably,

due to high variance of subreddit sizes, only a few people from a large subreddit can

potentially overwhelm a smaller subreddit even if the number of misbehaving users

is very low compared to the size of the larger subreddit. We believe that both high

con author percent and high average outgoing conflict intensity implies communal

misbehavior. We would emphasize that this is not the only way a community can

misbehave. Abusive language, anti-social or unlawful behavior within the subreddit

can also point to communal misbehavior and can lead to subreddit bans.

Moreover, we would like to encourage discussion about communal behavior versus

behavior of only a few members in the community in a general sense. It is not always

clear what threshold one should abide by when declaring a particular behavior as

‘communal’ (e.g., what percentage of community members must behave in a certain

way to consider that behavior as communal). This discussion applies to Reddit as well

as many other online social platforms which exhibit community patterns. We believe

that the con author percent measure for banned subreddits can be used as a starting

point of identifying community-wide misbehavior at least for different subreddits.

5.8.5 Co-conflict graph

The co-conflict graph embodies anti-social home to anti-social home relationships

among the same set of subreddits as the conflict graph. As 82% of the controversial

authors have only a single anti-social home, the co-conflict graph is sparser com-

pared to the conflict graph. Communities in the co-conflict graph identify which

meta-subreddit groups are targeted together. As one might expect, some of the co-
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conflict graph communities are extremely topic-coherent (gun-related and video-game

subreddits). However, other groupings provide additional insights. For example, a

larger subreddit, when targeted together with many comparatively smaller subred-

dits, forms a star pattern. The meta-subreddit groups are not necessarily targeted by

another meta-subreddit groups as we observe a lot of conflicts are generated within

the co-conflict subreddit communities. Interestingly, a social home to social home re-

lationship graph form a very dense structure and does not exhibit community behav-

ior, which means that we can not readily classify conflict between different subreddit

communities using this method.

5.8.6 Limitations

Using controversial authors to find subreddit conflicts has some limitations. First,

this method does not take into account comments deleted by users or moderators

(this data is not available for collection). Some subreddits are especially aggressive

in deleting downvoted or moderated comments. In some cases, misbehaving authors

in a subreddit are banned from further posts. As with comments, we do not have

records of this type of moderation. When a subreddit aggressively bans many people,

it can change the conflict graph from a static and dynamic perspective.

A clear example of this is The Donald , which banned thousands of individuals over

its lifetime (these banned individuals formed a subreddit BannedFromThe Donald ,

with a subscriber count of 2,209 in November of 2016 and over 27,000 in July of

2018). These individuals do not show up as controversial authors as their comments

are gone. We also do not account for sockpuppetry, i.e. having multiple accounts, one

for normal posting behavior on Reddit and others for misbehaving. Presence of many

users with sockpuppets can skew the estimation of controversial authors in different

subreddits.

If data such as bans on the source of sockpuppet accounts can be determined,

this data could easily be incorporated in our algorithmic pipeline by updating the

definition of anti-social homes. For example, if we know the users who are banned

from a particular subreddit, we declare that these users have an anti-social home in

the subreddit they are banned from.

In our current analysis, we do not filter bots (software applications that generate

comments) from our list of authors. However, strictly malicious bots — those with

only anti-social homes — do not change our conflict graph as they are not counted

among the controversial authors. Occasionally, bots can show up as controversial

authors. These include moderator bots (e.g., AutoModerator). It is worth a future
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study to understand why a bot can be perceived positively or negatively depending on

the subreddit. This might mean that bots can intentionally, or not, violate norms for

some subreddits while complying with others. Though bots represent a small fraction

of Reddit users, this behavior would be interesting for future study.

One final limitation of our model is that correlated multi-community posting may

appear as a conflict edge. For example, members of community A (a subreddit for

a specific computer game) are found to conflict with community B (a feminist sub-

reddit). However, it may not be appropriate to say that A conflicts with B. The

topics of the two communities are completely orthogonal. In this situation, it might

be due to the presence of a third subreddit, C (e.g., an anti-feminist subreddit) that

conflicts with B. It simply happens that many members of A (the game) also have

a social-home on C (the anti-feminist subreddit). It would thus be more accurate to

say that C conflicts with B. One approach for handling this is to ensure that there is

some topical correspondence between the communities we are considering (based on

text). This eliminates the A − B edge but retains C − B. It is nonetheless possible

that we may want to know that the A − B link exists. Moderators of subreddit A

might want to be made aware of this correlation and take action.

5.8.7 Implications

Although we perform our analysis on Reddit, our analysis is equally applicable

in other social media with inherent or inferred community structure with associated

community feedback. For example, we can perform a similar analysis on Facebook

pages and groups, online news communities and Twitter hashtag communities (people

who tweeted a particular hashtag are part of that hashtag community). We quantify

user behavior based on upvotes and downvotes in a particular community, and this

data is more easily available for many social media websites compared to a list of

banned or otherwise sanctioned users from a particular community. Our approach

is highly adaptable and can incorporate new information (e.g., banned and sockpup-

pet accounts). The analysis is also fully automated and highly parallelizable which

increases the adaptability for a very large amount of data.

In addition to providing insight into communities, we also believe that our work

can be used for moderation purposes. We observe that several banned subreddits

rank very high on particular metrics for measuring conflict. We can calculate these

measures for monthly (or otherwise temporal) subreddit conflict graphs and see how

different subreddits rank in these measures over time. This observation can be used

to monitor problematic subreddit behavior as a whole or create an early-warning

75



system based on machine learning where we treat currently banned subreddits as

positive examples of communal misbehavior and use the metrics above as features.

5.9 Conclusion

In this chapter, we studied community-on-community conflict. We described a

mechanism for determining the social and anti-social homes for authors based on

commenting behavior. From these, we constructed ‘conflict edges’ to map the conflicts

on Reddit. Using our approach, we allow for a contextual definition of anti-social

behavior based on local subreddit behavior. This provides a different perspective

than studying global-norm violating behaviors.

We found that most conflicts (77.2%) are reciprocated, but the intensities from

both sides did not necessarily match up. Larger subreddits were more likely to be

involved in more subreddit conflicts due to their large user-base, but most of these

conflicts were minor, and this does not imply large-scale communal misbehavior. On

the other hand, we found that high average conflict intensity and a large fraction

of subreddit users perceived negatively in other subreddits may have implications

for communal misbehavior. Finally, we explored temporal patterns in conflicts and

found that subreddits that target multiple others, will shift their main conflict focus

over time. We believe that this analysis can be applied to other social media sites

which display community structure, create early warning systems for norm-violating

communities and help encourage discussion about community-wide misbehavior in

social media.

In the next chapter, we specifically look into banned subreddits (a proxy for

communal misbehavior) and explore the efficacy of features derived from differences

in user behavior to predict communal misbehavior.

76



CHAPTER VI

Identifying, analyzing and predicting banned

subreddits

6.1 Overview

Differences in user behavior can point to communal misbehavior, which is some-

times subjective and hard to identify. We can use community-wide sanctions which

translates to banning of entire subreddits from Reddit ecosystem as proxy of commu-

nal behavior. In this chapter, we identify such subreddits and use features derived

from user behavior differences along with textual features to understand and predict

communal misbehavior.

There are a number of reasons why individuals and sub-communities can be sanc-

tioned on social media sites. Anti-social behavior, for example, manifests in both

individual and communal fashion with the consequence, on a site such as Reddit, be-

ing banning. Many of these behaviors are effectivelly norm-violating and can include

trolling, griefing, spamming, brigading, baiting, fisking, crapflooding and shitposting.

Communal norm-violating behaviors are particularly interesting as they can be co-

ordinated. In response, a site such as Reddit will ban both individuals and specific

Subreddits (sub-communities). However, not all banning is the result of anti-social

norm-violation. Other forms of rule-violation, for example posting of illegal content

or not complying with moderator policies, may also result in sanctioning.

Over the course of its existence, Reddit has banned multiple subreddits for a myr-

iad of reasons. Where it has been possible to determine, these have ranged from

the use of hate speech, violent content, inciting harm to others, providing prohibited

goods and services, doxing (release of personal and confidential information), spam-

ming, copyright violation and to involuntary pornography. There are other, more

prosaic reasons for banning (e.g., lack of an active moderator). While individual anti-
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social behavior, and a site’s response, are more fully studied, community banning is

often studied on a case-by-case basis and not as a whole. Our goal is to identify and

study these communities to understand the landscape of subreddit bans.

Understanding bans, and the process of banning, is increasingly important for

social media site design. As social media websites are growing in size, it has become

increasingly difficult to monitor and sanction undesirable content. Reddit users posted

more than 3.8 billion comments from 2010 to 2017, making human moderation very

difficult. As we describe in our study, banning behavior is often temporally and

topically clustered. Put another way, banning activities appear to be highly focused.

This suggests that moderators may benefit from tools that identify other possible ban

targets (what we term: ban by example) when the site is focused on this activity. In

general, identifying banned subreddits and extracting their content is a very difficult

task. We can find a banned subreddit by querying Reddit but in many cases it

is impossible to get any content from the subreddit this way as all of its content

is already deleted. In this chapter we focus on a large historical archive of Reddit

data where at least a portion of content for banned subreddits is maintained. By

examining over 1000 banned subreddits over many years, we are able to identify the

features (text and network) that are indicators of misbehavior.

A central difficulty in studying bans is the lack of discernible reason for that

ban. Of the subreddits we study, 42% do not have an obvious indicator for why

the subreddit was removed. Even when we do have some meta-data, it is often

unstructured or vague. This is perhaps intentional to prevent banned subreddits

from returning. However, this presents a research difficulty for studying banning. By

analyzing both textual and interaction features, we are able to group subreddits and

identify common ban reasons. We find a fairly unequal distribution to these clusters,

with 47% of subreddits in our dataset belonging to one cluster. Using a sample of

unbanned subreddits, we demonstrate that it is possible to predict banning (with a

0.841 F1-score for the central cluster).

A qualitative finding of this chapter is in isolating the main reasons for banning

and producing unique features to detect these. We find that one single set of fea-

tures does not capture all reasons for a ban. We find that bans fall into different

categories: meta, internal, external, and and that each presents a different challenge

for prediction. Meta bans are those that have to do with violating the organizational

rules of Reddit (e.g., lack of active moderation). Internal bans are those where there

is very little social interaction between the banned subreddit and other parts of Red-

dit. Obvious banning due to violent or toxic content or involuntary pornography
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fall into this category. However, more subtle content includes the sale of prohibited

goods or services, where copyright infringement is rampant, or where user agreements

are violated. These are not necessarily anti-social behaviors and may require certain

domain expertise (e.g., legal expertise) to identify. External bans include more classi-

cally anti-social behaviors. These subreddits display norm-violating behaviors against

others on the site and are often reflected in the posting behaviors of across Reddit.

We find that all three ban types — meta, internal, and external — require different

features for detection. For example, internal bans are often detectable through text

analysis but external bans can be found through interaction features [51] (and often,

a combination is what works best).

We find that subreddit bans follow both temporal and ‘reason’ patterns. Subred-

dits are banned in a sporadic fashion over time and subreddits with similar types of

misbehavior are banned in batches. We use this information to implement a banning-

by-example prediction scheme that seeks to model how a banning ‘workflow’ might

proceed. By selecting one or more ‘seed’ subreddits, we demonstrate that we can

rank other subreddits as possible ban targets (with a P@10 of .913 for a balanced

dataset).

Our contribution in this chapter are two-fold. First, we identify and categorize a

large set of banned subreddits. We believe this is the largest dataset of its kind. We

analyze the major characteristics of these subreddits via data analysis and clustering.

Second, we show that banned subreddits can be predicted and introduce a banning-

by-example task. We believe that such an approach may be useful to moderators

who are banning groups of related subcommunities. A paper based on this chapter

is under review [52].

6.2 Data Collection

We focus our analysis of community-wide misbehavior on Reddit (www.reddit.

com), a social aggregator and new forum website with inherent community structure.

Reddit has banned several of its sub-communities, or subreddits, over a number of

years. To establish a ground-truth dataset we aim to identify these banned subreddits

and the reason for their banning if provided by Reddit. In our analysis, we utilize

the Reddit dataset compiled by Baugartner [17] of all publicly available subreddits.

This dataset is a multi-year dataset consisting of publicly available posts, comments,

authors and other miscellaneous subreddit metadata. We specifically focus on com-

ments instead of posts as a large number of Reddit posts are images, videos or links
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Reason of banning No Top 5 largest subreddits
no reason provided 442 fakeid , Steroidsourcetalk , DNMUK , TheXanaxCartel , opiaterollcall ,

spam 190 BabyFart , streamsoccer , HealthProject , milf nowandforever , nsfw showerthoughts
unmoderated 124 european, CandidFashionPolice, FreeKarmas , oastme, Nude Selfie

content policy violation 108 uncensorednews , CoonTown, SanctionedSuicide, Dream Market , AlphaBayMarket
prohibited goods or services 74 juiceswap, JuulMarket , Kratom Vendors , sugardaddydatingsites , ResearchChemBarter

violent content 47 Incels , WhiteRights , selfharmpics , Womad , zoophilia
involuntary pornography 36 xray , doppelbangher , CelebFakes , SluttyStrangers , CelebCumSluts

inciting harm 7 GasTheKikes , RapingWomen, PhilosophyOfRape, beatingwomen2 , beatingtrannies
multiple violations 7 pedofriends , leftwithsharpedge, nsfwshoops , IncelHeaven, candid ,

personal and confidential information 6 altright , TapSportsBaseball , picsofcaninedicks , cheatingrevenge, exgf
copyright violation 5 CrackedSoftware, SocialMediaMarketing , PatreonBabes , BusinessAdviceTeam, NikiSkyler

to keep everyone safe 5 fatpeoplehate, NeoFAG , TalesofFatHate, HamPlanetHatred , Trans fags
harassment 4 IDontLikeRPolitics , FuckBoyRiotSquad , lukecis , ClubSorel

user agreement violation 3 illegaltorrents , Pickpocket , shopliftingadvice
lack of active moderators 2 BrockTurnerInnocent , NewsReviewNow

Table 6.1: Common reasons for banning a subreddit, number of subreddits banned
for the reason and the top 5 largest banned subreddits in that category.

to different articles or media across the internet. We restrict ourselves to comments

from 2010 to 2017, which includes 3.8 billion comments from 542.6k subreddits. We

only consider subreddits with at least 100 comments, which restricts us to 73.8k sub-

reddits. We identify vanished subreddits by querying the Praw Reddit API. These

subreddits include banned subreddits and subreddits that became private or other-

wise restricted. For each vanished subreddit, we crawl their homepages and checked

if the subredditBanned flag is set to True, which indicates that the subreddit was

banned by Reddit. We also extracted the reason of banning as provided by Reddit

from the subredditBanMessage field. For the data between 2010 and 2017 we found

1060 banned subreddits with at least 100 comments (these were banned on or before

June 2018, the date of our crawl).

We emphasize that this dataset does not contain all subreddits banned by Reddit

before June 2018 (e.g.- jailbait , TheFappening , pizzagate, Deepfakes). As we base

our analysis on data collected by Baumgartner, any subreddits entirely removed by

Reddit from public access before this crawl are not present in this data. For the

purpose of our analysis, we did not use these subreddits in our study. It is possible

that this introduces a bias. Nonetheless, we are confident that we capture those

banned subreddits that were available in the crawl.

By enforcing a threshold of 100 comments we ensure that we have enough data

form which to extract features. However, the reason for a ban may not be obvious

from the subreddit content alone. A prime example of this are, ‘copycat’ subred-

dits which emerge in response of banning a large subreddit (e.g. fatpeoplehate2 and

fatpeoplehate3 were created in response to banning fatpeoplehate and were promptly

banned soon afterwards). These ‘copycat’ subreddits do not have enough content

and banned due to violating Reddit policy of ‘ban evasion’ which means creating a
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community with the same purpose as a banned community. This is very difficult to

glean from subreddit content and interactions alone. We do not exclude moderator-

removed comments when considering this threshold as these subreddits can still have

interaction features.

6.3 Properties of the Banned
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Figure 6.1: Average text similarity with banned subreddits banned within one day
window of self-ban binned daily from Jun 2015 to Mar 2018.

Subreddits can be banned for a wide array of reasons including both norm- and

rule-violating. Examples range from toxic and violent content, misbehavior in other

subreddits, buying/trading of prohibited goods and services, advocating illegal or oth-

erwise reckless behavior, harassment, involuntary pornography, being unmoderated,

spam, and so on. In many cases the reason is not provided directly by Reddit or the

reason is vague. Table 6.1 summarizes the reasons provided by Reddit and example

subreddits for that category. In a large number of cases (442), the ban reason is either

blank or generic (e.g., ‘this subreddit has been banned’ or ‘due to violating Reddit

rules’). In 223 cases, Reddit cites content policy violations. However, in only 115

of those is there a specific note about which policy (e.g., violent content, prohibited

goods or services, involuntary pornography etc.). In Table 6.1 only those policy vi-

olations that are in the general form are recorded in that row (specific reasons are

recorded elsewhere).

By manually reviewing the content of a subreddit, it is sometimes possible to iden-

tify the reason for a ban. However, even human annotators may struggle with this as

subreddits can obfuscate policy-violating behaviors. The lack of specific and struc-

tured annotations presents a challenge for analysis. Furthermore, because the reason

for banning may involve ‘management’ issues (meta), internal-facing commenting be-

havior (internal), or intra-subreddit behaviors (external), it is necessary to develop

a broad set of features — network, text, temporal, and metadata. We explore vari-
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ous properties for banned subreddits starting with the data that is most prevalent:

comments.

6.3.1 Banned subreddit comment properties

Banned subreddits vary drastically in size. The top 5 largest subreddits by com-

ment count in our dataset are fatpeoplehate, fakeid , Incels , uncensorednews and eu-

ropean. The largest banned subreddit fatpeoplehate has 1.59 million comments, while

the 10th largest altright has 166.4k comments. Only 215 subreddits have at least 1000

comments and the median number of banned subreddit comments in our dataset is

332. Figure 6.2 shows the distribution of banned subreddit comment counts where

comments are logarithmically binned into 100 bins. From the figure, we observe that

the comment distribution is long-tailed.

Number of comments

Figure 6.2: Banned subreddit comment count histogram with 100 bins. The x-axis is
log-scaled.

A significant portion of comments in these banned subreddits are either deleted

or removed (by a moderator). On average, we find that 18.87% of all banned sub-

reddit comments are unavailable (median 11.82%). Thirteen subreddits have all of

their comments deleted. On the other extreme, three subreddits had none of their

comments deleted.

To compare these values to unbanned subreddits, we sampled the same number

of subreddits from the entire subreddit population. To produce a matched sample,

we used the comment distribution of the banned subreddits to select similarly sized

subreddits (by comment count). That is, for each banned subreddit we find an un-

banned one with the same number of comments (ties broken randomly). If there is
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no subreddit with the same exact comment count as a banned subreddit, we choose

the next largest subreddit. We use this unbanned sample to contrast the properties

of banned subreddits throughout this paper. For unbanned subreddits, we find that

on average only 9.13% comments are deleted (median 6%). There are no subred-

dits in our sample which have all of their comments deleted (though one particular

subreddit had nearly 97% of comments removed). We have eight subreddits where

none of the comments are deleted. Figure 6.3 shows deleted comment proportions (in

percentages) of banned and unbanned subreddits in our dataset.
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Figure 6.3: Banned and unbanned subreddit deleted comment percentages.

Because comment voting can indicate reward and sanctioning of behavior (norm-

compliant and norm-deviating, respectively) we also looked at the percentage of down-

voted comments in both groups of subreddits. Because comment metadata (includ-

ing up and downvotes) are stored separately than comment content, we are able

to perform this calculation on all comments, even those that have been deleted. If

a comment has more downvotes compared to upvotes, we say that the comment is

downvoted. Reddit automatically upvotes a user’s own comment, but we assume that

a user always views his/her comments positively. For this reason, we only mark a

comment with a negative score as downvoted. We find that on average both banned

and unbanned subreddits have very low percentages of downvoted comments (1.35%

for banned subreddits, 1.05% for unbanned subreddits). A large number of subreddits

in both groups do not have any downvoted comments (502 and 473 for the banned an

unbanned sample, respectively). The highest percentage of downvoted comments are

also pretty similar (35.6% for banned subreddits, 32.23% for unbanned ones). This

is somewhat surprising as we expected banned subreddits to have more downvoted

comments compared to the unbanned sample.
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6.3.2 Banned subreddit language

We were curious if banning was more likely to target English language subreddits

or a broader set. Because we would like to utilize text analysis, understanding the

distribution of languages was critical. In theory, Reddit provides the language of

a subreddit as metadata. However, for a large number of banned subreddits the

metadata for language is set to ‘none.’ To perform automated language identification

we used the langid package [128] on comment text. While this largely worked, a few

subreddits were harder to labels due to the scarcity of data (a few subreddits have

all or almost all of their comments deleted) or the nature of the comments in the

subreddit (e.g. URL only, area code only etc.). In general, we find 32 non-english

subreddits including seven Spanish and six German subreddits. For 34 subreddits we

were unable to determine the language. These 34 subreddits include the 13 subreddits

which have all of their comments deleted or removed. The largest non-english ban

was Womad , a subreddit named after a Korean radical feminist comment board. This

subreddit was banned for ‘proliferation of violent content’.

6.3.3 Subreddit ban times

Reddit does not provide a specific ban time. However, we can estimate it by the

time of the last comment in that particular subreddit. As we use comments from 2010

to 2017, the subreddits that are banned in 2018 all have their last comment on 31st

December 2017. To remedy this, we add first three months of 2018 Reddit comment

data to estimate ban times of these subreddits. Controversial subreddits caught media

attention as early as 2011 due to the subreddit jailbait (which was subsequently

banned). The first subreddit ban in our dataset is in 2013, when FIFA CL was

banned for ‘violating Reddit rules’. While three other subreddits were banned in

2013, all others in our dataset were banned in 2014 or later. Most interestingly, was

that subreddits were not removed uniformly but rather sporadically over the years.

Figure 6.4 shows counts per week for banned subreddits.

We observe similar (sporadic) patterns for daily banning. Figure 6.5 shows the fre-

quency of subreddit bans per day from January 2010 to March 2018. Reddit banned

a maximum of 56 subreddits in a single day on February 28, 2018. The top 5 largest

subreddits banned on this day are murdochmurdoch, snapfuck , CrackedSoftware, So-

cialMediaMarketing and AmazingTeens . Four of these subreddits (except Cracked-

Software) were banned for either spam or being unmoderated. CrackedSoftware was

banned due to copyright infringement.
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Figure 6.4: Subreddit ban time binned weekly from Jan 2014 to Mar 2018.

Number of bans per day

Figure 6.5: A bar chart showing the frequency of subreddit bans per day from January
2010 to March 2018.

Given this distribution, it is possible that Reddit banned subreddits in a reactive

fashion. We can hypothesize that when a set of controversial subreddits were reported

or caught media attention, Reddit reviewed these subreddits, banned them and sub-

reddits similar to them. It might also be the case that Reddit follows some internal

ban schedule or a combination of both. This implies that at least some subreddits

which were banned within the span of a day would be very similar to each other. We

verify this hypothesis by calculating textual and interaction similarity among all sub-

reddits which are banned within one day from each other. We detail these similarity

measures and features in the next section. We find that subreddits banned within

a day from each other are indeed similar in terms of both textual and interaction

similarity. Figure 6.1 shows average text similarity with banned subreddits banned

within one day window of self-ban binned daily. As we have a very large number

of bins, we only show this plot from June 2015 to March 2018, where most of the

subreddits in our dataset were banned.
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6.3.4 Banned subreddit active time

Just as we can observe the last comment time, we can also extract the first com-

ment time and find the lifespan of banned subreddits. On average, a banned subreddit

is active for a little over 2 years and 1 month (mean 761.7 days, median 589.5 days).

The banned subreddit active for the longest time is HealthProject which was active for

2979 days. This subreddit was banned for spam on February 27, 2018. It is possible,

even likely, that changing behavior over time may lead to banning. Seven subreddits

were banned on the day they were created. On the other hand, 320 subreddits per-

sisted for at least 1000 days. Figure 6.6 depicts a histogram showing active time of

banned subreddits in our dataset binned weekly.
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Figure 6.6: A histogram showing active time of banned subreddits in our dataset
binned weekly.

6.4 Clustering Subreddits

In order to get a better sense of the types of bans, we utilize automated clustering.

To support this, we make use of both textual and ‘interaction’ (i.e. network) features.

Both can provide us with complementary signals [53].

6.4.1 Textual features

To better understand the content of banned subreddits we use a simple bag-of-

words model. Specifically we weight terms using TF-IDF that treats all comments

in a subreddit as part of a single ‘document.’ To account for the size differences in

subreddits, we normalize term frequencies by the maximum term frequency for that

particular subreddit.

In our analysis of text, we only take upvoted subreddit comments into considera-

tion when extracting textual features. We believe the downvoted or neutral content
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(with zero score) do not ‘represent’ the community and they are downvoted precisely

due to this reason. Reddit automatically upvotes a users’ own comment. We consider

this vote as positive as the user as a part of the community views their own content

positively. We can similarly use downvoted content to identify what content a com-

munity dislikes as a part of their identity. However, we have very little downvoted

content compared to upvoted content. A lot of banned and unbanned subreddits do

not have any downvoted content and a large number of banned subreddits have most

if not all of their downvoted content deleted. For this reason, we do not use the

downvoted content for textual feature generation.

6.4.2 Interaction features

Although Reddit does not have an explicit network structure, past work has re-

vealed ways of inferring such structure [53] and specifically identifying community-

on-community conflicts [51]. This work observed that the types of authors (norm-

compliant or norm-violating in relation to a particular subreddit and others) were

correlated with banning.

Briefly, the technique distinguishes between a user’s norm-compliant and norm-

violating behavior via community up/downvoting within the subreddit (complete de-

tails are presented in [51]). This follows a definition similar to Brunton’s model of

spam [28], where the community decides what is spam based on its own rules and

regulations. A subreddit where a user has a significant number of comments (deter-

mined by a threshold) and is generally norm-compliant, is called a ‘social home’ of

the user. Conversely, a subreddit where is a user has significantly commented but

is generally norm-violating, is a ‘antisocial home’ of the user. A user with at least

one social home and at least one antisocial home is called a ‘controversial author’.

By aggregating behaviors of these controversial authors we can identify community-

to-community conflicts in Reddit. These conflicts are directional and weighted. If k

authors have a social-home in subreddit A, and an anti-social home in subreddit B,

we can denote a directed conflict from A to B. The raw author count is normalized

by common authors in both subreddits to account for size difference in subreddits

and we refer to this normalized weight as ‘conflict intensity’ from A to B. Note that,

for each subreddit in a subreddit pair, there can be an outgoing conflict intensity and

an incoming conflict intensity. For each subreddit, we can also find what percentage

of subreddit users are positively perceived controversial authors. This measure is

called ‘con author percent’ and it represents what fraction of a subreddit’s user base

is perceived negatively elsewhere in Reddit.
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For some banned subreddits which were still active in 2016, both average outgoing

conflict intensity (if a subreddit is in conflict with multiple other subreddits, this is

represented by the average of outgoing conflict intensities) and con author percent

measure rank very high. We deduce our interaction features for banned subreddits

based on this observation.

6.4.2.1 Extracting interaction features

While finding controversial authors, we need to careful not to misidentify new

users or users with very few comments as controversial authors. These users can

have downvoted comments for violating a subreddit-specific rule they are not familiar

with or due to brigading (i.e. random or targeted downvoting by people who are not

part of the community). To avoid this type of misidentification, we need to set a

minimum threshold of comments within a subreddit for a user. However, setting this

threshold too high would miss genuine controversial authors. Based on the minimum

size of banned subreddits in our dataset (100 comments), we set this threshold to be

5 comments.

Our extracted interaction features can be divided into two sets, one is based on the

outgoing conflict intensity measure and the other is based on the con author percent

measure. The first set of features identifies all outgoing conflicts a banned subreddit

participated in. We use the number of outgoing conflicts the subreddit was involved

in, average outgoing conflict intensity and maximum outgoing conflict intensity as

features. For the second set of features, we use the con author percent measure and

the average and the median number of subreddits where these authors were perceived

negatively. For conflict intensity features, we made sure that we have at least two

controversial authors per conflict edge. For controversial author features, we only

considered subreddits which have more than one controversial authors.

one advantage of these features is that they are content-agnostic and can be ex-

tracted from any language subreddit without resorting to language-specific measures.

However, not all banned (and unbanned) subreddits have interaction features. Among

1060 banned and 1060 unbanned subreddits, only a small set, 147 banned ones and

118 unbanned, have conflict intensity features. For controversial author features, 400

banned and 445 unbanned subreddits have these features.
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No Size Top 5 largest subreddits Reason for banning
1 503 fatpeoplehate, fakeid , Incels , uncensorednews , european various reasons
2 72 carinsurance, saggyballs , Raghunomics , starcitizens , Simsononline mostly spam and unmoderated
3 23 pharmacynews , ViagraReviews , Pills , genericbrands , EDforum prohibited goods, drugs
4 7 collegefootballs , nfl stream, LiveStreamAllSports , nflstreamtoday , LiveNFLSuperBowl illegal streaming
5 7 Clash Of Clans Hack , nef v wex , LGH , poijthgfd , newcheatsonline hacks and cheats
6 7 Escorts Service, realEstateWebsites , RealEstateIndia, backpage escorts , HotGirlsHot prohibited goods and services

Table 6.2: Banned subreddit clusters, their sizes, the top 5 largest banned subreddits
in the cluster and common reasons for banning.

6.4.3 Measuring Similarity

Using the textual and interaction features, we can compute pairwise similarity

for all banned subreddit pairs using cosine similarity. However, the textual features

are fundamentally very different from the interaction features. For this reason, we

compute two sets of pairwise similarities, one for text and the other for interaction.

Interaction features are also divided into two subgroups. We calculate cosine similar-

ity for each subgroup after normalization and take the average as the final interaction

similarity for each pair.

To calculate similarities incorporating both textual and interaction features, we

calculate the similarity between a subreddit pair A and B with both features the

following way:

sim(A,B) = α ∗ text sim(A,B) + (1− α) ∗ interaction sim(A,B)

where α (0 <= α <= 1) is a parameter that determines the weight of text similarity.

We choose the value of this parameter during clustering. For subreddit pairs where

we do not have interaction features for one or both, we use only the text similarity

(i.e. if interaction sim(A,B) = 0, then α = 1.)

6.4.4 Generating Clusters

There are many applicable unsupervised clustering algorithms that we might em-

ploy for this analysis. We opt for DBSCAN [64], a density-based spatial clustering

algorithm. We choose this algorithm specifically for the reason that it is robust to

noise and it does not include every data point into some cluster if that degrades the

quality of a cluster. DBSCAN is a density-based clustering method and hence takes

the maximum distance between two data points in the same cluster as a parameter

(ε). As we calculated pairwise similarities in the previous section, we need to convert

it to pairwise distances to apply this algorithm.

We used cosine similarity for both text and interaction similarity, so both range
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between 0 and 1. For subreddit pairs with interaction similarity, we use a linear

combination of these two similarities, which also lies between 0 and 1. For subreddit

pairs with only text similarity, the value already lies between 0 and 1. We use (1−sim)

as our distance measure where sim represents pairwise similarity.

We use the silhouette coefficient [164] to determine ε (the distance parameter in

DBSCAN) and α (the weight parameter for text similarity). Silhouette coefficient

is a measure based on the mean intra-cluster distance and the mean nearest-cluster

distance for each point in the cluster. To choose ε, we vary α in ten steps between

0.1 to 1, and observe the highest silhouette coefficient. We choose α based on this

coefficient, the number of subreddits not in any cluster (noise) and the number of

clusters produced.

6.4.5 Results

We find that α = 0.5 and ε = 0.66 produces the best results for clustering. The

largest cluster contains 503 subreddits, nearly half of the banned subreddits. This is

not necessarily surprising as we did not expect, from our qualtititve observations, a

uniform distribution of ban reasons. There are four other medium or small clusters.

Surprisingly, however , there are 441 subreddits without a cluster (i.e. they are

perceived as noise by DBSCAN). Table 6.2 show the banned subreddit clusters, their

sizes, the top 5 largest banned subreddits in the cluster and the common reasons for

banning. We find that while the largest cluster aggregates a few different types of

banned subreddits (based on the labels we obtained from Reddit), the smaller clusters

are usually very focused. The variation for the large cluster is somewhat unsurprising

given the large number of Subreddits and the lack of any specific structure (e.g.,

hierarchical) in the reasons for banning.

When simultaneously clustering both banned and unbanned subreddits (the 2120,

with same α and ε values), we notice a very similar distribution. The largest cluster

roughly doubles in size to 926 subreddits, while retaining almost all of the original

503 but also many unbanned subreddits. For all other banned subreddit clusters, we

see almost one-to-one matches (i.e. same clusters are present in both sets of clusters)

with the exception cluster 6 in Table 6.2. This implies that these clusters are generally

high quality and may be usable as classifiers to find related subreddits through the

use of similarity values.
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Subreddit Comment count Characteristics
Womad 44009 Korean radical feminist subreddit

FreeKarmas 15602 circumventing Reddit rules by giving free karma, very short comments
glassine 11821 location-based heroin review, comments are usually area codes

BabyFart 7196 bot controlled sub, only allowed comment is ”BABY FART”
Test0324 5737 Italian subreddit
GOTporn 3840 pornographic video, image posting website with minimal very short comments

cheggrequests 3827 homework help on questions of Chegg.com
Ironsteel 3067 NBA and soccer based subreddit where all comments are urls

CorrieMckeagueNew 3066 a missing person hunt subreddit
fulltvshowsonanything 2933 illegal streaming website with minimal comments

Table 6.3: Top 10 largest subreddits in noise, their comment count after removing
deleted comments and their characteristics

6.4.6 The ‘Noise’

Of the 1060 banned subreddits in our analysis, 441 were identified as noise by

DBSCAN. A subreddit which is identified as noise in this analysis means that it does

not have high similarity with any of the clusters or other subreddits which are also

identified as noise.
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Figure 6.7: Largest cluster and noise subreddit comment count histograms with 100
bins. The x-axis is log-scaled.

To better understand these we further analyze this subset. Qualitatively, we

find that some subreddits in this cluster have most of their comments deleted or

removed. We calculated comment counts for all subreddits without the deleted and

removed comments. This reveals that some subreddits are identified as noise due

to scarcity of data. There are 13 subreddits where all of the comments are deleted

and 100 subreddits in noise have less than 100 comments. In general, subreddits in

noise have less data compared to subreddits in the largest cluster. Figure 6.7 shows

the comment counts in noise against comment counts in the largest cluster. While
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looking at medians, the largest cluster subreddits have 427 comments as median,

where subreddits in noise have 179 comments as median. Out of 182 subreddits with

more than 1000 comment after accounting for comment removal, only 28 belong in

noise compared to 152 in the largest cluster. However this means there are still large

banned subreddits with enough content which are classified as noise.

We manually check these subreddits to observe why they have very low similarity

with other subreddits. We find that some of the largest subreddits in this list are in

a language other than English, some have very specific esoteric rules for comments

or very short minimal comments. Table 6.3 shows the top 10 largest subreddits in

noise and their characteristics. In general, we find a large number of subreddits are

picture or video based subreddits that post prohibited or violent content or posts

them illegally. These subreddits do not interact with other subreddits much and have

very short comments (e.g., thank you notes or exclamatory comments). There are also

a large number of unmoderated and spam subreddits (75 spam and 44 unmoderated)

which repeat the few spam messages a very large number of time. These subreddits

do not have high text similarity with other subreddits for obvious reasons. However,

we do have some esoteric subreddits like glassine and Ironsteel where the true intent

of the subreddits are masked using clever commenting.

6.5 Prediction

Our prior analysis shows that some subreddits are simply too spare given our

dataset (either due to comment deletion or the use of non-text content). Because

the largest cluster is diverse and relatively rich in content, we focus on subreddits in

this group for our prediction tasks. While we do not consider these in our prediction

task, we believe that if we were able to ‘catch’ comments before they are deleted,

our classifiers would work. Similarly, with additional data it may be possible to

train different classifiers for banned subreddits in each different clusters as they may

represent more range in the reason for banning.

We try to predict banned subreddits against unbanned ones in two ways. The

first attempts to simply discriminate between banned and unbanned subreddits. As

the textual and interaction features have high variance in our dataset (in that not

all subreddits have interaction feature), we train two separate classifiers and combine

their results.

Our second prediction experiment models a more realistic use scenario for mod-

erators. Because moderators often concentrate their banning effort in time — and
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on related content — we demonstrate the use of a banning-by-example ranking sys-

tem. Upon being provided example subreddits to remove, our classifier can accurately

identify other likely targets.

6.5.1 Classifying Using Text

We use a stochastic gradient descent classifier (SGD classifier) [193] to classify

banned subreddits using textual features. An SGD classifier allows us to test a large

variety of loss functions including the hinge, log, modified huber, squared hinge and

perceptron losses. We trained an SGD classifier with all of these losses along with

different types of regularization and regularization parameters (α). We trained our

classifier with 10-fold cross-validation and found that our classifier performs best

with 0.832 F1-score with log-loss, elasticnet regularization (this regularization is a

combination both l1 and l2 regularization) and regularization parameter α = 0.0001.

We use F1-score as our evaluation metric as our dataset is unbalanced with 505

positive and 1060 negative samples.

6.5.2 Classifying Using Interaction

We use a random forest classifier with 20 trees to classify banned and unbanned

subreddits with interaction features. As a large number subreddits do not have these

features, we only train and test on samples with these features. We used ten-fold

cross-validation like our previous classifier to train the model. We found that the

best cross-validation F1-score is 0.605, which is rather low by itself. However, as we

only use six interaction features to obtain this result. This type of classification can

be applied to datasets in any language with interaction features.

6.5.3 Combining Classifiers

We combine results from both our text and interaction classifiers to predict banned

subreddits. First, we divide the data into a training set and a testing set with the

testing set comprising of 10% of data divided in a stratified fashion. We train both our

classifiers with previously found parameters. We do not combine our results using

a simple majority voting of two classifiers for two reasons. First, we do not have

interaction features for all samples. Second, the text classifier has higher performance

accuracy (though we reliably can generate text features). Instead, we use the class

prediction probabilities of both classifiers and take only the confident predictions.
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As we observed better result using the text classifier and we have textual features

for all samples, we use the text classifier to predict a sample’s class if the classifier is

at least 65% sure of its decision. On the other hand, if we have interaction features

for that sample and the interaction classifier is very sure of its prediction (at least

80%), we use the interaction feature to predict the sample’s class. We observe that

the overall score varies depending on the train-test split. We ran the classification

task 50 times with different splits and took the average score to account for these

variations. We get 0.841 average F1-score using both textual and interaction features

and 0.839 average F1-score using only textual features. Although this improvement is

rather little, it is statistically significant with a significance level of 0.018. We believe

the overall improvement is small due to most of our samples being English language

subreddits and textual features can already predict the ban in most cases when we

have interaction features.

6.5.4 Banning-by-example

We have established that the reasons behind subreddit bans are extremely varied

and no single classifier can predict all types of bans. However, we also find that similar

subreddit bans tend to cluster over time and we can use these banned subreddits

of a type to identify subreddits misbehaving in a similar way. To test this, and

demonstrate that a more targeted bank ranker can be built, we designed a banning-

by-example ranker. We identified all days with at least 10 subreddit bans and used top

n (varies from 1 to 10) largest banned subreddits on each day (example subreddits)

to identify subreddits similar to them.

We use the pairwise similarity measure including both text and interaction simi-

larity (as described in section 6.4.3) to determine similar subreddits. We re-estimate

the parameter α (weight of text similarity) for this task. If we have more than one

subreddit in the set of example subreddits, we take the average similarity with all the

example subreddits as our similarity measure. For each day with at least 10 bans,

we find top 10 similar subreddits from all of our banned and unbanned subreddits

(not including the example subreddits themselves) and identify how many of them

are banned (precision at k measure where k = 10). We calculate precision at 10 for

each day and take the average as our final evaluation metric.

We find that we achieve the highest mean precision at 10 of 0.913 at α = 0.5 and

n = 10. In general, we observe that precision increases with n but the rate of growth

slows down with higher values of n. Figure 6.8 shows variation of average precision

at 10 vs the number of example subreddits (n) at different α values.
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Figure 6.8: Average precision at 10 vs the number of example subreddits (n) at dif-
ferent α values.

We also test the banning-by-example methodology against 14,926 unbanned sub-

reddits with at least 100 comments in January 2018. We exclude now defunct ‘default’

subreddits and non-english subreddits from this list. We only use text similarity as we

do not have sufficient data to infer interaction features for the unbanned subreddits

in just one month. We achieve the highest mean precision at 10 of 0.56 at n = 10

(for comparison, random guess achieves P@10 of 0.06). Figure 6.9 shows variation of

average precision at 10 vs the number of example subreddits (n). This depicts a more

realistic scenario for this approach and shows that there are many unbanned subred-

dits which are very similar to a lot of already banned subreddits. We observe that

the unbanned subreddits which are similar to previously banned subreddits include a

large number of pornographic subreddits (e.g., wifesharing , snapchatnude) and drugs-

related subreddits (e.g., drugsarebeautiful , Xanaxcartel). We find that some of these

subreddits are banned after our data collection (snapchatnude, Xanaxcartel), so they

do not show up in our banned subreddit dataset. However, we note that support sub-

reddits like SuicideWatch also show up in this list because of heavy use of suicide and

death related terms in some banned subreddits. We believe that using the banning

by example paradigm can provide human moderators with a filtered list which will
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help improve community moderation.

1 2 3 4 5 6 7 8 9 10
n

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ea

n 
pr

ec
is

io
n 

at
 1

0

Figure 6.9: Average precision at 10 vs the number of example subreddits (n) using
all unbanned subreddits from January 2018.

This banning-by-example approach can also be used in an agglomerative fashion

to help identify banned subreddits from a specific category (given enough examples

from that category). If we find a banned subreddit that does not fall into any category,

we can start a new category with that particular subreddit and can find future similar

subreddits and progressively add them as examples of that particular category.

6.5.5 Predictive Words

One outcome from our prediction task is that we are able to determine words

that are indicative of banned subreddits by looking at their coefficients (a high value

indicating importance). To get the top words predictive of banned subreddits, we

identified top 1000 coefficients in the text classifier trained with all samples (i.e. all

subreddits in the largest banned cluster and all unbanned samples) and evaluated the

words. Theoretically, these words should give us an indication about the nature of

content in the banned subreddits in the largest cluster.

We find that many of top-1000 words are violent, profane, threatening, indicative

of causing bodily harm or death, anti-transgender, antisemitic, racist or pornographic
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in nature. The nature of these words does indicate that toxic content is a prominent

in the largest ban cluster (in contrast to other kinds of rule breaking).

6.6 Discussion and Limitations

While a corpus of banned subreddits is large, one limitation is that we do not

have data for all known banned subreddits. Particularly those that have had all their

content deleted. Though we find a diverse set of content in our corpus, there may

still be a bias to the dataset in the data we do not have access to. While we do

not know to what extent we are missing banned subreddits our hypothesis is that

those comments that are deleted are likely more egregious norm or rule-violations

and may be easier to detect. Conversely, we do find that our approach captures many

banned subreddits which did not catch media attention and thus were invisible in the

general public eye. We believe these smaller banned subreddits are very important in

understanding the subreddit banning landscape. These may be harder to detect and

are thus a more interesting moderation problem.

Although we show that banned subreddits can be predicted reasonably well given

we have enough content, human moderators are still needed for more for subreddits

such as glassine and Ironsteel where comments are coded. For example, all of the

comments in Ironsteel are URLs which point to illegal streaming sites. These types

of misbehavior are very difficult to analyze in an automated fashion. In our banning-

by-example scenario we also need human moderators for identifying initial examples

of banned subreddits of a specific type. In our work, we use Reddit’s tendency to

ban similar subreddits at once to our advantage. However, this is not applicable to

all social media websites.

It is poosible to apply more sophisticated natural language techniques including

phrase models, toxicity analysis to banned subreddit contents to improve our predic-

tion results. Our analysis is currently limited to a limited set of unbanned subreddits.

In a realistic use scenario, we anticipate needing to compare ‘example’ banned subred-

dits to a far larger corpora. Techniques such as embedding may allow our approach

to scale. However, we note that we chose a simpler bag-of-words representation to

support interpretability for this analysis. In addition to better representation, we be-

lieve more varied features will be able better distinguish between different ban reasons

automatically.
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6.7 Conclusion

In this analysis, we identified more than 1000 banned subreddits with their textual

and interaction features. We believe this is the largest dataset on banned subreddits

to date. We described both the reasons Reddit provides for banning as well as those

derived through quantitative and qualitative analysis. We showed that subreddits re-

moval is temporally clustered and those removed near each other (in time) are similar

in other respects. Banned subreddits appear to fall into three main classes (internal,

external, and meta) each with different properties. We demonstrated that it is pos-

sible to predict banned subreddits from content and interaction features. Finally, we

showed how moderators could be supported through a banning-by-example classifier.

In the next chapter, we focus on differences of algorithms, specifically community

detection algorithms and show how looking at differences along with similarities in

algorithms can improve the problem of identifying communities.
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CHAPTER VII

An Interactive Visualization Tool for Community

Detection

7.1 Overview

In this chapter, we look into differences in algorithms to point out robustness (or

the lack thereof) of certain outputs, the uncertainty of certain parts and in general

improve overall results in conjunction with ensemble algorithms. We apply this idea

on a set community detection algorithms to figure out if a given network has ‘good’

community structures, which nodes have weak community assignments and how to

incorporate user knowledge using an interactive visualization tool CommunityDiff.

Community structure often provides useful insights about the underlying network.

For example, communities in social network represent groups of people who share an

interest, location, or other semantically meaningful attributes (e.g., were all ‘friends

in high school’) [80, 179]. In biological and brain networks, communities capture func-

tional groups [29, 91]. Many other non-network problems in machine learning and

data mining are recast as networks so that the network analysis tools, including com-

munity detection, can be used. For example transforming text to graphs in NLP [139]

or user-item recommender models [94] allows us to use community detection to solve

problems as diverse as document summarization or movie recommendations.

In practice, there are many community detection algorithms with very different

properties: some work better at large or small scales, many use specific optimization

functions (e.g., modularity), others contain randomization, some work better with

weighted networks, and so on. The output partitions (i.e. communities or community

labels) can be significantly different even when the input is the same. Because the

space of possible algorithms and parameters is vast, selecting a satisfactory approach

is difficult (let alone optimal). Even for algorithm experts, the selection can be a
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black art. For domain experts (e.g., social networks, biology, etc.) the choices can be

overwhelming.

We are specifically interested in supporting domain experts who would like to par-

tition a network into “communities” where labels are important. For example, the

manual task of labeling blogs based on political party [3] or sub-communities in an

ego-net [84]. Domain experts already have access to tools to support community de-

tection. While they may be familiar with network analysis, the tools that are available

are often generic and do not readily support community detection beyond executing

the algorithms. Though we return to the issue of overlapping communities below, in

many of these domains, “hard” partitions are desirable. This kind of community par-

titioning is one of the main functions of most network analysis packages used today

(e.g., Pajek [16] and UCINET [25] in the social sciences; Cytoscape in biology [171];

and more general tools such as Gephi [15], GUESS [4], and NodeXL [82], etc.) or

libraries such as igraph [46]. Each software or library contains multiple implementa-

tions and it is often difficult for an end-user to determine which is appropriate. Given

the specific goal of “accurate” and well-understood partitions, the end-user would like

to be provided with a viable automated starting point and a facility to understand

differences and quickly “fix” labeling mistakes with as few interactions as possible.

One approach to dealing with too many choices is simply not pick any specific one

and to combine algorithm output. This is one of the motivations behind ensemble

techniques [130, 161]. Network scientists have devised ways to apply this technique

to community detection [48, 113]. Ensembles can be treated as weighted combina-

tions of different algorithms or parameters: each algorithm ‘votes’ on the output and

their votes are combined in some way. The hope is that the ensemble will produce

something closer to the “correct” answer. However, even with ensemble techniques

achieving perfect clustering accuracy (according to some ground truth) is often im-

possible. This may be due to the presence of noisy or ambiguous data (missing edges,

incorrect weights, extra edges, etc.) or the assumptions of community detection al-

gorithms (e.g., that nodes in the same community are connected).

It is here where domain knowledge is critical to make corrections to algorithm

output. Domain knowledge can include anything from knowing how many commu-

nities should exist or knowing which nodes should (or should not) be in the same

community. In practice, however, the “completeness” of this knowledge can vary

greatly. For example, the expert may only know that there are 5 communities but

not what should be in them, or the expert may only be able to point at only subset

of pairs of nodes that belong in the same community (e.g., experimental evidence in
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a biological network may only provide clear functional groups for some of the data).

Ideally, an analytical tool would allow the end-user to: determine that the “facts”

they know are captured in the current partition (or not); make corrections to bring

the partition in line with known facts; and make decisions on those cases where there

is no background knowledge. The tool we describe here combines both sensemaking

and data-wrangling. This is in the sense that the high level objective is to create

‘clean’ groupings (the wrangling part) which requires understanding the network in

various ways (the sensemaking part). The particular activities vary depending on the

prior knowledge of the end-user but both are entwined and both should be supported.

Distilling this analytical pipeline, we can abstractly view our workflow as being

comprised of two main “phases”: (1) finding the best initial partitioning of the data

(the best starting communities) and then (2) making the necessary corrections (with

or without the software’s help). From the perspective of the interface, this requires

supporting the end-users’ decision making about whether a partition is “good” and

then making decisions about corrections and refinements.

CommunityDiff (see Figure 7.1) was designed with this pipeline in mind. The

tool supports interactive analysis of community structures by coupling a novel vi-

sual analytics environment and decision-making tools1. CommunityDiff supports

two main task types. The first is rapidly labeling all nodes in the network when

ground truth is known (e.g., quickly partitioning handwriting samples by digit type

or classifying the end-user’s own social network egonet). The second mode is when

the knowledge is incomplete and the end-user must compare different partitions in

making decisions. Both tasks are supported by a visualization of ensemble spaces

— the output of individual algorithms as well as mixtures. Through this view, the

end-user can rapidly compare different ensembles and quickly resolve on partitions

that are close to their final objective. Additionally, we introduce a second set of tools

that help the end-user judge between alternative labels for specific nodes. Finally,

a novel active-learning framework ensures that end-user actions can be integrated

into the machine learning process to constantly improve results. CommunityDiff

‘signals’ to the end-user which labels would lead to better classification (visually, by

making certain nodes more salient). Any operation done by the end-user — rang-

ing from moving nodes between groups, specifying the number of clusters, excluding

nodes from group membership, and many others — is taken into account as a form

of supervision. Decisions are supported by focusing on uncertainty of community la-

bels. For example, nodes with uncertain labels are larger in size and there are explicit

1A brief video demonstrating the system is available at https://youtu.be/KNdQqWXTT8w
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Figure 7.1: CommunityDiff: (1) The Ensemble Space Heatmap showing different
algorithms as dots and different ensembles achieved using these algo-
rithms, (2) A panel showing different features and controls for the En-
semble Space Heatmap and the active learning panel, (3) A dendrogram
showing relations among and proportions of different ensemble outputs,
(4) The network diagram, (5) The co-community lists. Note that this
view was used in evaluation and some advanced features were hidden
(e.g., downloading the network).

functions to show agreement of different algorithms for nodes in the same cluster.

We demonstrate, through both automated and lab experiments, that Commu-

nityDiff allows for rapidly constructed, high confidence, and accurate community

labels. Currently, we only focus on disjoint community detection rather than the over-

lapping variant as overlapping community detection algorithms are generally poor

performers. In fact, discrete community detection often performs better than cus-

tom overlapping-community algorithms for overlapping community detection bench-

marks [158]. For this reason, use of overlapping community detection algorithms

is far less common compared to their hard-partition counterparts. We find that the

most common social network analysis tools focus on hard partitions. While abstractly

CommunityDiff can model overlapping communities (e.g., the overlap of two com-

munities A and B can be modeled as a third community C that is the intersection of

the two) and hierarchical communities (e.g., a community can be further partitioned

into sub-communities), the current visualizations of CommunityDiff are not opti-

mized for these variants.

The community-detection task we describe is an instance of a broader set of ana-

lytical pipelines. In many other Data Mining and Machine Learning tasks there are
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numerous alternative implementations (clustering algorithms, classification systems,

etc.). With any of these, the domain expert must compare different models or solu-

tions and make corrections in order to arrive at a satisfactory answer. In addition to

demonstrating the effectiveness of CommunityDiff for the particular community-

detection problem, we capture both design guidelines and visualization techniques

that can be directly applied to other Interactive Machine Learning (IML) systems.

In this project, we contribute CommunityDiff, an interactive community de-

tection analysis tool that allows end-users to easily compare, combine, and modify

communities generated by multiple algorithms. We demonstrate how the idea of

“ensemble-spaces” and specific heatmap-based representations can allow the end-user

to identify common communities, where there is disagreement between algorithms,

and to easily correct errors in labels. Along with other visual elements (e.g., conven-

tional node-link diagrams, dendrograms and a novel co-community list), Communi-

tyDiff also integrates active learning to visually suggest those nodes that should

be labeled and which readily adapts the community structures based on end-user

feedback. CommunityDiff is intended to support a common task for interactive

machine learning systems, where the human must interpret the output of the algo-

rithm and make corrections.

The idea of ensemble-spaces, heatmap-based representations and highlighting “hard-

to-label” nodes based on differences and disagreements of community detection algo-

rithms. A paper on which this chapter is based on is published at [50].

7.2 Related Work

Related work to CommunityDiff falls broadly into two categories: interactive

features to support humans as part of the machine learning ‘use’ pipeline; and the

algorithm side that produces better results based on human intervention.

7.2.1 Interactive Machine Learning

There are many visual techniques to analyze the output of machine learning and

data mining algorithms. Simple scatter plots and histograms (for understanding

data distributions) or precision/recall, ROC curves, or confusion matrices (for eval-

uating output) are a common representation available to developers in most plat-

forms [20, 56, 138, 183]. To improve the designer’s ability to debug different pipeline

components a number of specific visualization techniques have been developed to

provide an enhanced view at different outputs. Examples include visual model com-
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parison [150, 172] and model interpretation [19, 33, 118, 142, 180, 194]. These range

from generic [180, 194] to model and data specific (e.g., graphs [172] or text [142]), to

algorithm-specific (e.g., Bayesian text classification [19] and SVMs [33]). Often these

focus on static representations or basic comparisons (e.g., ROC or precision/recall)

at the end of the analysis pipeline.

A good example of general visual model analysis is LoVis [194], which compares

different linear models on any kind of data visually to identify local patterns in the

data. In graph specific visual model comparison, Sharara et al. [172] introduced G-

Pare, a visual analytics tools which compares output of different machine learning

algorithms on networks and provides both a global view of algorithm outputs and

difference of algorithms on specific subsets of nodes. This is similar in intent to our

ability CommunityDiff’s functions, comparing outputs of different community de-

tection algorithm on the whole graph or a specific subset of nodes, though in our

case we emphasize the use of ensembles and not simply comparisons. For algorithm-

specific models, Becker et al. [19] provides a visualization of naive Bayes classifier

outputs, specifically focusing on probabilistic importance of each feature and impor-

tance of each feature in a specific example. However, these systems often focus solely

on comparison and not the interactive corrections.

Recognizing that by adding interactivity, visualizations could also support bet-

ter analytical pipelines, researchers have turned to Interactive Machine Learning

(IML) [61, 65, 155]. Through interaction with visualizations and other means of “dia-

log” (e.g., questions to the end-user), IML systems can obtain new training examples

for classifications [67, 68], refine features [26, 135], identify trade-offs the designer

is willing to make [97], modify individual algorithm behavior (e.g., Hidden Markov

Models [49] or classifiers [12], and create effective ensembles [98, 177]. Such solutions

are often an extension to visual workflow designs such as the Wekinator [67] extension

to Weka [183] or plugins for Orange [56] or KNIME [20].

IML systems often focus on improving training data. For example CueFlik by

Fogarty et al. [68] allows end-users in an image search engine to create their own

rules for image search and improve upon searched image ranking in a personalized

active learning framework. Other IML system, such SmartStripes [135], focus on

interactive feature selection that allows user to explore dependency between differ-

ent feature and entity subsets. Ensemble classifier algorithms can also interactively

benefit from human input as demonstrated by Kapoor et al. [98] (with the aid of

misclassification cost visualization for a multi-class ensemble classifier). These ap-

proaches are often singular in focus and reinforce traditional ‘black box’ models that
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do not support the different modalities under which the end-user can operate (la-

beling, exploring, comparing, etc.). Our contention is that even simple analytical

pipelines (e.g., generating community labels or clustering) require multiple modes of

operation and multiple steps. To be effective, systems need to support different types

of analytical work which requires varied, but integrated, visualization components.

Through CommunityDiff we attempt to provide such a solution for domain-experts

by building support for different steps through different visual elements.

A final area of related work is in intelligent data wrangling [79, 95]. Generating and

correcting community labels on a graph can be viewed as a form of data wrangling.

The end-user is ‘fixing’ and validating some element of the data, in this case labels.

Though data wrangling work is most often focused on more standard columnar data

(e.g., [79]) work in the field has moved to incorporate visualizations, active learning,

and mixed-initiative frameworks. In this way, CommunityDiff can be situated in

this broad space.

7.2.1.1 The Human Side of ML

The IML community has developed a number of design guidelines for eliciting

feedback from human participants [9]. Horvitz [92] provided some key guidelines

(for example, considering uncertainty about and user’s goal and employing ‘dialog’ to

resolve key uncertainties) for designing mixed-initiative user interfaces that allows effi-

cient communication between humans and the user interfaces. Our goal is to leverage

these lessons as a starting point for our interactions. For example, Cakmak et al. [32]

found that individuals providing feedback dislike acting as oracles for active learn-

ers (e.g., answering a constant stream of tedious questions) and Stumpf et al. [175]

found that end-users wanted variety in the feedback they provided (e.g., modifying

features, weights, etc.). Others have focused on the necessary level of interpretability

in representations [107]. In part inspired by this work, we devise a set of guidelines

specifically intended to guide the construction of effective visual analytics solutions.

7.2.2 Ensembles and Community Detection

CommunityDiff functions, in part, by allowing end-users to build ensembles of

community-detection algorithm outputs as these often represent a “better” solution.

Lancichinetti et al. [113] showed that use of consensus clustering (a kind of ensemble

technique that uses voting) can boost accuracy and stability of a community detection

algorithm. In this method, a single algorithm is run over the input network a number
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of times. The edge-weights of this network are modified using the results of different

runs. The original algorithm is run over the modified network again. This works

well in case of fast, but unstable, algorithms such as Fastgreedy [147]. Dahlin et

al. [48] used a node-based fusion of communities algorithm which applies hierarchical

clustering of nodes with a special linkage rule. Burgess et al. [31] create ensembles by

generating variations of the same graph using randomized link-prediction and treating

each run of the community detection algorithm as input to an ensemble.

Our idea of creating an ensemble space for community detection is very much

inspired by the system described by Grimmer and King [78]. Their system focused

on generating ensembles of multi-dimensional clustering algorithms. A metric space

of these approaches allowed them to identify “holes” in this space and to generate

ensembles that proved to be effective in finding the correct classification. We expand

on this visualization to integrate additional “heat-maps” that capture differences be-

tween algorithms, key community-structure metrics (e.g., modularity). This ensemble

visualization is used in combination with a number of other visual and algorithmic

elements to support the end-user’s labeling and partitioning tasks.

7.2.3 Active learning

Active learning (AL) has seen a number of advancements in recent years from the

algorithmic perspective [168] though it is rare for the focus to be on graph structures.

More critically, very little attention has been paid to the interplay between visual-

ization and active learning. From the algorithmic perspective a notable exception is

Leng et al. [120] who used a label-propagation based approach to incorporate active

learning in community detection. Macskassy et al. [131] used graph features for active

learning in networked datasets which can be viewed as a form of community detection

in networked data. Within the HCI context, Amershi et al. [10] demonstrated the use

of an active learning scheme for grouping individuals by using node properties such

as ‘age’ or ‘place of birth’ (rather than network structure). The Apolo system [37]

utilized active learning to help end-users collect and label related papers. The task

was framed around an iterative process of collecting and labeling a small set of papers

which could then focus on the “expansion” of this set.

7.3 The Trouble With Community Detection

Before describing the design of CommunityDiff in detail it is worth considering

why interactive tools might offer an advantage when performing community detec-
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tion. To understand why, we consider how community detection algorithms work,

and therefore, fail. Community detection is dependent on structure and metadata

(on nodes or edges). If edges were only to exist between nodes that were in the same

community, or nodes contained explicit metadata that identified which community

they belong to (e.g., a node identified as ‘group 1’), the solution would be obvious.

Because networks are never this well structured, community detection algorithms at-

tempt to find communities by optimizing on some metric (e.g., modularity or being

part of a k-core [179]). Because networks are noisy and community detection algo-

rithms can at best utilize an approximation of ‘optimality’ (based on their metrics),

there can be no guarantee of a ‘correct’ output.

This should be unsurprising as community detection is a form of clustering. Spe-

cific studies on networks have shown that a “perfect and general” community de-

tection algorithm is likely out of reach either because the networks are noisy [31]

(i.e. sampled nodes and edges do not reflect reality) or the algorithms make assump-

tions about structure [60] (e.g., overly focusing on metrics such as modularity) or

metadata [151] (e.g., that metadata reflects ground truth). The consequence of these

assumptions is that fully-automated community detection, even in simple networks

(e.g., [190]), can fail to produce the ‘correct’ community assignments.

Even when we tolerate imperfect partitioning (e.g., the down-stream use of the

communities will still work) being able to evaluate different algorithms is extremely

useful. Different algorithms can have systematic biases that need to be understood

(e.g., restrictive models of communities that produce too many partitions with very

few nodes). Thus, human feedback and interaction is a crucial part of generating high

quality, believable, and usable partitions.

Even those developing community detection algorithms may find it difficult to

evaluate the algorithms due to scarcity of ground truth partitions. Algorithm de-

signers often rely on synthesized data or external node metadata in lieu of ground

truth community assignment [189]. However, recent research suggests that metadata

partitions in the network may not align with community assignments suggested by

network structure [93, 151]. Thus, it may be hard to fully characterize a community

detection algorithm’s performance. Because of this, even experts using community

detection algorithms may utilize multiple algorithms (or ensembles) to better under-

stand the quality of the partition. The intuition is that if multiple algorithms arrive

at the same result, the researcher can infer that the resulting partition is stable. On

the other hand if each algorithm produces widely varying results from each out, one

gets a sense of instability.
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Despite the various ways community detection algorithms can fail, the manifes-

tation of those failures are somewhat consistent. Broadly, algorithms will produce a

different distribution of errors, but we observe the following three categories:

1. Split community — A single community split into two (or more) sub-communities.

Each sub-community is “valid” (in that there is no incorrectly placed node) but

a more valid labeling has all nodes in the same community. Often, variants of

the Louvain [24] and InfoMap [162] community detection algorithms generate

these kinds of errors more than other algorithms due to ‘field-of-view’ limits [60].

2. Single-node misclassification — this occurs when a single node is assigned

to the wrong community. This occurs most often for “bridge” nodes, where the

node has strong connections to two (or more) communities and is mislabeled

in the end. These mistakes tend to be less frequent than the split communities

but potentially critical as such nodes often have high centrality scores, making

them ‘critical’ to the network. Many algorithms ‘fail’ in this way on networks

such as Zachary’s Karate Club [190].

3. Merged community — Communities can be mistakenly merged (often due to

strong connections between them). This results in large communities and overall

less number of communities. Label propagation, for example, tends to merge

different communities to a single one. Algorithms that rely on modularity [146]

may also run into resolution limits that are unable to pull out smaller sub-

communities from larger ones [70].

Figure 7.2 depicts the three kinds of errors shown in community detection. It is

possible to think of split and merged community errors as being composed of multiple

single-node misclassifications. That is, one could resolve these errors using many

single-node relabeling (i.e. moves). If errors were completely random, our end-users

would need to perform single-node corrections, one at a time, to build the correct

structures. However, this is not realistic in the context of community detection (and

most other clustering problems). Split communities are a very common occurrence

(merged communities, slightly less so). Thus we would like to ensure that our end-

user can quickly correct these errors without moving one node at a time. These three

errors are ones that a human agent would either need to correct or understand (i.e.

mentally model).
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Figure 7.2:
Different kinds of errors in community detection. (a)Single-node misclas-
sification, (b)Merged community, (c)Split community. On the right hand
side, the incorrect community assignment is shown and on the left hand
side the corrected version through a specific action (shown in figure) is
presented.

7.3.1 The Analytical Pipeline

Recall that the end-user is using two ‘pipelines’ in our scenario: a sensemaking

activity that helps the end-user model the space (i.e. possible communities) and a

data wrangling activity by which the end-user corrects the algorithmic output (or

manually produces labels). These are clearly not independent of each other, and

one may view sensemaking as including wrangling decisions in organizing data and

conversely wrangling decisions can be aided by analysis. Depending on the state of

the network and background knowledge of the end-user, they may focus more on one

task or another. For example, if they know all the community labels, this is largely

a wrangling task. The less complete the knowledge, the more the end-user must rely

on sensemaking techniques to make or validate labeling decisions. CommunityDiff

is designed to help with both tasks.

Wrangling work, which in some sense is a more limited task, is supported through

automation. Active learning, mixed-initiatve interactions, supervision, and other

human-in-the-loop paradigms can take advantage of human action to accelerate the

wrangling process [95]. Wrangling is naturally ‘easier’ when the end-user has a perfect

mental model of the ground truth. At worst, the end-user could label each node —

one at a time. Automation speeds this up. However, with incomplete knowledge, the

end-user may need guidance to help decide between different labels which is where
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Figure 7.3: Exploration process from an unlabeled graph to the final partition. The
end-user moves from the unlabeled graph to a reasonable starting point
generated by the initial execution of the partitioning algorithms and en-
sembles, followed by corrections through the use of direct manipulation
and active learning.

the broader notion of sensemaking comes into play.

Work with data often requires iterative loops of sensemaking, where the analyst

engages in cycles of data collection, organization, hypothesis testing/analysis, back to

data collection, and so on [152] (eventually terminating on a ‘satisfying’ answer). For

a community detection task, we can view this process as: the analyst starts with an

unlabeled graph and through a sequence of decisions and ‘wrangling’ actions produces

a graph where nodes are annotated with a community label. It is this framing that

drives our design. The many algorithmic and design decisions we made are motivated

by a need to support this progression. In the context of community detection, the

sensemaking and analysis process might be aided by high-level information (e.g., how

many communities were found? how do the community sizes range?) and low-level

information (e.g., is this pair of nodes in the same community?). In some cases, the

domain-expert can not evaluate the answers to these questions (e.g., they may not

know if the two nodes should be in the same community or may only have a sense that

the number of communities range from 3 to 5). Here, information about algorithm or

output confidence — which in our case can be derived by using multiple algorithms

— can guide a decision.

We graphically depict (a partially linearized) view of this idea in Figure 7.3. As

we argue below, CommunityDiff is intended to capture viable analytics start states

by producing a solution space (the ensemble space) and presenting information that

help progress the analyst in making decisions. By providing ‘views’ into this space,

the end-user may pick solutions that are close to the final target (both an act of
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sensemaking and data-wrangling). Our goal is to make these good solutions highly

salient and the differences between solutions obvious. From this point, the analyst

can make smaller decisions to allow them to reach the target labeling. When the an-

alyst has a clear model of ground truth such decisions should not require significant

manual work (e.g., clicking and dragging individual nodes). When the answer is less

clear, CommunityDiff is designed to provide a high level overview of options and a

fast mechanism for acting on these options (e.g., through the Co-Community View).

Furthermore, CommunityDiff constantly uses the human feedback to improve the

classification of nodes that still need to be labeled (aiding the data-wrangling activ-

ity).

7.4 The CommunityDiff Design

Having described the ways in which algorithms can fail, and the mechanisms by

which a domain scientist can navigate this space, we can describe the key features of

CommunityDiff. We also briefly illustrate its use with an example and offer a set

of design guidelines that informed our specific implementation.

Figure 7.1 depicts a typical configuration of CommunityDiff. Upon loading up

a new network, Blocks 1-4 are visible. Block 5 is initially hidden from view and is ac-

tivated to support ‘fine’ manipulation of the network structure. The network is shown

in Block 4 (referred as the network diagram), with an initial community assignment

of nodes, which CommunityDiff interprets as the best community assignment for

the network without any input from the user (further elaborated in next paragraph).

In the standard node-link view, each community is shown inside a bounding box

for easy identification of the communities. The nodes and the bounding boxes of

different communities are colored differently. CommunityDiff also highlights the

nodes (by making them larger in size) for which the system is less confident of the

community assignment. This allows the end-user to focus on these specific nodes

(elaborated in 7.5.3.3). This interface allows the end-user to correct specific failures

in the community detection output (e.g., moving specific nodes, splitting and merging

communities). However, this may be costly if there are many errors or difficult if the

end-user does not have a mental model of the ground truth. To address both problems,

CommunityDiff offers alternative community detection ‘outputs.’

CommunityDiff initially takes six different community detection algorithm and

their combinations to identify possible communities. The algorithms can be dynam-

ically and selectively enabled and disabled and CommunityDiff is architected to
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Figure 7.4: Elaboration of different components of the ensemble heatmap and the
dendrogram. Initial community detection algorithms are shown as multi-
colored dots (except the red dot) in the heatmap. Each differently colored
region in the heatmap represents a different ensemble output. The red
dot corresponds to the current ensemble output shown in the network
diagram. The output of different algorithms can be viewed by clicking
corresponding multi-colored dots. The dendrogram shows relationship
among different ensembles. The interactive bars in the dendrogram cor-
respond to the ensemble which is colored the same in the heatmap and the
length corresponds to the area of that region. Output of the correspond-
ing ensemble algorithm can be viewed by either clicking the corresponding
region in the heatmap or the corresponding bar in the dendrogram.
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support the addition of new algorithms. The user can choose any subset of the six

algorithms (with the constraint that there must be at least two algorithms for the

ensemble operations). For purpose of this system, we chose six very well known com-

munity detection algorithms as a starting point. We compare and contrast these

algorithms and their different combinations (the ensembles) using an abstract met-

ric space where each algorithm is represented by a dot and each point in this space

represent an unique ensemble algorithm based on the point’s distance from the ‘dots’

(shown in Figure 7.4). The distance between two algorithms (dots) is proportional

to how different their output is. We call the visualization of this space the ensem-

ble space heatmap or simply ensemble heatmap (explained in detail in Section 7.5.2).

Output of each of the original algorithms and each ensemble can be viewed by click-

ing on the point. The community assignment is dynamically changed accordingly in

the network diagram panel with minimum number of community reassignments from

the previous figures. Nodes which changed communities are highlighted temporarily

for easy identification. However, not all ensemble algorithms produce different out-

put. In fact, we see very few unique outputs compared to the vast number (2500)

of ensembles calculated. Thus, in the ensemble map, ensemble algorithms that pro-

duce the same output are colored the same, i.e. the ensemble map is partitioned by

different colored regions where each region produce a different output. The largest

region in the ensemble map produce the most stable community assignment and this

assignment is initially reflected in the network diagram.

While the heatmap view makes salient broad areas of stability and the relationship

between algorithms, it is not the most effective view for certain tasks. For example,

these ensemble map regions can have arbitrary shape and it is not always easy to tell

which is the largest region if there are multiple large regions. Due to their shape, it

is difficult to rank other large regions. Moreover, from the ensemble map, we have

no idea how different the outputs of these different regions are. For this purpose, we

provide a dendrogram (shown in Figure 7.1(3) and Figure 7.4) based on the similarity

of ensemble outputs. The dendrogram also provided bars to show the size of different

ensemble regions so it is easy to identify and rank large regions. Bars are colored

according the color of the region in the ensemble map and highlights the corresponding

region when hovered on. This is further detailed in Section 7.5.3.2.

CommunityDiff also provides the user with a choice of different algorithms,

multiple views of the ensemble space (explained in Section 7.5.3.1) and active learning

with specified number of communities with the option of manually labelled nodes

(elaborated in Section 7.5.4.2) in the panel shown in Figure 7.1(2).
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The user can bring the node-specific co-community lists (shown in Figure 7.1(5))

by shift-clicking a particular node in the network diagram (the node with thicker

borderlines in Figure 7.1(4)). These lists show how many original algorithms put

all the other nodes in the highlighted nodes community. This gives a sense of how

robust a particular community in the network is. These list also allow the user to

iteratively add/remove nodes from the highlighted nodes community to achieve their

desired partition. The user can multiple add/remove constraints at once. It is to be

noted that these lists are different for each node and this panel is not initially visible.

The user can hide this panels by clicking the ’Hide Co-community Lists’ button.

To help with navigation, CommunityDiff supports additional functions such as

zooming, toggling node labels, hiding particular communities etc. which is further

detailed in Section 7.5.3.5. Overall, CommunityDiff provides an end-user with an

easy way to compare and contrast different algorithms and ensembles, to incorporate

own knowledge about the network/communities without intricate knowledge about

the algorithms and have a sense of how good or bad the overall partitioning of the

network or a particular community is.

7.4.1 Example Interaction

Let’s follow a political scientist, Alice, as she looks at a small social network she

has collected by mining messages on a specific issue between politicians on Twitter.

She knows there are a two to four main groups developing different legislation on

the issue, but not necessarily which politician has committed to each group (she does

know which party they belong to, and some past interactions). Her goal is to generate

groupings of politicians that are likely to push for the different legislation. Commu-

nityDiff can help, by giving Alice a workable starting point, the ability to correct

errors produced by the algorithms (broadly, wrangling), and information to help de-

cide on labels when there is disagreement or uncertainty (broadly, sensemaking).

Upon loading the network Alice sees 4 blocks in the interface (Figure 7.1(1-4)) as

co-community lists are initially hidden from view. CommunityDiff automatically

executes a number of community finding algorithms and generates the ensemble space

view in the heatmap (see Figure 7.1(1)). The heatmap represents a view of the six

algorithms as well as the ensembles of those algorithms (each dot is a base algorithm

and each color is a unique ensemble). In this view Alice can quickly identify the most

stable ensemble (the large green surface, here we refer ensemble algorithm outputs

as ensemble or ensemble output). This is reinforced by the dendrogram view (Fig-

ure 7.1(3)) which not only shows that this particular ensemble is common, but it is also
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similar to two other very stable ensembles. Upon clicking on a point in this ensemble

inside the heatmap view, the network map (Figure 7.1(4)) dynamically changes to

show the current partitioning. Alice can click on other points in the ensemble space

to compare different partitions. CommunityDiff makes the differences salient by

briefly highlighting nodes that have ‘moved’ (i.e. changed community assignment or

moved from one community to another after performing certain actions) thus sup-

porting visual comparison between algorithms or ensembles. Alice can quickly test

different partitions of her network to identify a good starting point for further analysis

(the one that is closest to what she knows is true about this network).

Alice can further configure the ensemble space by adding or removing algorithms in

the control panel (Figure 7.1(2)) or change the heatmap view. This panel also allows

her to force CommunityDiff to provide feedback to the learning system. Alice can

constrain CommunityDiff by either setting a specific number of clusters or using

direct manipulation to move nodes between communities. For example, Alice may

know that the two communities are aligning with the two main political parties so she

may set the number of communities to two. These changes become constraints for the

machine learning system and will be adhered to by the newly proposed partitioning.

The underlying active learning system can focus Alice on nodes that seem to be

unstable. These are made more salient by size. Alice clicks on one of these nodes

(politician 29) to see the Co-Community View (Figure 7.5). A number of columns

show how often different algorithms agree on which other politician should be in

the same community as politician 26. For example, four of the algorithms agree that

politician 32 belongs in the same community, but only 3 of the 6 believe that politician

9 should be. Given her background experience, Alice quickly selects politician 32

(which was in the high-agreement column, i.e. majority of algorithms agree that this

node should be in the community of the highlighted node) to force it to be in the same

community as politician 29. Alice knows that politician 9 can not possibly belong in

the same community as he is a core member of the opposing party. She indicates to

CommunityDiff that it is a negative example (Figure 7.5). Upon submitting her

changes, CommunityDiff propagates these changes and constraints. Once satisfied

with any particular grouping, Alice can hide it form the network diagram and focus

only on the remaining groups. Alternatively, she could manually label the unstable

node and asked the classifier to get to a new partitioning.
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Figure 7.5: A partial view of the co-community lists before (figure on top) and af-
ter (figure on bottom) Alice’s decisions. In both figures, the ‘Agreement’
column shows actor 29, whose co-community lists Alice is working on.
Initially, actor 32 is on column ‘4’, which means 4 algorithms agree it
should be in the community of actor 29. On the other hand actor 9 is
on column ‘3’. After Alice decided to add actor 32 to actor 29’s commu-
nity and remove actor 9 from the said community, these nodes move to
‘Add/Remove’ column.

7.4.2 Design Guidelines

Before describing our implementation we define a set of design guidelines that

motivated our decisions. These were produced based on the analysis pipeline model

described above.

1. Respect the Mental Model — The system should seek to quickly bring the

system state in line with end-users background knowledge. The decision of

whether the result is ‘in line’ requires end-user feedback. Thus, whenever pos-

sible, the end-user should be able to quickly and accurately judge the current

results relative to their mental-model [123]. For example, Alice, our political

scientist, can quickly reject partitions that produce more than the two to four

communities she was expecting.

2. Respect the Unknown — The system should help the end-user resolve gaps

in their mental model [123]. When an end user cannot answer a question such

as, ‘does node a belong in community C or D,’ the system should provide
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evidence to support this decision. Options that are more likely to be correct

should be made more salient (e.g., large bars in the dendrogram or areas in the

heatmap to indicate stable partitioning). The system should also make obvious

where feedback from the end-user would be useful. In CommunityDiff, we

implement node stability (explained in 7.5.3.3 in detail), which gives the user

a sense of how certain the system is about the node’s community assignment.

Visually, unstable nodes are made larger in size. The larger the node, the more

unstable the node is. This also gives the user a sense of which nodes to focus

on. Moreover, using the co-community lists, the user can explicitly analyze a

node and its current community assignment with exact knowledge of how many

algorithms agree on this assignments, which nodes are more likely to be in the

same cluster as a current node etc. Alice, for example, would be able to quickly

see how likely a politician is to vote with one group or another given their past

connections to both. At a community level, co-community lists also tell the user

if there is smaller coherent cluster in a large community or if there is strong

connection between two communities. In general, via the ensemble heatmap

and dendrogram, CommunityDiff tells the user which results are likely and

how likely they are.

3. Respect Decisions — Assume that an end-user will not likely reverse a de-

cision. Once a decision is made, it should be persistent, i.e. it should not be

necessary to make it again. [92, 173] If the end-user indicates that there are only

3 communities or that nodes A and B should always be in the same commu-

nity but C and D should never be in the same group, this should be respected

by the system. CommunityDiff iteratively learns from the user’s previous

decisions and maintains all previous constraints whenever a new constraint is

added. Once Alice decides that there are three communities or that politician

32 belongs with 29, new executions of community detection should not break

this (and should, in fact, leverage the information to produce better output).

4. Assume Greedy Progression — Actions that create the biggest change should

be available and be explicit. Through a combination of direct manipulation on

‘batches’ of nodes or communities and targeted active learning, the system

should help the end-user minimize the number of steps needed to complete the

labeling. CommunityDiff provided a number of ways to minimize user ef-

fort and ease including merging multiple communities, active learning with or

without labelled nodes, fixing number of communities, processing multiple con-
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straints at once via the co-community lists. Alice, for example, can focus her

data-wrangling effort on the largest legislative group before moving onto the

next one.

5. Acknowledge Outliers — The interface should provide a way for capturing

outliers. We follow the “NetViz Nirvana” criteria for network visualization

by Dunne et al. [59] (specifically, the fourth point: ”Clusters and outliers are

identifiable”) . While we assume that most nodes will have a strong affinity to

one community or another, occasionally a node will fit into multiple groups or

to none. When this determination is made algorithmically, these outliers should

be obvious to the end-user. Node size (determined by node stability) clearly

points out outlier nodes. Using co-community lists these nodes can be further

analyzed.

7.5 System Details

Having established the high level goals and interface, we focus on the specific

implementation and details of the visualizations.

7.5.1 System and Interface Architecture

CommunityDiff is composed of a back-end which processes the graph data

(implemented in Python), and a Web-based front-end (implemented using D3 and

Javascript). Recall that the front-end consists of four major panels: an Ensemble

Panel (consisting of a heatmap projection dendrogram in, panels 1 and 3, respec-

tively, in Figure 7.1), a Control Panel (Figure 7.1(2)), a Network Visualization Panel

(Figure 7.1(4)), and a Co-Community Panel (Figure 7.1(5)). The panels are roughly

placed in an ordered way (from left to right) to match the likely workflow: identify-

ing a ‘good starting point,’ validating the automated label choices, and then refining

labels. In all the views, the decisions of the end-user (selection of algorithms, move-

ment of nodes between groups, labeling groups, etc.) directly influence the learning

algorithm.

The Ensemble Panel contains two visualizations. The first is the ensemble

heatmap projection (see Figure 7.6 and Figure 7.6) which is generated by calculating

a similarity matrix (M) for each of the community detection algorithms. A cell

in this matrix, Malg1,alg2 quantifies how similar two partitions of the network are.

Using Multidimensional Scaling (MDS), the similarity matrix is projected into two
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(1) Ensemble Space View (Difference View) (2) Variation View (how similar to selection) (3) Cluster Size View (# of clusters) (4) Modularity View

Figure 7.6: Four different views for the ensemble space heatmap. (a) Difference view:
each differently colored region represent a unique ensemble output, (b)
Variation view: shows how similar (white or light blue) or different (darker
shades of blue) different ensemble outputs are compared to the current
ensemble (red dot), (c) Number of clusters view: shows how many clusters
are there in each ensemble output and (d) Modularity view: shows the
relative modularity scores of different ensemble outputs.

The length of the bar is 
proportional to the area
 of the corresponding
ensemble in heatmap

The dendrogram shows 
similarity among different 

ensembles. The dark green 
and the light green ensembles 

are closest to each other

Figure 7.7: A small portion of the Dendrogram vi-
sualization. The dendrogram shows hi-
erarchical similarity between different
ensemble outputs. For example the
dark violet and the light violet ensem-
bles are more similar compared to the
pink and the dark violet ensembles.
The length of the bar corresponding to
an ensemble represents the area of the
region covered by the corresponding en-
semble in the ensemble heatmap.
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dimensions. Thus, algorithms generating similar partitions appear close together in

this projection (represented as colored dots). From this projection, an ensemble is

built for each discretized cell in the heatmap (we describe this metric space in more

detail below). Because different ensembles may still produce the same partitioning,

there are far fewer ensembles then there are cells, leading to the contours that can be

seen in Figure 7.6. This view is interactive and can control many of the other panels

(e.g., clicking on the point for the ‘fastgreedy’ algorithm will load that partition into

the network view as will clicking on any other point in the space). The colors in

the heatmap can also be set to encode different features of the space including the

distribution of cluster sizes.

The second Ensemble Panel visualization is the dendrogram view (Figure 7.1(3)

and Figure 7.7). The view shows the relationship between ensembles based on hierar-

chical clustering of their similarities. The length of the colored bar provides another

view of the prevalence of each ensemble (proportional to the area in the heatmap

view). As with the heatmap, the dendrogram is interactive (e.g., click to change

ensembles or hover to highlights the point in the heatmap). This view enables the

end-user to find related ensembles or vastly dissimilar ones and are worth exploring.

Broadly, the ensemble panel allows the end-user to identify a partition of the graph

that is near to their mental model and to support the exploration of alternatives when

a classification is unknown.

A Control Panel (Figure 7.1(2)) allows the end-user to upload new files, add

or remove different algorithms, and control different active learning properties. On

occasion, it is helpful to compare two heatmap encodings (e.g., one capturing cluster

size and the other capturing a partition ‘score’ such as modularity). The control panel

allows the creation of a duplicate view for this purpose.

The Network Visualization Panel (Figure 7.1(3)) is a standard node-link di-

agram which displays the current ‘working’ partition. Layout is done through a

standard force-directed algorithm. In the current implementation nodes are assigned

colors based on which community they belong to. Interactive features include: dis-

play of labels, “collapsing” of communities to hide them (used when the end-user is

satisfied with the nodes assigned to that community). Collapsing of the nodes has the

benefit that completed ‘work’ can be removed from view to allow the end-user to focus

on the rest of the graph. Communities are enclosed in a rectangle to double-encode

the community structure. Through this view, the end-user can make corrections such

as moving nodes between communities, merging communities, or creating custom la-

bels. The network visualization, in part, is designed to support the identification of
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‘outliers’ (i.e. nodes that might be unstable).

The end-user may also enable a Co-community View (Figure 7.1(5) and Fig-

ure 7.8) by clicking on a specific node. This view allows the end-user to find which

communities a node could belong to as well as rapidly making corrections and engag-

ing the active learning system. For example, in Figure 7.8, the end-user has selected

“Actor 3” (this node appears in the agreement column). Initially, all other nodes

appear on the right in one of the six columns. Column 6 includes all nodes that have

been found to be in the same community as Actor 3 by all six algorithms (e.g., all

six algorithms agree that Actor 14 should be in the same community as Actor 3). No

nodes appear in columns 5, 4 and 3 as there is no consensus for nodes at this level.

Column 2 contains a number of nodes that two of the algorithms would connect to

Actor 3. Column 0 are all nodes that should not be in the same community as Actor

3 (by consensus of all 6 algorithms). The end-user can click on nodes to either explic-

itly indicate they belong with Actor 3 or explicitly should not be (these appear in the

leftmost column with +’s or -’s next to them). Here the end-user indicated that both

Actor 4 and 28 should be in the same community as 3. Once the end-user is done,

clicking on a submit button causes active learning to relabel the network based on

these new constraints. This view is also explicitly designed to allow the end-user to

make decisions when they don’t know where nodes belong but also to rapidly correct

algorithmic mistakes.

7.5.2 Algorithmic Details

Below we describe specific details in generating ensembles and metric spaces that

are visualized in the interface. Much of the computation is done at the server level

as the calculation of communities and ensembles can be parallelized.

Algorithmic Inputs: For the CommunityDiff prototype, we chose six pop-

ular community detection algorithms: FastGreedy [147, 42], InfoMap [163], Label

Propagation [159], Multilevel [136], Spinglass [160] and Walktrap [153]. These algo-

rithms are some of the most popular community detection algorithms in use today

and capture a broad range of objective functions and underlying techniques. Note

again, that nothing prevents the addition of new algorithms.

Fastgreedy, as its name suggests, greedily merges communities iteratively by max-

imizing modularity, a measure of “modular strength” of a network. Modularity, Q is

captured as:

Q = 1
2m

∑
vw[Avw − kvkw

2m
]δ(cv, cw)
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Figure 7.8: The Co-Community Lists: The node in the ‘Agreement’ column shows
whose co-community lists are being shown. For the columns ‘0’ to ‘6’,
column j shows that j of the initial community detection algorithms agree
that the nodes shown in column j should be in the community of the
node in ‘Agreement’ column. The ‘Add/Remove’ column shows which
nodes the user thinks should be added to the community of the node
in ‘Agreement’ column (depicted with ‘+’) and which nodes should be
removed (depicted with ‘-’).

Where v and w and two nodes, ki is the degree of node i, and ci is the community

label for node i, m is the total number of edges in the graph, A is the adjacency

matrix representation of the graph (i.e. Avw > 0 if an edge exists between v and w),

and δ is the Kronecker delta — an indicator for testing if the communities are equal.

The intuition for this function is that we are testing the number of edges within a

community versus the number expected with random assignment. Stated differently,

a strong community contains more edges between its members than expected by

chance.

InfoMap, on the other hand, follows a very different approach, and aims to provide

the shortest description length of a random walker trajectory. The description length

is measured by the expected number of bits per vertex to encode the random walk

path. This algorithm uses the minimum description length principle in information

theory and follows the idea that a random walk within a community is likely to

stay within the same community as the number of intra-community edges are higher

compared to the number of inter-community edges.

The remaining four algorithms have additional variability and we refer the in-

terested reader to the source publication. While the algorithms tend to agree on

high-confidence communities, in practice, they generate enough variety in identified

communities that they are a good mechanism for building ensemble spaces. All six
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algorithms can operate over weighted networks (a common requirement in network

analysis).

7.5.2.1 A Metric Space for Ensembles

In order to define a ‘space’ for our ensembles, it is necessary to define a suitable

metric to represent relative distances between different partitions of the graph (i.e.

the outputs of two or more community detection algorithms). Ideally, the distance

metric will be bound within some fixed range, preferably between zero and one. We

are equally satisfied with a dissimilarity metric as one that measures similarity (we

can simply subtract the value from 1). As a specific example, if two partitions agree

on every node pairing (i.e. they are in the same community or are not) the metric

should return zero. On the other hand, if the two algorithms disagree on every pair

we would expect to find the distance to be one (normalized).

The most popular metric for this purpose in the community detection literature

is Normalized Mutual Information (NMI) [179]. Let X and Y be two arrays which

denote the community partitions determined by two different community detection

algorithms on the same network. The NMI for two partitions X and Y is calculated

by determining the entropy for the two partitions (i.e. H(X) and H(Y )) and mutual

information, I(X;Y ) as:

H(X) = −
∑

x∈X p(x)log(p(x))

I(X;Y ) =
∑

y∈Y
∑

x∈X p(x, y)log( p(x,y)
p1(x)p2(y)

)

The normalized for (NMI(X;Y )) is then calculated as:

NMI(X;Y ) = I(X;Y )√
H(X)H(Y )

Roughly, we are capturing a partition as a probability distribution of a node falling

into a community. The entropy reflect the information contained in this distribution

and the mutual information is the shared information between the partitions. NMI

lies between zero and one, and can compare two algorithms which produces different

number of communities unlike some other metrics. The inverse, (1−NMI), can be

used as a suitable distance metric as it satisfies all the properties discussed above.

Given a graphG and a set of community detection algorithms CD = {cd1, cd2, ..., cdn},
let opi correspond to the set of clusters obtained by running cdi over G. We calculate

the distance of opi for each of the outputs produced by the different community clus-

tering methods, so that for each method, we have an n-dimensional distance vector

where n is the number of different community detection algorithms.
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7.5.2.2 Multidimensional Scaling (MDS)

For visualizing the relationship between the outputs of the six algorithms we

would like to project them into a 2D plane where their distances in this plane is

proportional to their (dis)similarity. We have opted to use MDS [45] for this purpose

as our qualitative experience is that it is effective in this context (fast and accurate).

Other dimensionality reduction techniques (e.g., PCA, t-SNE, etc.) can also be used.

By projecting the algorithms into a 2D plane we are now able to create ensembles

that combine the algorithms by using euclidean distance to generate a set of ensemble

weights (i.e. how much each algorithm’s ‘vote’ counts towards the ensemble).

7.5.2.3 Creating Ensembles

Having a suitable representation of the metric space (the MDS projection) enables

us to automatically calculate an ensemble for each point in this space. Our objective

is that any selected point in the MDS projection will have an associated ensemble (i.e.

partition) that is similar to our original algorithms in proportion to the distance to

those algorithms. For example, note the red dot in the leftmost panel of Figure 7.6.

We would like the ensemble at this point to be very similar to the algorithm imme-

diately to its left (the light purple dot) and very dissimilar from the algorithm at the

bottom of the space (in blue).

There are many possible ways to combine different community detection algorithm

to form an ensemble algorithm. Ideally, CommunityDiff would allow the end-user

to select different ensemble algorithms. However, we have currently implemented one

based on a variant of the ‘co-community graphs’ method, which also takes the original

graph structure into account (leveraging our prior work [31]). An edge between two

nodes in a co-community graph indicate that those two nodes belong in the same

community. The absence of such an edge indicates that the two nodes are not in the

same community. Within the context of ensembles, the weight on an edge between

any two nodes is determined by the number of algorithms that put them in the same

community (e.g., if 3 of 6 algorithms place nodes A and B together the edge between

them has a weight of .5). With one algorithm, the co-community graph will contain

a number of disconnected components (each component capturing one community).

However, a co-community graphs that is generated by multiple algorithms will often

contain only one connected component which will be extremely dense. The intuition

is that with many algorithms, at least one algorithm will put each pair in the same

community. To mitigate this problem we only retain co-community edges that were
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Figure 7.9: A graphical example of ensemble generation through the co-community
graphs. Algorithms 1 and 2 generate two unique partitions:
{{A,B,C},{1,2,3}} and {{A,B},{1,2,3,C}}. The co-community graph
(right) has an edge between each pair of nodes that were in the same
community (in any of the partitions). The weight of the edge is pro-
portional to the number of times the nodes appear together among the
algorithms (e.g., both algorithms 1 and 2 agree that nodes A and B should
be together, hence a weight of 1; however, they disagree on node C, once
placing it with A and B and once with 1/2/3). Each algorithm is thus a
vote. When generating the ensemble, this vote is weighted by the position
of the ensemble relative to the algorithms in the ensemble metric space
(MDS). The inset shows two different weighting schemes based on ensem-
ble placement (the weights must sum to 1; δnij is the Kronecker delta set to
1 if nodes i and j are in the same community for according to paritioning
algorithm n, 0 otherwise).

also an edge in the original graph. The output is a graph that is no more dense than

the original input graph but has co-community weights on the edges.

Briefly, to find the co-community graph for a given ensemble point (x, y in our

MDS projection) we apply the following algorithm: given a graph G and a set of

community detection algorithms CD = {cd1, cd2, ..., cdn}, where ci has weight wi,

first run the algorithms over G. Let wi be the distance of the ensemble ‘point’ (x, y)

in the metric space to algorithm i (recall that each algorithm is placed at some point

in the MDS projection). Intuitively, if the ensemble point is close to i’s position, then

wi is high (this is determined by the inverse of the Euclidean distance). For each

edge e joining vertices vi and vj in the network, initialize weight of e as zero and if vi

and vj are put in the same cluster by cdi, then increase the edge weight by wi. The

total sum of weights for all community clustering algorithms is normalized to 1. For

an edge e joining vertices vi and vj, if very few algorithms put vi and vj in the same

cluster or the algorithms that put vi and vj in the same cluster have low weight (we do

not want the ensemble algorithm output to be similar to result of these algorithms),

e has a low weight (see Figure 7.9 for a graphical illustration). We prune these edges
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by removing edges below a certain threshold to improve the ensemble output. A low

threshold would not improve the results by much and a high threshold decomposes

the network into too many connected components. As we normalize the clustering

algorithm weights, the edge weights are restricted to range between 0 (no algorithms

put the vertices joined by the edge in the same cluster) to 1 (all algorithms put the

vertices in the same cluster). In practice, a threshold value of 0.33 does not over-

split the graph and improves the clustering results. Note that, for different networks,

different threshold values may improve the results further, but in general, our chosen

threshold value works on a wide variety of networks.

Because the co-community graph with multiple algorithms does not properly

disconnect components we run one final community detection algorithm on the co-

community graph to split it into communities. Our experience is that InfoMap works

most effectively for the kind of data produced by co-communities. Other algorithms,

like Louvain or Walktrap, can also be used for the final run. In principal, any commu-

nity detection algorithm can be chosen as long as the algorithm performs reasonably

on the original graph.

As we described above, not every ensemble will be unique. Different combinations

of algorithms can still produce the exact same output. In CommunityDiff, each

unique ensemble receives an identifier. In most cases, the same ensemble will be

appear contiguously in the ensemble space resulting in the contour plots seen in the

figure.

From the perspective of implementation, though it would be possible to generate

an ensemble for every pixel in the 2D-space this is somewhat impractical due to

computational costs. It is also unlikely that ensembles vary dramatically at those

scales (a shift of one pixel does not cause weights to change enough to impact the

final ensemble). For CommunityDiff, we perform a grid-search on a discretized

grid. Specifically, we assume a 300× 300 space and use a non-overlapping grid of size

5× 5. Ensembles are only computed once per grid.

In the control panel the end-user can eliminate certain algorithms from considera-

tion in the ensemble space. Conversely, they can use the current ensemble (manually

generated or through active learning) as a new “anchor” point in the metric space.

This partition is treated the same way as the output of the other algorithms when

calculating the map (a new dot is added to the heatmap for this ensemble).
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7.5.3 Visualization and Interface Elements

We have selected a number of visualizations and interactive elements to support

the end-user. We have opted for largely conventional forms (e.g., trees, heatmaps,

node-link diagrams) as these are familiar and effective for the task.

7.5.3.1 Ensemble Space Heatmaps

Once created, our ensemble space heatmaps can be used for a number of tasks

related to the different design objectives we defined. We propose four different kinds

of views of the metric space to help the user choose a suitable algorithm or ensemble.

These different views align with our first design guideline as they allow fast and

accurate selection of a desired algorithm or ensemble. When clicking on the heatmap

(in any configuration) the network diagram is dynamically changed (this clicked on

point becomes the ‘working’ ensemble).

Difference view (Figure 7.6(1)): This is the most general static view of the

metric space. Each unique ensemble has a unique (orthogonal) color. Though rare,

it is interesting to note that two separate (i.e. disconnected) regions in the metric

space may produce the same clustering (visible because they have the same color).

The goal of this view is to help the end-user identify the ‘jumps’ in the initial labeling

phase (see the first big ‘jump’ in Figure 7.3).

Variation view (Figure 7.6(2)): This view is the only dynamically generated

heatmap. When the end-user clicks on a specific ensemble point, all other grid points

are colored by comparing their associated ensemble to the current selection (using

the NMI metric described above). In the figure, the end-user clicked to place the red

dot (the selected ensemble). The white region surrounding that point has a distance

of zero (meaning high similarity). The further one moves from that point the more

dissimilar the ensembles get. This allows the end-user to identify other, subtly-

different ensembles, but also ones that are radically different. This view supports our

design guidelines in helping resolve knowledge gaps and identifying outliers.

Cluster Size View (Figure 7.6(3)): Recalling the ‘mental model guideline,’ do-

main experts often have a sense of the number of clusters they should expect to see.

This view plots the number of clusters detected by the ensemble at each of the grid

point. The end-user can readily choose ensembles or algorithms that have the same

number of clusters as the goal or close to the number of clusters of the goal.

Modularity view (Figure 7.6(4)): There are a number of measures of community

‘quality.’ Modularity is one that is often applied. This view depicts the modularity
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score for each ensemble cell in the space. This allows easy choosing of high modularity

ensembles or confirming that the chosen ensemble produces high modularity output.

In the future, we would like to add additional such metrics. As with the variation

view, access to known metrics (i.e. modularity) supports decision making by the

end-user.

The goal of all these views is to support exploration within the ensemble space to

find a good starting point for additional labeling. This corresponds to allowing the

user to see, and decide between, possible starting points in the blue ‘ensemble space’

in Figure 7.3.

7.5.3.2 Dendrogram

In the construction of the heatmap representation of the ensembles we noticed

that it was often difficult to understand how common different ensembles were (in

particular those that were not large or had odd shapes). It was also difficult for

end-users to understand the relationship between all the different ensembles in the

heatmap. While algorithms were situated in the metric space so that they could be

compared, the contour ‘blobs’ for the ensembles were not so easy to interpret (i.e.

how does one easily measure the distance between two irregularly shaped contours in

the metric space?). To better support these comparisons we generated a dendrogram

(see Figure 7.7). The view is a depiction of a standard agglomerative hierarchical

clustering (using the NMI based distance metric). The size of the bar at the end of

each leaf indicates how prevalent that ensemble is. The heatmap and dendrogram

views are linked so that brushing over one highlights the other. Clicking on one

changes the ensemble in selection in the other.

As with the heatmap, the dendrogram was intended to support the rapid explo-

ration of alternative ensembles that could act as starting points for further labeling.

As a second benefit both allowed the end-user to understand the stability of different

ensembles in making decisions. The end-user could act based on their knowledge

(e.g., number of clusters) but receive useful information to guide their exploration

when their mental model was incomplete.

7.5.3.3 Node-Link Diagram

The network diagram view (see Figures 7.1(3) and 7.11) is a standard imple-

mentation using a force layout [103]. To incorporate community groupings we add

additional constraints such that all nodes from a community are grouped together
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inside a rectangular bounding box. Each bounding box (along with the nodes inside

them) is colored differently. We would like to ensure that there is color stability for

the communities between ensembles. More explicitly, we would not want to disrupt

the end-user by randomly assigning colors every time a new ensemble was chosen

(most communities are stable between these ensembles and a large, random color

change would make a small change appear big).

We applied the following algorithm to achieve this stability. For each node we

determine a stability score: In a graph, G, for each edge, eij, connecting two vertices

vi and vj, we weight the edge by the number of community detection algorithms

among the initial six that put vi and vj in the same cluster. For each node vi,

we assign a stability score ki, where ki is the weight of the maximum weight edge

connected to vi. Put another way, we ask: if edges were deleted based on a threshold

from low to high, when would the node become disconnected from all others? In this

case, the most stable nodes have a stability score of six as we are using six community

clustering methods. Each node is assigned a color initially. A community takes on

the color of the most stable node in the community (ties are broken by lexicographic

ordering). However, even with the consistent colors, it is often difficult for the end-

user to track changes when they switch between ensembles. To better support mental

model preservation, nodes that change color during a different community assignment

are briefly highlighted by changing their stroke width (i.e. outline).

Calculating the stability score has an additional benefit that stability is inversely

proportional to ambiguity. By resizing the node based on this measure we can guide

the end-user to nodes that would help the active learning infrastructure. The end-user

can also make corrections in this view by selecting multiple communities for merging

or clicking on nodes to reassign them to alternative communities. Communities can

also be hidden from view to eliminate distraction.

7.5.3.4 Co-Community View

While dealing with real-world networks, in most cases the user only hsa partial

knowledge about communities in the network. In majority of cases, this knowledge

comes in the terms of which nodes belong together and which nodes do not. Co-

community lists present an easy way to incorporate these knowledge. These lists can

be viewed by shift clicking any node in the network diagram. The first list is the

Add/Remove list which is initially empty. The next list the shows the node clicked

on the network diagram, which is hereby referred as the focus node. The next seven

lists are generated based on how many community detection algorithms put the other
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nodes in the same community as the focus node. So, a list marked as 5, contains the

nodes that are put in the same community as the focus node by five community

detection algorithms. Note that, the number of these lists varies according to the

number of community detection algorithms chosen by the user. Within each list, the

nodes are sorted by the shortest distance from the focus node.

As described before, the Co-community View (Figure 7.8) allows the end-user to

make rapid comparisons and corrections. It is intended to be used during the final

phase of labeling when many small corrections must be made. The view supports the

design guidelines of respecting the unknown (i.e. uncertainties) and the mental model.

By focusing on one node at a time (this is often a central node to a community or a

bridge that connects two communities), the end-user can quickly isolate both mistakes

and “trends.” For example, if many nodes of the same community appear in the 6

column (the high agreement) the end-user can (a) see this due to color coding, and

(b) select all these nodes by double clicking to add them definitively to the focus

node’s community.

There are clearly scaling concerns with the co-community view (long lists of nodes

are hard to maintain). However, we have experimentally found (see below) that true

positives often appear in the columns 5 or 6 (high positive agreement) whereas true

negatives (the bulk) are in columns 1 or 0 (high negative agreement) and can safely

be disregarded.

Co-community view allows processing of each individual node compared to the

focus node. We use ranked list to give idea about the ‘goodness’ of the cluster of the

focus node. If the nodes in the lists with high positive agreement (column 5 or 6) are

of same color as the focus node, then the cluster is stable. On the other hand, if these

lists contain nodes with different colors then the focus node has strong connection to

multiple communities or there is a split community mistake. We do not use any kind

of aggregated charts because that restricts manipulation of individual nodes. In the

agreement lists, nodes are sorted according to shortest distance from the focus node

as distant nodes are more unlikely to be in the same community as the focus node.

7.5.3.5 Other Controls

CommunityDiff has a number of other basic features to support the analyst.

These include undo operations to move back to previous ensemble states, file upload

(loading in a new network) and downloads (retrieving the community labels). Com-

munityDiff operates on GML graphs, a standard graph descriptor language. Brief

descriptions for these controls are provided below.
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1. Merge: As discussed before, a common problem of many community partitions

is over-segmentation, where a single community is divided into multiple smaller

communities. We provide a simple remedy of this problem — a merge func-

tionality. A user can click on the legend boxes in the network diagram to select

corresponding community or click on a selected legend to deselect them. Com-

munity bounding boxes in the network diagram are highlighted when hovering

over corresponding legends and vice versa. Clicking the Merge button merges

selected communities.

2. Hide/show communities: Often a user wants focus on a particular set of

communities in a network. By shift clicking on the legend boxes in the net-

work diagram, a user can hide a community or show a hidden community in

both the network diagram and the co-community lists. This helps focus on the

communities the user is currently working on.

3. Download: We also provide a way to download community assignments if a

desirable partition is achieved using a Download button. It downloads a text

file containing node ids and their corresponding community assignment. If a

partition is generated using an ensemble, we provide a way to download weights

for different community detection algorithms using a Download weights button.

4. Find ensemble: We provide a fast and easy way to highlight an ensemble

region nearest to the community assignment (based on NMI score) shown in the

networks diagram panel, using the Find ensemble button. If there is an exact

match, then the selected region is highlighted in green, otherwise in yellow.

5. Undo: Because CommunityDiff can constantly recompute communities based

on interaction, it is possible that an action will lead to a non-desirable parti-

tioning. We provide the end-user with the option to return to the previous

state. This includes changing ensemble or a community detection algorithm,

active learning, labeling a node, merging two or more communities and changing

community assignment using the co-community lists.

In addition to the commands above, CommunityDiff also allows the end-user

to explicitly rename communities, upload new files, or download the output of the

analysis. Visualization specific interactions include zooming and panning, viewing

and hiding node labels, and hiding/showing different visualization panels.
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7.5.4 Human-in-the-Loop Machine Learning

Feedback from the end-user — by means of interaction — allows Community-

Diff to make dynamic alterations to the partitions in anticipation of the end-user’s

actions. This again is designed to eliminate unnecessary labeling steps.

7.5.4.1 Co-Community View Processing

Within the context of the co-community view, once nodes are selected for either

inclusion (“must link” to the target node) or exclusion (“most not link”), Communi-

tyDiff propagates these decisions to help partition the rest of the graph (as per our

guidelines, manual decisions — those made by explicit selections — are respected and

retained). In the simplest case, if our target is node A and we manually indicate that

node B should be in the same community and A and B are adjacent (i.e. connected

by an edge) or B is adjacent to at least one node in A’s community, B is placed in

A’s community. If B is not adjacent to A’s community, we merge the communities of

A and B (there can be multiple ways to tackle this problem, we opt for the simplest

solution of merging the two communities as very little research is done in tackling

this particular problem). When nodes are explicitly indicated to not be part of the

target node’s community (say node C), C’s label will be assigned to the next most

likely community that it is not “banned” from. If no such community is found, we

create a new community for each connected component in the subgraph spanned by

these nodes.

7.5.4.2 Active Learning

In the traditional sense, active learning asks the user to label specific data points

and performs semi-supervised learning iteratively. In CommunityDiff, we do not

explicitly ask users to label certain nodes, but we do highlight unstable nodes (larger in

size) which could be manually labelled and provide useful information to the learner

(a blend of mixed-initiative and active learning). Addressing this “question” will

trigger the algorithm to re-partition the graph. However, any form of supervision

(e.g., merging, splitting, etc.) will be taken into account.

A key background task for CommunityDiff is an adaptive classification com-

ponent that can produce better communities given end-user behavior. Communi-

tyDiff uses both constraints on the number of clusters and community constraints

in generating new partitions. For the purpose of speed and efficiency (recall, this is

one of our design goals) only nodes that can make a difference to the active learning
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algorithm should be manually labeled. The uncertainty (and conversely, stability)

metric we use was described above as a side-effect of community color generation.

When a learning step is engaged, CommunityDiff applies the following proce-

dure: Assume k is the desired number of communities (indicated in the control panel).

Clearly, the classifier can not produce more or less than the number of community

labels then have been manually created. If there are k1 manually labeled community

labels, and k1 > k, then the value k is adjusted upwards to k1. The node labels of

the labeled nodes are chosen from the community assignments of the network shown

in the network diagram panel. First it is decided which labels should be selected.

If there are k1 labels among the manually labeled nodes, we choose these k1 nodes.

If k1 < k, we choose the other k − k1 labels using community sizes. We choose the

labels of the largest k − k1 communities not including the k1 labels already selected.

Apart from the manually labeled nodes, only the most stable nodes of the communi-

ties having the selected labels, are chosen as labeled nodes. All the other node labels

are determined by a semi-supervised classifier by Zhu et al. [195]. A brief description

of which is provided in the next section.

We choose the graph structure for the semi-supervised classifier based on the

output of the community detection algorithms where we retain the original graph

structure but each edge is weighted according to how many algorithms put the nodes

connecting that edge in the same community. This is similar to choosing the co-

community graph for a specific ensemble except the fact that each algorithm is

weighted equally and there is no removal of edges based on a threshold.

We can think of shifting a node v from community A to community B as a form of

soft assignment. We are only assuming that v has the same community assignment as

the most stable nodes in community B, that means after the active learning, unstable

nodes in community B may have a different community assignment than v.

7.5.4.3 Classifier description

In CommunityDiff we have used a modified version of the semi-supervised clas-

sifier by Zhu et al. [195]. This classifier employs Gaussian random fields and harmonic

functions to predict node labels given only network structure.

Given a graph G = (V,E) with l+u vertices, we assume we have l labeled instances

L = {(x1, y1), ..., (xl, yl)} and u unlabeled instances U = {xl+1, ..., xl+u}. wij denotes

the weight of the edge between i and j. If there exists no edge between i and j, wij

is zero. We also assume the number of classes is C.

The aim of this classifier is to compute a function f : V → R over G to label the
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unlabeled nodes using f . Ideally, unlabeled points near each other should have the

same labels (due, in part, to homophily [22]). f can be rendered as a Gaussian field

with energy function,

E(f) =
1

2

∑
i,j

wij(f(i)− f(j))2 (7.1)

The minimum energy function is harmonic in nature. That is, for labeled data, the

value given by f matches the labels exactly and for unlabeled data, ∆f = 0, where

∆ is the combinatorial Laplacian defined as ∆ = D −W , where D is the diagonal

matrix with the non-zero diagonal entries di =
∑

j wij and W = [wij] is the weight

matrix.

However, the labels for the unlabeled data can be calculated using only matrix

operations. The Laplacian matrix can be partitioned as follows,

∆ =

[
∆ll ∆lu

∆ul ∆uu

]
(7.2)

and f can be defined as a C × (l + u) matrix, such that,

f =

[
fl

fu

]
(7.3)

where, fl[i][j] = 1, if xi is labeled as j. The other entries of fl are zero.

fu[i][j] denotes the probability that xl+i has label j. This can be computed as,

fu = −∆−1uu∆ulfl (7.4)

For each unlabeled point the label with highest probability is chosen.

7.6 Evaluation

To evaluate CommunityDiff, we would like to demonstrate that individual com-

ponents (e.g. the ensemble generation and co-community lists) are effective as well as

demonstrating the usability of the overall system. Our hypothesis is that an ensemble

will perform better compared to any individual algorithm and that the best ensemble

is often the “largest” one. Similarly, we need to show that the co-community lists

provide an idea about the ‘goodness’ of a cluster along with batch processing of se-

lected nodes. We can verify both of these components via automated experiments

where ground truth knowledge is available or can readily be inferred. To test the
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end-to-end system we performed a controlled lab study.

It is worth noting that a key challenge of evaluating a new community detection

algorithm or software is the lack of network data with known community assignments

(ground truth). The handful of ‘toy’ datasets often used for this task are often too

small to be useful (e.g., Zachary’s Karate Club Network [190] or the Football Net-

work [76]). Synthetic datasets such as those generated by the LFR benchmark [114]

often create advantages for community detection algorithms that vanish with real

networks [31]. To create datasets for automated evaluation, we apply a common

technique which is to find unlabeled networks and create a ground truth label based

on some feature of the nodes that is not structural (i.e. does not depend on edge con-

figuration). While this is imperfect, it is nonetheless common practice for large-scale

evaluation [151].

7.6.1 Ensemble Evaluation

In the DBLP co-authorship network [189], 846,082 nodes represent authors and the

2,783,165 edges are co-authorship relations. Authors are placed in communities based

on their frequent publication venues. Authors who publish in the same conferences or

journals thus form a community. As our focus in this work is on disjoint communities

we utilized the DBLP data to construct a ground-truth label based on the most

frequent publication venue (i.e. an author who publishes 10 times in venue X and once

in Y will be labeled X). Using the DBLP data (http://dblp.uni-trier.de/xml/)

we created our own DBLP co-authorship network with ground truth labels created as

described above. As journals tended to be the longest running ‘venues’ (and had clear

continuity) we only utilized articles published in journals for this analysis (yielding

1530 “communities”).

To simulate a realistic use case for this data (e.g., a user organizing a sub-field

for a review article) we generated random sub-graphs from the larger network. A

node in the larger graph was chosen at random and a subgraph spanned by its 2-step

neighborhood was collected. In this subgraph we ensure that each ground truth com-

munity was connected as all community detection algorithms make this assumption

(i.e. there should be a path between each node in a community that does not require

moving through another community). Additionally, we removed communities with

only 1 or 2 nodes from each network and networks with a single community. We gen-

erated 100 such networks as a test dataset. The sizes of these networks vary from 50

to 150 nodes. We also made sure there is at least 2 communities in the network and

disregard networks with 15 and more communities as in these cases the communities
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are very small (3-10 nodes).

Each of the 100 networks was analyzed using the CommunityDiff backend. We

were specifically interested in the partitions generated by each algorithm and a few

key (i.e. “common”) ensembles. To determine the accuracy of these partitions, we

compared each to the ground truth labeling using the NMI metric. In three of the

networks, all algorithms produced the exact same output (which was the ground

truth). As our goal is to study those situations where ensembles can be used, we

exclude these three networks from further evaluation. Recall our general hypothesis

that ensemble methods better than base algorithms. Figure 7.10 clearly shows that

the best ensemble outperforms all the other algorithms as it has the highest average

NMI score with ground truth and performs best in 88 cases out of 97. One of the

reasons for using the heatmap ensemble projection was the belief that an ensemble

that is stable across most of the space (i.e. the largest and most salient) would be the

best starting point for labeling. To test whether this was valid, we tested the most

common ensemble in our ensemble space. We find that in 25 out of 97 cases, the

most common ensemble performs better than any base algorithm. This is followed

by spinglass which performs the best in 22 cases and InfoMap which is best for 18

cases. However, the mean NMI for InfoMap is much lower and more variable. In

those situations when the most common ensemble is not the best partitioning, the

best ensemble is found within the top-5 most common ensembles.

7.6.2 Co-Community Evaluation

To determine whether the Co-community View would correctly emphasize nodes,

we performed a second experiment to test whether nodes listed in the top columns

of the Co-community View were likely to be good additions to a selected node’s

community. Specifically, given a “target” node, we would like to know if those nodes

displayed in high-agreement columns (i.e. the nodes for which all or all but one

algorithm agree that they should belong to the same community as the target node)

are likely to be in the same community as the target. To verify this, we chose 10

random networks from the 100 sampled DBLP networks and for each network chose

10 random nodes and studied their co-community lists manually. For 3 of the chosen

networks we find that the different algorithms give widely different results and for

most of the 10 randomly clicked nodes (for all 3 networks) the high-agreement columns

(those with 5 to 6 algorithms agreeing on a community) are empty. We disregard these

networks for this study. For the 7 remaining networks, We observed that in 59 out

of 70 instances, all nodes listed under list 6 and 5 (i.e. were agreed upon by most
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Figure 7.10: Comparison between average NMI values with ground truth of differ-
ent community detection algorithms and number of times an algorithm
performs the best. The figure shows that the best ensemble output has
higher average NMI score and performs the best among all algorithm in
88 out of 97 cases.

algorithms) were in the ground truth community of the target node. We manually

validated that there were multiple nodes in these lists in all 70 cases.

7.6.3 User Study

In order to reliably test CommunityDiff with end-users we needed to identify a

network dataset where ground truth was available but where highly specific domain

expertise was not necessary so that we could have a larger participant pool. To

ensure high agreement we would also prefer a network where community labels are

not subjective. For this purpose, we generated our own network for evaluating our

system. We created a network by utilizing the handwritten digits from MNIST [119]

(these are the digits 0-9 written by humans and used in OCR challenges). We cast

this as a network problem by creating an artificial network where digits are the nodes

and two nodes are linked by similarity between the two digit images. This approach

is roughly equivalent to standard clustering where points near each other in the n-

dimensional space are considered for inclusion in the same cluster. Though this may

appear artificial as the data itself is not structured as a network, this transformation

for classification and clustering purposes is common in text clustering (e.g, [63, 139])
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or recommender systems (e.g., [94]) among other domains (where edges have the

meaning “is-similar-to”). Regardless, it allows us to generate a network that satisfies

our goal of reduced domain expertise and high agreement.

To create the network, we randomly sampled 30 images each of the digits 0,2,4,6

and 7 (these have high inter-rater reliability in ground-truth labels). We calculate

pairwise similarity between images using a Gaussian kernel and only retain the top 5%

values as edges. We took the largest connected component of this graph (117 nodes

and 554 edges) as the test dataset. When displaying these nodes in CommunityDiff,

we included a small image of the handwriting sample on top of the usual circle. Thus,

we dot explicitly provide the ground truth and allow the users to decide on their

own which nodes should belong together based on the images. Figure 7.11 shows a

screenshot of the MNIST network in CommunityDiff.

Figure 7.11: A screenshot showing MNIST handwritten digits network in Communi-
tyDiff. This screenshot does not reflect the ground truth partition of
the network as all communities except communities containing ‘0’ and
‘4’ has multiple different digits as nodes.
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Our subjects included 12 graduate students at a large University (11 with expe-

rience in using network datasets including online social networks, linguistic networks

like word networks and email communication networks) from 3 different departments

namely, computer science (5 students), school of information (6 students) and me-

chanical department(1 student). All participants were given basic training with Com-

munityDiff (to familiarize them with different components and commands of the

system) and handed a cheat sheet to remind them of commands. Subjects were then

asked to achieve optimal partitioning of the handwritten digit network as quickly as

possible. The study was conducted using a laptop computer (this computer is only

used for display and browser, the code was running from a Linux server) in an office

setting.

Each participant was able to achieve the correct clustering (5 clusters, each cluster

contains images of a single digit) within 10 minutes in their first attempt with the

fastest one achieving it in 3 minutes. We logged all atomic operations (i.e. “moves”)

made by the subjects. The number of operations needed to get to the final output

varied from 5 to 24.

As we do not have a competing system to compare, we compare performance of

different users who used different features of CommunityDiff to reach ground truth

to validate the usefulness of different features. Four of the participants got to the final

clustering output using only merging and manual labelling from the network diagram

but on average (mean) they performed 20.25 operations which is much higher than

participants using at least one other feature of CommunityDiff (on average 14.63

moves). Similarly, users who made use of the ensemble map made 13.86 moves on

average (7 users) whereas those who did not, made 20.2 moves on average (5 users).

We believe this demonstrates that the use of different features results in more efficient

solutions. However, additional testing with more subjects and with features explicitly

disabled would allow us to better isolate the key features that improve efficiency but

we leave this to future work.

Anecdotally, we also found that users perform much better in their second attempt.

Two participants volunteered to perform the task a second time and they produced

the final output within 5 and 7 operations (though part of this may be because they

were familiar with the data). These attempts were not included in the study but they

establish that with experience, users may learn more efficient solutions.

In a post study survey users indicated that there was a benefit to the different views

of the heatmap and liked the active learning and flexibility of the tool. Some users felt

the initial interface was overly complex and some actions were not intuitive enough.
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Some of these critical comments are: “Complexity needs to reduce, esp. the initial

interface. Maybe put an ‘advanced’ section.” , “Make the selection/moving gesture

more intuitive, such as allow drag-and-drop.” This is good advice for future iterations

of the system. As a response to what they liked most using CommunityDiff, subject

comments included: “Different views/metric to decide a partition”, “Active learning

(it allows the user to adaptively choose number of clusters)” and “Many different

ways to manipulate nodes and communities.”

7.7 Case study

Figure 7.12: A screenshot showing 2016 Reddit co-conflict network in CommunityD-
iff. 1 denotes the modularity view which shows the selected algorithm,
multilevel produces a high modularity output. 2 denotes the political
discussion community where there are a lot of large nodes depicting poor
community structure.

We analyze the co-conflict network (discussed in chapter V) and its communities

using CommunityDiff. Figure 7.12 shows the multilevel output of the network.

Looking at the difference view and the dendrogram we can conclude that the com-

munity structure is not very robust as different algorithms disagree with each other a

lot. The modularity view reveals that multilevel and fastgreedy algorithms perform
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the best. We observe that node sizes in the network diagram (especially in the polit-

ical discussion community) vary a lot which means that the algorithms are uncertain

about community assignment for a lot of nodes. We also observe many very small

communities for some ensemble outputs. Based on the number of clusters and the

modularity score, we chose the multi-level algorithm for our experiment.

Focusing on specific communities, we observe that some communities have top-

ically cohesive structures. The co-community lists of the subreddit Firearms (Fig-

ure 7.13) reveal that all algorithms put gunpolitics and shitguncontrollerssay in the

same community as Firearms and 5 out of 6 algorithms put Austin in the same

community. This points to a robust community structure among these pro-gun sub-

reddits.

Figure 7.13: The Firearms community in the co-conflict network.

7.8 Discussion

We believe that CommunityDiff effectively supports the analytical process of

community detection. The system provides explicit mechanisms to “jump” to a rea-

sonable set of labels/partitions. This jump, however, is done with consideration of

alternatives. By allowing for rapid comparison of different algorithmic outputs and

ensembles we believe that end-users can gain more confidence in their choice and are

less likely to be biased. A second set of interfaces (the Network and Co-community

View) provide a mechanism for quickly making decisions and corrections to complete

the task. Underlying the whole process is a classification sub-system that leverages the

end-users manipulations to continuously improve the partitioning. By subtly guiding

the end-user by varying visual salience, CommunityDiff can guide the end-user to

focus their attention on those decisions that can make those most difference. Taken

together these components solve different work ‘modes’ for this task. Though they

can function independently, they are designed to work well within this multi-step

process.
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The workflow described for community-detection is one example of many that

require decision making among many alternative algorithms. While ensemble spaces

can be applied in any situation where a metric is available for comparing algorithm

output, the broader design of CommunityDiff may also be portable to other prob-

lems. Our hope is to continue to develop the idea of CommunityDiff and to test

it in other contexts.

The current prototype of CommunityDiff does have some limitations. The most

evident one is that it is most effective for smaller networks as response time of each

interaction goes up with network size. Visual representation of very large networks is

a hard problem in general. However, in the case of CommunityDiff, a more critical

issue is that the algorithms we implement are computationally intensive (e.g., creating

1000s of ensembles). We have not experimentally identified the ‘breaking point’ for

the tool but have found that with graph sizes of 300 or fewer nodes (an ’ego-net’

sized network), CommunityDiff can pre-compute all ensembles in under a minute.

With networks of 1500 nodes, the lag is more pronounced but once pre-computation

completes the graph can be loaded and used at interactive speeds. It is worth noting

that many real world networks sizes fall into this range (social networks with average

150 individuals, protein-protein interaction network with average 1300 nodes [188]).

Disabling some of the high-cost community detection algorithms like spinglass

(something one would do regardless of the visualization tool) allows use of larger

graphs. Interestingly, a majority of computationally intensive operations can be par-

allelized. We currently support parallelization with respect to 10 threads in precom-

putation of the ensemble space heatmaps which provides better response time for

initial processing of a graph. It is worth noting that, the ensemble technique and the

classifier can be used on much larger graphs if we do not care about the response time

or the visualization aspect.

Similarly, CommunityDiff is limited on how many communities it can handle

efficiently. We have found that the interface becomes increasingly cluttered if we

have more than 50 communities. However, as the number of communities in a real

world network are usually far less compared to number of nodes, we usually see

the scalability issues with respect to graph size pose more of a problem compared to

scalability with respect to number of communities. For example, a social network with

150 nodes has around 4 communities whereas protein-protein interaction networks

with about 1300 nodes has about 40 communities [188] (these are handled well by

CommunityDiff). To further address the scaling problem, we have begun to design

algorithms that adaptively fill in the ensemble space by proceeding from coarse to
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finer grid sizes dynamically.

Visually, CommunityDiff is constrained by limitations of force-directed node-

link layouts, a modification of which we use in our network diagram. For networks

with more than 1500 nodes, the node-link diagram becomes too cluttered to be useful.

A similar problem is present with co-community lists as with number of nodes these

lists can become very long. However, an user is likely to work with only a few

communities at once, so we provide a ‘Hide communities’ button to hide communities

and all corresponding nodes from the network diagram and the co-community lists

to help the user focus on the task at hand with an uncluttered interface.

Though we believe the node-link diagram is an effective (and familiar) tool for

visualization there are significant developments in group-structure visualization that

may yield better results in the future [181]. This may be more critical if Commu-

nityDiff begins to support other community structures. Currently, Community-

Diff works on undirected input graphs and generates only hard partitions (rather

than overlapping communities). As discussed above, overlapping community detec-

tion algorithms are still inferior compared to the disjoint algorithms and unpopular in

many domains. Though this limits the tasks for which CommunityDiff is currently

suitable for, we believe it can be adapted for additional inputs and outputs. For ex-

ample, if we just use overlapping community detection algorithms as base algorithms

of CommunityDiff, ensemble space heatmaps and co-community lists would retain

most of their functionality. However, we would need efficient visual representation

of overlapping communities in a network and a classifier that could work with over-

lapping communities (in active learning) to make the whole pipeline work. Effective

visualization of networks with overlapping communities is a hard problem in general,

but solutions do exist for this task (e.g., [7]). Similar modifications may be necessary

to the Co-Community lists with additional commands specifying how many commu-

nities a node should belong to. Finding a network classifier resulting in overlapping

communities is a harder task. However, the semi-supervised classifier used in Com-

munityDiff generates probabilistic community assignments which could be used

for assigning multiple communities to a node. The co-community lists are an area

for possible improvement. The lists function well in our examples, but because the

underlying data is networks and sets, alternative encodings may be more effective [8].

In the future, we also want to further evaluate the system by using multiple real-

world networks and varied domains for the purpose of ecological validity. We intend

to deploy CommunityDiff for others to use and hope to collect information on how

it functions in real-world contexts. This type of evaluation would also help determine
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if certain features are more useful for certain kinds of networks or certain types of

users and would give us a sense of performance of different algorithms on specific

kinds of networks.

We believe that the idea of using differences of algorithms to effectively capture

the analytical process of community detection can also be applied to similar real-

world problems with no ground-truth and varying outputs (depending on algorithm

used) including outlier detection and clustering.

7.9 Conclusion

CommunityDiff is a novel tool supporting end-users in the construction of

community-labeled networks. Though there are many network analysis tools and

packages, one of the most common features — the efficient production of accurate

community labels — is often lacking. The noisiness of networks, variable performance

of community finding algorithms, and incompleteness of knowledge all factor into the

challenging nature of this problem.

With CommunityDiff, we demonstrated a set of features that address many of

these concerns. We showed how an ensemble space could be created from compet-

ing algorithms that often out-performs single algorithms. Visualization of this space

allows the end-user to make easy comparisons between different options. Focused

visualizations further allow the end-user to view “votes” in a co-community graph,

and allows the end-user to rapidly make decisions and correct system mistakes. As

the user makes direct manipulation actions, CommunityDiff improves the parti-

tions thus boosting labeling efficiency. By ‘nudging’ the user, through visual cues,

CommunityDiff can suggest high-value feedback for the end-user to concentrate

on. The overall system thus satisfies the needs of end-users by combining algorithms

and visualizations. Though CommunityDiff focuses on community detection, we

believe that many of the techniques and guidelines described here — including the

idea of differences of algorithms — are portable to other data mining problems where

end-user interactivity is valued and/or necessary.
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CHAPTER VIII

Conclusion and Future Work

8.1 Summary

By focusing on differences between different online communities, via contrasting

different similarity measures or user behavior within these communities, we gained

insights on community relations, hierarchies and conflicts. We also show this idea

can be applied to algorithms to improve resulting ensemble algorithms, to better

understand specific results and to isolating specific instances for human labeling.

We applied our idea to understand subreddit interactions and conflicts. Although

our analysis of community-to-community relations is focused on Reddit, this idea

is applicable to other social network platforms with community structure as well

(e.g. Facebook pages, Twitter hashtag communities, news forums). We perform

much of our community-to-community analysis via inferring a set of graphs with

the same set of nodes, in our case subreddits, but different sets of edges based on

different measures. These node-aligned networks reveal the multidimensional nature

of relationships among online communities and help us gain a deeper understanding

of these relationships.

When contrasting author overlap and textual similarity between pairs of sub-

reddits, we not only uncover interesting relationships between pairs like topic and

community fragmentation, communities at ideological war and hierarchical commu-

nity structure, we also discover the identities of these communities themselves. Based

on outgoing and incoming links, we can identify general and special focus subreddits,

mainstream and marginalized online populace. We also find interesting misaligned

communities which share a lot of similarities due to being part of a larger group, but

the subgroups are different enough to maintain there own identities (e.g. different

sports subreddits related to basketball, soccer etc. form a misaligned community

which represents the overall sports subreddit type). This chapter gives a general
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pipeline for analyzing any social media where there is an idea about online communi-

ties who interact with each other. The pipeline is not restricted to only author overlap

and textual similarity and can be extended to any number of different similarity mea-

sures provided the data is available. Uncovering these relationships are useful for

understanding how online communities interact, recommending similar communities,

identifying marginalized groups automatically and identifying differing viewpoints on

the same topic.

Contrasting user behavior in subreddits identifies inter-group conflicts. This also

enforces the notion that some users behave according to their (online) surroundings

i.e. which subreddit they are currently posting. Instead of specific case studies, we

extract the complete conflict map in Reddit using 2016 comment data and find out

which subreddit pairs are in conflict with each other during that time. We identify

some general properties of these conflicts like their high reciprocity. We observe that

several banned subreddits rank very high in a couple of subreddit-level features that

we use to characterize conflicts. We find that these features can be used to implicate

communal misbehavior in a more comprehensive study.

To study banned subreddit features and the efficacy of the above-mentioned inter-

action features, we first collect a dataset of 1060 subreddits along with their content.

These subreddits were active in some period from 2010 to 2017 and have at least 100

comments. This is the largest dataset of its kind to date. Through both quantitative

and qualitative analyses we find subreddit ban reasons are extremely varied, though

they fall into one of three main categories, internal, external and meta reasons. We

find that subreddit bans are clustered in time and by reason. We cluster and pre-

dict these subreddits using both textual and interaction features and implement a

banning-by-example schema to identify banned subreddits of a particular type by us-

ing other subreddits of that type as examples. This schema is helpful for community

moderators to study misbehaving communities in any social media or forum websites.

Finally, we apply the idea of extracting insights from differences to a set of com-

munity detection algorithms where the result can vary widely depending upon input

or the algorithm without any knowledge of the best output. In these cases, we create

a visualization tool, CommunityDiff to show how different these algorithms are and

use different weighted combinations of these algorithms to identify the most stable

output. We also identify cases where human input is warranted by looking into nodes

where the algorithms do not agree about the community assignment. We created a

system to incorporate user knowledge (number of communities, specific groupings) to

achieve a desirable solution.
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8.2 Extensions

Our general pipeline for comparing and contrasting different similarity measures

among different entities is applicable to various different entities including online

communities, user behavior within a community and even algorithms. The types of

similarity measures are also not limited to author overlap and textual similarity. We

can use any similarity measure depending on the entities in our pipeline. Another

important aspect is that we can use the same similarity measure at different times

to identify temporal patterns. For example, we can look at author overlap among

subreddits in 2016 and 2017 to identify changes in common authors. This idea can be

applied to other similarity measures including textual similarity as well. We provide

an expanded pipeline which can be useful for many network analysis problems.

Aggregating user behavior over different communities to identify conflicts can be

applied to any social media or news forums with overlapping community structure.

This includes Twitter follower groups, Facebook pages, news forum commenter com-

munities etc. We can use user metadata or graph alignment algorithms to infer

communities and use our pipelines on social media where user communities are not

explicit. An important aspect of identifying conflicts using up/downvotes is that the

procedure is content-agnostic, which means that we do not need to rely on natural

language processing to detect these conflicts. This is very useful for detecting conflicts

where the content is in a language other than English. In absence of measures like

up and downvotes, we can use content dependent techniques like toxicity analysis to

determine behavior.

As part of these projects, we collected a banned subreddit dataset with over 1000

banned subreddits. This dataset is largest of its kind to date and can be very useful

for studying community-wide misbehavior and hate-speech. We provide a banning-

by-example schema which is immediately useful for moderators who want to identify

specific types of misbehavior or misbehaving communities. The usefulness of this

approach is not limited to Reddit and all social media platforms with an inherent or

derived community structure can benefit from it.

In general, looking at differences among outputs of different algorithms on the

same input helps us determine which output is more stable and identify cases for

human labeling. This is not limited to community detection algorithms and can be

applied to any set of algorithms to improve ensemble output and active labeling for

interactive machine learning.

Finding similarities between entities and algorithm is widely used but our aim
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was to demonstrate that studying differences can be similarly beneficial as well. We

hope that this dissertation will help guide research by introducing both methods

and analyses about studying differences in online communities, algorithms and foster

interest in studying differences otherwise.
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and René Clausen Nielsen. Gender and cross-cultural differences in social me-
dia disclosures of mental illness. In Proceedings of the 2017 ACM Conference
on Computer Supported Cooperative Work and Social Computing, CSCW ’17,
pages 353–369, New York, NY, USA, 2017. ACM.
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[127] L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A
Statistical Mechanics and its Applications, 390:1150–1170, March 2011.

[128] Marco Lui and Timothy Baldwin. Cross-domain feature selection for language
identification. In In Proceedings of 5th International Joint Conference on Nat-
ural Language Processing, pages 553–561, 2011.

[129] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, December 2007.

[130] Richard Maclin and David W. Opitz. Popular ensemble methods: An empirical
study. CoRR, abs/1106.0257, 2011.

[131] Sofus A. Macskassy. Using Graph-based Metrics with Empirical Risk Mini-
mization to Speed Up Active Learning on Networked Data. In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’09, pages 597–606, New York, NY, USA, 2009. ACM.

[132] Trevor Martin. community2vec: Vector representations of online communities
encode semantic relationships. In Proceedings of the Second Workshop on NLP
and Computational Social Science, pages 27–31. Association for Computational
Linguistics, 2017.

[133] Trevor Martin. Dissecting trumps most rabid online following, 2017.

[134] J. Nathan Matias. Going dark: Social factors in collective action against plat-
form operators in the reddit blackout. In Proceedings of the 2016 CHI Con-
ference on Human Factors in Computing Systems, CHI ’16, pages 1138–1151,
New York, NY, USA, 2016. ACM.

[135] T. May, A. Bannach, J. Davey, T. Ruppert, and J. Kohlhammer. Guiding
feature subset selection with an interactive visualization. In Visual Analytics
Science and Technology (VAST), 2011 IEEE Conference on, pages 111–120,
Oct 2011.

161



[136] Pasquale De Meo, Emilio Ferrara, Giacomo Fiumara, and Alessandro Provetti.
Generalized Louvain method for community detection in large networks. In
ISDA, pages 88–93. IEEE, 2011.

[137] Emily Merritt. An analysis of the discourse of Internet trolling: A case study
of Reddit. com. PhD thesis, 2012.

[138] Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm
Euler. Yale: Rapid prototyping for complex data mining tasks. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’06, pages 935–940, New York, NY, USA, 2006. ACM.

[139] Rada F. Mihalcea and Dragomir R. Radev. Graph-based Natural Language
Processing and Information Retrieval. Cambridge University Press, New York,
NY, USA, 1st edition, 2011.

[140] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013.

[141] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality. In
Proceedings of the 26th International Conference on Neural Information Pro-
cessing Systems, NIPS’13, pages 3111–3119, USA, 2013. Curran Associates Inc.

[142] David Mimno and Moontae Lee. Low-dimensional embeddings for interpretable
anchor-based topic inference. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pages 1319–1328,
Doha, Qatar, October 2014. Association for Computational Linguistics.

[143] B. L. Monroe, M. P. Colaresi, and K. M. Quinn. Fightin’Words: Lexical Fea-
ture Selection and Evaluation for Identifying the Content of Political Conflict.
Political Analysis, 16(4):372, 2008.

[144] Lev Muchnik, Sinan Aral, and Sean J. Taylor. Social influence bias: A random-
ized experiment. Science, 341(6146):647–651, 2013.

[145] M E Newman. Modularity and community structure in networks. Proc Natl
Acad Sci U S A, 103(23):8577–8582, June 2006.

[146] Mark EJ Newman. Modularity and community structure in networks. Proceed-
ings of the national academy of sciences, 103(23):8577–8582, 2006.

[147] M.E.J. Newman. Fast algorithm for detecting community structure in networks.
Physical Review E, 69, September 2003.

[148] Randal S. Olson and Zachary P. Neal. Navigating the massive world of red-
dit: Using backbone networks to map user interests in social media. CoRR,
abs/1312.3387, 2013.

162



[149] Panagiotis Papadimitriou, Ali Dasdan, and Hector Garcia-Molina. Web graph
similarity for anomaly detection. Journal of Internet Services and Applications,
1(1):19–30, 2010.

[150] Kayur Patel, Steven M. Drucker, James Fogarty, Ashish Kapoor, and Desney S.
Tan. Using multiple models to understand data. In Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence - Volume Vol-
ume Two, IJCAI’11, pages 1723–1728. AAAI Press, 2011.

[151] Leto Peel, Daniel B. Larremore, and Aaron Clauset. The ground truth about
metadata and community detection in networks, 2016.

[152] Peter Pirolli and Stuart Card. The sensemaking process and leverage points for
analyst technology as identified through cognitive task analysis. In Proceedings
of international conference on intelligence analysis, volume 5, pages 2–4, 2005.

[153] Pascal Pons and Matthieu Latapy. Computing communities in large networks
using random walks. J. of Graph Alg. and App. bf, 10:284–293, 2004.

[154] Kyle Porter. Analyzing the darknetmarkets subreddit for evolutions of tools
and trends using lda topic modeling. Digital Investigation, 26:S87–S97, 2018.

[155] Reid Porter, James Theiler, and Don Hush. Interactive machine learning in
data exploitation. Computing in Science & Engineering, 15(5):12–20, 2013.

[156] Liza Potts and Angela Harrison. Interfaces as rhetorical constructions: Reddit
and 4chan during the boston marathon bombings. In Proceedings of the 31st
ACM International Conference on Design of Communication, SIGDOC ’13,
pages 143–150, New York, NY, USA, 2013. ACM.
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